-
Notifications
You must be signed in to change notification settings - Fork 35
/
models.py
253 lines (198 loc) · 10.3 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import os
import logging
import sys
import time
import torch
import torch.nn.functional as F
from torch import nn
import torch_geometric
from torch_geometric.nn.conv import GCNConv
from torch_geometric.nn.unpool import knn_interpolate
from su2torch import SU2Module
from mesh_utils import write_graph_mesh, quad2tri, get_mesh_graph, signed_dist_graph, is_cw
class MeshGCN(nn.Module):
def __init__(self, in_channels, hidden_channels, out_channels, num_layers=6, improved=False,
cached=False, bias=True, fine_marker_dict=None):
super().__init__()
self.fine_marker_dict = torch.tensor(fine_marker_dict['airfoil']).unique()
self.sdf = None
in_channels += 1 # account for sdf
channels = [in_channels]
channels += [hidden_channels] * (num_layers - 1)
channels.append(out_channels)
convs = []
for i in range(num_layers):
convs.append(GCNConv(channels[i], channels[i+1], improved=improved,
cached=cached, bias=bias))
self.convs = nn.ModuleList(convs)
def forward(self, data):
x = data.x
edge_index = data.edge_index
batch_size = data.aoa.shape[0]
if self.sdf is None:
with torch.no_grad():
self.sdf = signed_dist_graph(x[data.batch == 0, :2],
self.fine_marker_dict).unsqueeze(1)
x = torch.cat([data.x, self.sdf.repeat(batch_size, 1)], dim=1)
for i, conv in enumerate(self.convs[:-1]):
x = conv(x, edge_index)
x = F.relu(x)
x = self.convs[-1](x, edge_index)
return x
class CFDGCN(nn.Module):
def __init__(self, config_file, coarse_mesh, fine_marker_dict, process_sim=lambda x, y: x,
freeze_mesh=False, num_convs=6, num_end_convs=3, hidden_channels=512,
out_channels=3, device='cuda'):
super().__init__()
meshes_temp_dir = 'temp_meshes'
os.makedirs(meshes_temp_dir, exist_ok=True)
self.mesh_file = meshes_temp_dir + '/' + str(os.getpid()) + '_mesh.su2'
if not coarse_mesh:
raise ValueError('Need to provide a coarse mesh for CFD-GCN.')
nodes, edges, self.elems, self.marker_dict = get_mesh_graph(coarse_mesh)
self.nodes = torch.from_numpy(nodes).to(device)
if not freeze_mesh:
self.nodes = nn.Parameter(self.nodes)
self.elems, new_edges = quad2tri(sum(self.elems, []))
self.elems = [self.elems]
self.edges = torch.from_numpy(edges).to(device)
print(self.edges.dtype, new_edges.dtype)
self.edges = torch.cat([self.edges, new_edges.to(self.edges.device)], dim=1)
self.marker_inds = torch.tensor(sum(self.marker_dict.values(), [])).unique()
assert is_cw(self.nodes, self.elems[0]).nonzero().shape[0] == 0, 'Mesh has flipped elems'
self.process_sim = process_sim
self.su2 = SU2Module(config_file, mesh_file=self.mesh_file)
logging.info(f'Mesh filename: {self.mesh_file.format(batch_index="*")}')
self.fine_marker_dict = torch.tensor(fine_marker_dict['airfoil']).unique()
self.sdf = None
improved = False
self.num_convs = num_end_convs
self.convs = []
if self.num_convs > 0:
self.convs = nn.ModuleList()
in_channels = out_channels + hidden_channels
for i in range(self.num_convs - 1):
self.convs.append(GCNConv(in_channels, hidden_channels, improved=improved))
in_channels = hidden_channels
self.convs.append(GCNConv(in_channels, out_channels, improved=improved))
self.num_pre_convs = num_convs - num_end_convs
self.pre_convs = []
if self.num_pre_convs > 0:
in_channels = 5 + 1 # one extra channel for sdf
self.pre_convs = nn.ModuleList()
for i in range(self.num_pre_convs - 1):
self.pre_convs.append(GCNConv(in_channels, hidden_channels, improved=improved))
in_channels = hidden_channels
self.pre_convs.append(GCNConv(in_channels, hidden_channels, improved=improved))
self.sim_info = {} # store output of coarse simulation for logging / debugging
def forward(self, batch):
start = time.time()
batch_size = batch.aoa.shape[0]
if self.sdf is None:
with torch.no_grad():
self.sdf = signed_dist_graph(batch.x[batch.batch == 0, :2],
self.fine_marker_dict).unsqueeze(1)
fine_x = torch.cat([batch.x, self.sdf.repeat(batch_size, 1)], dim=1)
for i, conv in enumerate(self.pre_convs):
fine_x = F.relu(conv(fine_x, batch.edge_index))
nodes = self.get_nodes()
num_nodes = nodes.shape[0]
self.write_mesh_file(nodes, self.elems, self.marker_dict, filename=self.mesh_file)
params = torch.stack([batch.aoa, batch.mach_or_reynolds], dim=1)
batch_aoa = params[:, 0].to('cpu', non_blocking=True)
batch_mach_or_reynolds = params[:, 1].to('cpu', non_blocking=True)
batch_x = nodes.unsqueeze(0).expand(batch_size, -1, -1)
batch_x = batch_x.to('cpu', non_blocking=True)
batch_y = self.su2(batch_x[..., 0], batch_x[..., 1],
batch_aoa[..., None], batch_mach_or_reynolds[..., None])
batch_y = [y.to(batch.x.device) for y in batch_y]
batch_y = self.process_sim(batch_y, False)
coarse_y = torch.stack([y.flatten() for y in batch_y], dim=1)
coarse_x = nodes.repeat(batch_size, 1)[:, :2]
zeros = batch.batch.new_zeros(num_nodes)
coarse_batch = torch.cat([zeros + i for i in range(batch_size)])
fine_y = self.upsample(coarse_y, coarse_x, coarse_batch, batch)
fine_y = torch.cat([fine_y, fine_x], dim=1)
for i, conv in enumerate(self.convs[:-1]):
fine_y = F.relu(conv(fine_y, batch.edge_index))
fine_y = self.convs[-1](fine_y, batch.edge_index)
self.sim_info['nodes'] = coarse_x[:, :2]
self.sim_info['elems'] = [self.elems] * batch_size
self.sim_info['batch'] = coarse_batch
self.sim_info['output'] = coarse_y
return fine_y
def upsample(self, y, coarse_nodes, coarse_batch, fine):
fine_nodes = fine.x[:, :2]
y = knn_interpolate(y.cpu(), coarse_nodes[:, :2].cpu(), fine_nodes.cpu(),
coarse_batch.cpu(), fine.batch.cpu(), k=3).to(y.device)
return y
def get_nodes(self):
# return torch.cat([self.marker_nodes, self.not_marker_nodes])
return self.nodes
@staticmethod
def write_mesh_file(x, elems, marker_dict, filename='mesh.su2'):
write_graph_mesh(filename, x[:, :2], elems, marker_dict)
@staticmethod
def contiguous_elems_list(elems, inds):
# Hack to easily have compatibility with MeshEdgePool
return elems
class UCM(CFDGCN):
"""Simply upsamples the coarse simulation without using any GCNs."""
def __init__(self, config_file, coarse_mesh, fine_marker_dict, process_sim=lambda x, y: x,
freeze_mesh=False, device='cuda'):
super().__init__(config_file, coarse_mesh, fine_marker_dict, process_sim=process_sim,
freeze_mesh=freeze_mesh, num_convs=0, num_end_convs=0, device=device)
def forward(self, batch):
batch_size = batch.aoa.shape[0]
nodes = self.get_nodes()
num_nodes = nodes.shape[0]
self.write_mesh_file(nodes, self.elems, self.marker_dict, filename=self.mesh_file)
params = torch.stack([batch.aoa, batch.mach_or_reynolds], dim=1)
batch_aoa = params[:, 0].to('cpu', non_blocking=True)
batch_mach_or_reynolds = params[:, 1].to('cpu', non_blocking=True)
batch_x = nodes.unsqueeze(0).expand(batch_size, -1, -1)
batch_x = batch_x.to('cpu', non_blocking=True)
batch_y = self.su2(batch_x[..., 0], batch_x[..., 1],
batch_aoa[..., None], batch_mach_or_reynolds[..., None])
batch_y = [y.to(batch.x.device) for y in batch_y]
batch_y = self.process_sim(batch_y, False)
coarse_y = torch.stack([y.flatten() for y in batch_y], dim=1)
coarse_x = nodes.repeat(batch_size, 1)[:, :2]
zeros = batch.batch.new_zeros(num_nodes)
coarse_batch = torch.cat([zeros + i for i in range(batch_size)])
fine_y = self.upsample(coarse_y, coarse_x, coarse_batch, batch)
self.sim_info['nodes'] = coarse_x[:, :2]
self.sim_info['elems'] = [self.elems] * batch_size
self.sim_info['batch'] = coarse_batch
self.sim_info['output'] = coarse_y
return fine_y
class CFD(CFDGCN):
"""Simply outputs the results of the (fine) CFD simulation."""
def __init__(self, config_file, mesh, fine_marker_dict, process_sim=lambda x, y: x,
freeze_mesh=False, device='cuda'):
super().__init__(config_file, mesh, fine_marker_dict, process_sim=process_sim,
freeze_mesh=freeze_mesh, num_convs=0, num_end_convs=0, device=device)
def forward(self, batch):
batch_size = batch.aoa.shape[0]
nodes = self.get_nodes()
num_nodes = nodes.shape[0]
self.write_mesh_file(nodes, self.elems, self.marker_dict, filename=self.mesh_file)
params = torch.stack([batch.aoa, batch.mach_or_reynolds], dim=1)
batch_aoa = params[:, 0].to('cpu', non_blocking=True)
batch_mach_or_reynolds = params[:, 1].to('cpu', non_blocking=True)
batch_x = nodes.unsqueeze(0).expand(batch_size, -1, -1)
batch_x = batch_x.to('cpu', non_blocking=True)
batch_y = self.su2(batch_x[..., 0], batch_x[..., 1],
batch_aoa[..., None], batch_mach_or_reynolds[..., None])
batch_y = [y.to(batch.x.device) for y in batch_y]
batch_y = self.process_sim(batch_y, False)
coarse_y = torch.stack([y.flatten() for y in batch_y], dim=1)
coarse_x = nodes.repeat(batch_size, 1)[:, :2]
zeros = batch.batch.new_zeros(num_nodes)
coarse_batch = torch.cat([zeros + i for i in range(batch_size)])
fine_y = coarse_y
self.sim_info['nodes'] = coarse_x[:, :2]
self.sim_info['elems'] = [self.elems] * batch_size
self.sim_info['batch'] = coarse_batch
self.sim_info['output'] = coarse_y
return fine_y