-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathaggregate_eval_stat.py
108 lines (89 loc) · 5.01 KB
/
aggregate_eval_stat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
from omegaconf import OmegaConf
import hydra
import json
import numpy as np
from scipy.stats import hmean
from scipy.stats import sem, hmean, ks_2samp
import pprint
import csv
def get_forget_quality(unlearn_result, retain_result):
unlearn_forget_result = unlearn_result['eval_log_forget.json']
retain_forget_result = retain_result['eval_log_forget.json']
unlearn_paraphrase_np_values = np.array(list(unlearn_forget_result['avg_paraphrased_loss'].values()))
unlearn_perturbed_np_values = np.array(list(unlearn_forget_result['average_perturb_loss'].values()))
unlearn_perturbed_np_values = unlearn_perturbed_np_values.mean(axis=-1)
retain_paraphrase_np_values = np.array(list(retain_forget_result['avg_paraphrased_loss'].values()))
retain_perturbed_np_values = np.array(list(retain_forget_result['average_perturb_loss'].values()))
retain_perturbed_np_values = retain_perturbed_np_values.mean(axis=-1)
unlearn_truth_ratio = np.exp( unlearn_perturbed_np_values - unlearn_paraphrase_np_values)
retain_truth_ratio = np.exp( retain_perturbed_np_values - retain_paraphrase_np_values)
test_res = ks_2samp(unlearn_truth_ratio, retain_truth_ratio)
return {'Forget Quality': test_res.pvalue, 'KS Test PVal Forget': test_res.pvalue, 'KS Test Forget': test_res.statistic}
def get_model_utility(eval_result_dict):
eval_task_dict = {
'eval_real_author_wo_options.json': 'Real Authors',
'eval_real_world_wo_options.json': 'Real World',
'eval_log.json': 'Retain',
'eval_log_forget.json': 'Forget'
}
eval_tasks = list(eval_task_dict.keys())
metrics = ['ROUGE', 'Prob.', 'Truth Ratio']
output_result = {}
for eval_task in eval_tasks:
for metric in metrics:
output_result[metric + ' ' + eval_task_dict[eval_task]] = []
# k is different files
for k, v in eval_result_dict.items():
# getting Probability
if 'eval_log' in k:
gt_probs = np.exp(-1 * np.array(list(eval_result_dict[k]['avg_gt_loss'].values())))
avg_gt_prob = np.mean(gt_probs)
else:
avg_true_prob = np.exp(-1 * np.array(list(eval_result_dict[k]['avg_gt_loss'].values())))
avg_false_prob = np.exp(-1 * np.array(list(eval_result_dict[k]['average_perturb_loss'].values())))
avg_all_prob = np.concatenate([np.expand_dims(avg_true_prob, axis=-1), avg_false_prob], axis=1).sum(-1)
avg_gt_prob = np.mean(avg_true_prob/avg_all_prob)
output_result[f'Prob. {eval_task_dict[k]}'] = avg_gt_prob
# getting ROUGE
avg_rouge = np.array(list(eval_result_dict[k]['rougeL_recall'].values())).mean()
output_result[f'ROUGE {eval_task_dict[k]}'] = avg_rouge
# getting Truth Ratio
avg_paraphrase_np_values = np.array(list(eval_result_dict[k]['avg_paraphrased_loss'].values()))
avg_perturbed_np_values = np.array(list(eval_result_dict[k]['average_perturb_loss'].values()))
avg_perturbed_np_values = avg_perturbed_np_values.mean(axis=-1)
curr_stat_1 = np.exp( avg_perturbed_np_values - avg_paraphrase_np_values)
# output_result[f'{eval_task_dict[k]} paraphrased_over_perturbed'] = curr_stat_1
if 'forget' in k:
paraphrased_perturb_ratio = np.mean(np.minimum(curr_stat_1, 1/curr_stat_1))
else:
paraphrased_perturb_ratio = np.mean(np.maximum(0, 1 - 1/curr_stat_1))
output_result[f'Truth Ratio {eval_task_dict[k]}'] = paraphrased_perturb_ratio
model_utility_cands = []
for k, v in output_result.items():
if 'Forget' not in k:
model_utility_cands.append(v)
output_result['Model Utility'] = hmean(model_utility_cands)
return output_result
@hydra.main(version_base=None, config_path="config", config_name="aggregate_eval_stat")
def main(cfg):
if cfg.retain_result is None or cfg.ckpt_result is None:
raise ValueError("Please provide either retain_result or ckpt_result")
retain_result = json.load(open(cfg.retain_result))
ckpt_result = json.load(open(cfg.ckpt_result))
# We have to assume here that retain_result and ckpt_result follow these structure:
# The top most layer has ['eval_log.json', 'eval_log_forget.json', 'eval_real_world_wo_options.json', 'eval_real_author_wo_options']
# the second layer contains the actual metrics: ['avg_gt_loss', 'average_perturb_loss', 'avg_paraphrased_loss', 'rougeL_recall']
# within each metric, we have {data_idx: measurement}
model_utility = get_model_utility(ckpt_result)
forget_quality = get_forget_quality(ckpt_result, retain_result)
model_utility['Forget Quality'] = forget_quality['Forget Quality']
model_utility['Method'] = cfg.method_name
model_utility['Submitted By'] = cfg.submitted_by
# dump the model utility to a temp.csv
with open(cfg.save_file, 'w') as f: # You will need 'wb' mode in Python 2.x
w = csv.DictWriter(f, model_utility.keys())
w.writeheader()
w.writerow(model_utility)
return model_utility
if __name__ == "__main__":
main()