Skip to content

Latest commit

 

History

History
174 lines (157 loc) · 10.5 KB

README.md

File metadata and controls

174 lines (157 loc) · 10.5 KB

cavernus

Library for FEM analysis of salt caverns

Theory

Salt cavern rock moves with a velocity that is small compared to $L/\tau$, where $L$ and $\tau$ are characteristic length and time scales of the system, respectively. They are therefore well described quasistatically. The displacement ${u} = {u}({x}, t) \rightarrow \mathbb{R}^d$ of the rock from its unforced state in a $d$-dimensional domain $\Omega$ is governed by the elasticity equation, which can be written as $$\nabla \cdot (C : \nabla^{\mathrm{s}} {u}) = \nabla \cdot (C : \epsilon_{\mathrm{cr}}) + f^{\mathrm{b}} \text{ in } \Omega,$$ $${u} = {g} \text{ on } \Gamma_{\mathrm{D}}$$ $$\hat{n} \cdot (C : \nabla^{\mathrm{s}} {u}) = {h} \text{ on } \Gamma_{\mathrm{N}},$$ where $C = C({x}, t)$ is the elasticity or stiffness tensor, $\nabla^{\mathrm{s}} = \frac{1}{2}(\nabla + \nabla^t)$ is the symmetrized gradient, $\epsilon_{\mathrm{cr}} \rightarrow \mathbb{R}^M$ is the inelastic creep strain, $f^{\mathrm{b}} = f^{\mathrm{b}}({x}, t)$ is a known body force, ${g} = {g}({x}, t)$ is a Dirichlet boundary condition imposed on a portion of the boundary $\Gamma_{\mathrm{D}}$, and ${h} = {h}({x}, t)$ is a Neumann boundary condition imposed on a portion of the boundary $\Gamma_{\mathrm{N}}$. We require that $\overline{\Gamma_{\mathrm{D}} \cup \Gamma_{\mathrm{N}}} = \partial \Omega$.

A constitutive relation for the inelastic creep strain is required in order to close the system. We are interested in the case where the inelastic creep strain rate is a function of the displacement and the inelastic creep strain itself, $\dot{\epsilon_{\mathrm{cr}}} = F ({u}, \epsilon_{\mathrm{cr}})$. This time dependence drives the evolution of ${u}$.

A continuous finite element method is used to discretize the elasticity equation in space. Let $V \subset H^1(\Omega)$ be a subspace of a Sobolev space on $\Omega$. For each $v \in V^d$, weak solutions $u, \epsilon_{\mathrm{cr}}$ must satisfy $$\int_\Omega v \cdot \nabla \cdot (C : \nabla^{\mathrm{s}}u) , \mathrm{d}V = \int_{\Omega} v \cdot \nabla \cdot (C : \epsilon_{\mathrm{cr}}) , \mathrm{d}V + \int_{\Omega} f^{\mathrm{b}} \cdot v , \mathrm{d} V$$ $$\Rightarrow \int_{\Omega} \langle \nabla v, (C : \nabla^{\mathrm{s}} u) \rangle_{\mathrm{F}} , \mathrm{d}V - \int_{\Gamma_{\mathrm{N}}} h \cdot v , \mathrm{d} S = \int_{\Omega} v \cdot \nabla \cdot (C : \epsilon_{\mathrm{cr}}) , \mathrm{d}V + \int_{\Omega} f^{\mathrm{b}} \cdot v , \mathrm{d}V,$$ where the second equation arises through integration by parts and $\langle \cdot, \cdot \rangle_{\mathrm{F}}$ denotes the Frobenius inner product.

Let $V_h \subset V$ be a finite-dimensional subspace of $V$ parametrized by a length scale $h$ and let $B_h = { \psi_1, \ldots, \psi_N}$ be a basis for $V_h$. Approximate the exact solutions as $$u \approx u_h = \sum_{i=1}^{Nd} u_i \hat{\psi_i},$$ $$\epsilon_{\mathrm{cr}} \approx \epsilon_h = \sum_{i=1}^{Nd(d+1)/2} \epsilon_i \bar{\psi_i},$$ where $\hat{\psi_i} \in B_h^d$ and $\bar{\psi_i} \in B_h^M$. Now $u_h$ and $\epsilon_h$ must satisfy $$\sum_{j=1}^{Nd} u_j \int_\Omega \langle \nabla \hat{\psi_i}, (C : \nabla^{\mathrm{s}} \hat{\psi_j}) \rangle_{\mathrm{F}} , \mathrm{d}V = \int_{\Gamma_{\mathrm{N}}} h \cdot \hat{\psi_i} , \mathrm{d}S + \sum_{j=1}^{Nd(d+1)/2} \epsilon_j \int_{\Omega} \hat{\psi_i} \cdot \nabla \cdot (C : \bar{\psi_j}) , \mathrm{d}V+ \int_\Omega f^{\mathrm{b}} \cdot \hat{\psi_i} , \mathrm{d} V$$ for each $\hat{\psi_i} \in B_h^d$. Let $K$ be the $Nd \times Nd$ matrix whose entries are given by $$K_{ij} = \int_\Omega \langle \nabla \hat{\psi_i}, (C : \nabla^{\mathrm{s}} \hat{\psi_j}) \rangle_{\mathrm{F}} , \mathrm{d}V,$$ let $G$ be the $Nd \times Nd(d+1)/2$ matrix whose entries are given by $$G_{ij} = \int_{\Omega} \hat{\psi_i} \cdot \nabla \cdot (C : \bar{\psi_j}) , \mathrm{d}V$$ and let $\vec{b}$ and $\vec{h}$ be the vectors whose entries are given by $$b_i = \int_\Omega f^{\mathrm{b}} \cdot \hat{\psi_i} , \mathrm{d}V,$$ $$h_i = \int_{\Gamma_{\mathrm{N}}} h \cdot \hat{\psi_i} , \mathrm{d}S.$$ Then the weak form of the elasticity equation becomes $$K \vec{u} = G \vec{\epsilon} + \vec{b} + \vec{h},$$ where $\vec{u} = (u_1, \ldots, u_{Nd})^t$ and $\vec{\epsilon} = (\epsilon_1, \ldots, \epsilon_{Nd(d+1)/2})^t$.

Recall that the time evolution of the system is governed by the inelastic creep strain rate $$\frac{\mathrm{d} \epsilon_{\mathrm{cr}}}{\mathrm{d}t} = F(u, \epsilon_{\mathrm{cr}}),$$ $$\epsilon_{\mathrm{cr}}(t=0) = \epsilon^0.$$ The weak solution $\epsilon_h$ must satisfy the weak form $$\frac{\mathrm{d}}{\mathrm{d}t} \sum_{j=1}^{Nd(d+1)/2} \epsilon_j \int_\Omega \langle \bar{\psi_i}, \bar{\psi_j} \rangle_{\mathrm{F}} , \mathrm{d}V = \int_\Omega \langle F(u_h, \epsilon_h), \bar{\psi_i} \rangle_{\mathrm{F}} , \mathrm{d}V$$ for each $\bar{\psi_i} \in B_h^M$. Let $M$ be the matrix whose entries are given by $$M_{ij} = \int_\Omega \langle \bar{\psi_i}, \bar{\psi_j} \rangle_{\mathrm{F}} , \mathrm{d}V,$$ and let $\vec{F}(u, \epsilon_{\mathrm{cr}})$ be the nonlinear operator whose entries are given by $$F_i(u, \epsilon_{\mathrm{cr}}) = \int_\Omega \langle F(u, \epsilon_{\mathrm{cr}}), \bar{\psi_i} \rangle_{\mathrm{F}} , \mathrm{d}V.$$ This document will also occasionally denote $$\vec{F}(\vec{u}, \vec{\epsilon}) = \vec{F} \left( \sum_{i=1}^{Nd} u_i \hat{\psi_i}, \sum_{i=1}^{Nd(d+1)/2} \epsilon_i \bar{\psi_i}\right) $$ for brevity. The weak form becomes $$\frac{\mathrm{d} \vec{\epsilon}}{\mathrm{d}t} = M^{-1} \vec{F} (\vec{u}, \vec{\epsilon}).$$

An interval of time is uniformly partitioned into time steps of size $\Delta t$. We use the family of Runge-Kutta (RK) ordinary differential equation integrators to progress from $t=0$ in time steps. Throughout the remainder of this document, we use a superscript to denote the time step at which a time-dependent quantity is evaluated, as $\xi^n = \xi(n \Delta t)$. RK methods estimate the value at the next time step as $$\vec{\epsilon}^{n+1} = \vec{\epsilon}^n + \Delta t \sum_{i=1}^s b_i \vec{k_i},$$ where $\vec{k_i}, \vec{y_i}$ satisfy $$M \vec{k_i} = \vec{F} \left( \vec{y_i}, \vec{\epsilon}^n + \Delta t \sum_{j=1}^s a_{ij} \vec{k_j} \right),$$ $$K \vec{y_i} = G (\vec{\epsilon}^n + \Delta t \sum_{j=1}^s a_{ij} \vec{k_j}) + \vec{b} + \vec{h}$$ with $t = t^n + c_i \Delta t$, $s$ is known as the number of stages for the particular method, and the $a_{ij}$, $b_i$, and $c_i$ are constants that depend on the specific choice of method.

The constants are typically expressed in the form of a Butcher tableau

LTM add an example of a butcher tableau

RK methods are categorized as either explicit or implicit. Explicit methods are simpler, but require $\Delta t$ to satisfy certain stability conditions which depend on the method. Meanwhile, implicit methods are more complex and expensive, but relax the time step size constraint. These will be discussed respectively in the following sections.

Explicit RK methods

For explicit methods, $a_{ij} = 0$ if $j \geq i$. In other words, the $a$ matrix is strictly lower triangular. The main consequence of this is that $\vec{k}_i$ at some stage depends only on the values of $\vec{k}_j$ for previous stages.

The simplest example of an explicit RK methods is the forward Euler method, which is a single-stage method whose Butcher tableau is

LTM add butcher tableau here

Written explicitly, $$\vec{\epsilon}^{n+1} = \vec{\epsilon}^n + \Delta t M^{-1} \vec{F}(\vec{u}^n, \vec{\epsilon}^n),$$ $$K \vec{u}^{n+1} = G \vec{\epsilon}^{n+1} + \vec{b}^{n+1} + \vec{h}^{n+1}.$$ With this method, the inelastic creep strain at the next time step can be directly written using quantities from the current time step. The displacement at the next time step can then be solved as usual.

Implicit RK methods

Implicit methods do not have lower triangular $a$ matrices. Hence $k_i$ at some stage depends implicitly on future stages.

The simplest example of an implicit RK method is the backward Euler method, which is a single-stage method whose Butcher tableau is

LTM add butcher tableau here

Written explicitly, $$\vec{\epsilon}^{n+1} = \vec{\epsilon}^n + \Delta t M^{-1} \vec{F}(\vec{u}^{n+1}, \vec{\epsilon}^{n+1}),$$ $$K \vec{u}^{n+1} = G \vec{\epsilon}^{n+1} + \vec{b}^{n+1} + \vec{h}^{n+1}.$$ Unlike the forward Euler case, we must simultaneously solve for the inelastic creep strain and the displacement at the next time step. The problem also requires a nonlinear solve. There are many options, but the Newton-Raphson method is extremely robust and simple. Define the residuals for the inelastic creep strain and displacement as $$\vec{R_\epsilon} = M (\vec{\epsilon}^{n+1} - \vec{\epsilon}^n) - \Delta t \vec{F}(\vec{u}^{n+1}, \vec{\epsilon}^{n+1}),$$ $$\vec{R_u} = K \vec{u}^{n+1} - G \vec{\epsilon}^{n+1} - \vec{b}^{n+1} - \vec{h}^{n+1}.$$ The goal is to find $\vec{\epsilon}^{n+1}, \vec{u}^{n+1}$ such that the residuals are zero. The Jacobians for the residuals are $$J_{\epsilon,\epsilon} = \frac{\partial \vec{R_{\epsilon}}}{\partial \vec{\epsilon}^{n+1}} = M - \Delta t \frac{\partial \vec{F}}{\partial \vec{\epsilon}^{n+1}},$$ $$J_{\epsilon,u} = \frac{\partial \vec{R_\epsilon}}{\partial \vec{u}^{n+1}} = - \Delta t \frac{\partial \vec{F}}{\partial \vec{u}^{n+1}},$$ $$J_{u,\epsilon} = \frac{\partial \vec{R_u}}{\partial \vec{\epsilon}^{n+1}} = -G,$$ $$J_{u,u} = \frac{\partial \vec{R_u}}{\partial \vec{u}^{n+1}} = K.$$ The Newton-Raphson method proceeds iteratively. Hereafter, $n+1$ superscripts are replaced by an $i$ superscript denoting the current iteration. An initial guess $\vec{u}^0, \vec{\epsilon}^0$ is provided; this is typically the solution from the previous time step. Denoting $\delta \vec{u}^{i+1} = \vec{u}^{i+1} - \vec{u}^i$ and $\delta \vec{\epsilon}^{i+1} = \vec{\epsilon}^{i+1} - \vec{\epsilon}^i$, we solve the linear problem $$J_{\epsilon,\epsilon} (\vec{\epsilon}^i, \vec{u}^i) \delta \vec{\epsilon}^{i+1} + J_{\epsilon,u} (\vec{\epsilon}^i, \vec{u}^i) \delta \vec{u}^{i+1} = -\vec{R_\epsilon} (\vec{\epsilon}^i, \vec{u}^i),$$ $$J_{u,\epsilon} (\vec{\epsilon}^i, \vec{u}^i) \delta \vec{\epsilon}^{i+1} + J_{u,u} (\vec{\epsilon}^i, \vec{u}^i) \delta \vec{u}^{i+1} = -\vec{R_u} (\vec{\epsilon}^i, \vec{u}^i),$$ then update the iterate indices. Iteration continues until the magnitude of the residuals is acceptably small. If we let $\vec{w}^i = (\vec{u}^i, \vec{\epsilon}^i)^t$, $\vec{R} = (\vec{R_u}, \vec{R_\epsilon})^t$, and $$J = \begin{pmatrix} J_{u,u} & J_{u,\epsilon} \ J_{\epsilon,u} & J_{\epsilon,\epsilon} \end{pmatrix},$$ then the Newton-Raphson iteration can be written more simply as solving the linear problem $$J(\vec{w}^i) \delta \vec{w}^{i+1} = -\vec{R}(\vec{w}^i).$$