MMOCR aka mmocr
is an open-source toolbox based on PyTorch and mmdetection for text detection, text recognition, and the corresponding downstream tasks including key information extraction. It is a part of the OpenMMLab project.
Please follow the installation guide to install mmocr.
There are several methods to install mmdeploy, among which you can choose an appropriate one according to your target platform and device.
Method I: Install precompiled package
You can refer to get_started
Method II: Build using scripts
If your target platform is Ubuntu 18.04 or later version, we encourage you to run
scripts. For example, the following commands install mmdeploy as well as inference engine - ONNX Runtime
.
git clone --recursive -b main https://github.com/open-mmlab/mmdeploy.git
cd mmdeploy
python3 tools/scripts/build_ubuntu_x64_ort.py $(nproc)
export PYTHONPATH=$(pwd)/build/lib:$PYTHONPATH
export LD_LIBRARY_PATH=$(pwd)/../mmdeploy-dep/onnxruntime-linux-x64-1.8.1/lib/:$LD_LIBRARY_PATH
Method III: Build from source
If neither I nor II meets your requirements, building mmdeploy from source is the last option.
You can use tools/deploy.py to convert mmocr models to the specified backend models. Its detailed usage can be learned from here.
When using tools/deploy.py
, it is crucial to specify the correct deployment config. We've already provided builtin deployment config files of all supported backends for mmocr, under which the config file path follows the pattern:
{task}/{task}_{backend}-{precision}_{static | dynamic}_{shape}.py
-
{task}: task in mmocr.
MMDeploy supports models of two tasks of mmocr, one is
text detection
and the other istext-recogntion
.DO REMEMBER TO USE the corresponding deployment config file when trying to convert models of different tasks.
-
{backend}: inference backend, such as onnxruntime, tensorrt, pplnn, ncnn, openvino, coreml etc.
-
{precision}: fp16, int8. When it's empty, it means fp32
-
{static | dynamic}: static shape or dynamic shape
-
{shape}: input shape or shape range of a model
In the next two chapters, we will task dbnet
model from text detection
task and crnn
model from text recognition
task respectively as examples, showing how to convert them to onnx model that can be inferred by ONNX Runtime.
cd mmdeploy
# download dbnet model from mmocr model zoo
mim download mmocr --config dbnet_resnet18_fpnc_1200e_icdar2015 --dest .
# convert mmocr model to onnxruntime model with dynamic shape
python tools/deploy.py \
configs/mmocr/text-detection/text-detection_onnxruntime_dynamic.py \
dbnet_resnet18_fpnc_1200e_icdar2015.py \
dbnet_resnet18_fpnc_1200e_icdar2015_20220825_221614-7c0e94f2.pth \
demo/resources/text_det.jpg \
--work-dir mmdeploy_models/mmocr/dbnet/ort \
--device cpu \
--show \
--dump-info
cd mmdeploy
# download crnn model from mmocr model zoo
mim download mmocr --config crnn_mini-vgg_5e_mj --dest .
# convert mmocr model to onnxruntime model with dynamic shape
python tools/deploy.py \
configs/mmocr/text-recognition/text-recognition_onnxruntime_dynamic.py \
crnn_mini-vgg_5e_mj.py \
crnn_mini-vgg_5e_mj_20220826_224120-8afbedbb.pth \
demo/resources/text_recog.jpg \
--work-dir mmdeploy_models/mmocr/crnn/ort \
--device cpu \
--show \
--dump-info
You can also convert the above models to other backend models by changing the deployment config file *_onnxruntime_dynamic.py
to others, e.g., converting dbnet
to tensorrt-fp32 model by text-detection/text-detection_tensorrt-_dynamic-320x320-2240x2240.py
.
When converting mmocr models to tensorrt models, --device should be set to "cuda"
Before moving on to model inference chapter, let's know more about the converted model structure which is very important for model inference.
The converted model locates in the working directory like mmdeploy_models/mmocr/dbnet/ort
in the previous example. It includes:
mmdeploy_models/mmocr/dbnet/ort
├── deploy.json
├── detail.json
├── end2end.onnx
└── pipeline.json
in which,
- end2end.onnx: backend model which can be inferred by ONNX Runtime
- *.json: the necessary information for mmdeploy SDK
The whole package mmdeploy_models/mmocr/dbnet/ort is defined as mmdeploy SDK model, i.e., mmdeploy SDK model includes both backend model and inference meta information.
Take the previous converted end2end.onnx
mode of dbnet
as an example, you can use the following code to inference the model and visualize the results.
from mmdeploy.apis.utils import build_task_processor
from mmdeploy.utils import get_input_shape, load_config
import torch
deploy_cfg = 'configs/mmocr/text-detection/text-detection_onnxruntime_dynamic.py'
model_cfg = 'dbnet_resnet18_fpnc_1200e_icdar2015.py'
device = 'cpu'
backend_model = ['./mmdeploy_models/mmocr/dbnet/ort/end2end.onnx']
image = './demo/resources/text_det.jpg'
# read deploy_cfg and model_cfg
deploy_cfg, model_cfg = load_config(deploy_cfg, model_cfg)
# build task and backend model
task_processor = build_task_processor(model_cfg, deploy_cfg, device)
model = task_processor.build_backend_model(backend_model)
# process input image
input_shape = get_input_shape(deploy_cfg)
model_inputs, _ = task_processor.create_input(image, input_shape)
# do model inference
with torch.no_grad():
result = model.test_step(model_inputs)
# visualize results
task_processor.visualize(
image=image,
model=model,
result=result[0],
window_name='visualize',
output_file='output_ocr.png')
Tip:
Map 'deploy_cfg', 'model_cfg', 'backend_model' and 'image' to corresponding arguments in chapter convert text recognition model, you will get the ONNX Runtime inference results of crnn
onnx model.
Given the above SDK models of dbnet
and crnn
, you can also perform SDK model inference like following,
import cv2
from mmdeploy_runtime import TextDetector
img = cv2.imread('demo/resources/text_det.jpg')
# create text detector
detector = TextDetector(
model_path='mmdeploy_models/mmocr/dbnet/ort',
device_name='cpu',
device_id=0)
# do model inference
bboxes = detector(img)
# draw detected bbox into the input image
if len(bboxes) > 0:
pts = ((bboxes[:, 0:8] + 0.5).reshape(len(bboxes), -1,
2).astype(int))
cv2.polylines(img, pts, True, (0, 255, 0), 2)
cv2.imwrite('output_ocr.png', img)
import cv2
from mmdeploy_runtime import TextRecognizer
img = cv2.imread('demo/resources/text_recog.jpg')
# create text recognizer
recognizer = TextRecognizer(
model_path='mmdeploy_models/mmocr/crnn/ort',
device_name='cpu',
device_id=0
)
# do model inference
texts = recognizer(img)
# print the result
print(texts)
Besides python API, mmdeploy SDK also provides other FFI (Foreign Function Interface), such as C, C++, C#, Java and so on. You can learn their usage from demos.
Model | Task | TorchScript | OnnxRuntime | TensorRT | ncnn | PPLNN | OpenVINO |
---|---|---|---|---|---|---|---|
DBNet | text-detection | Y | Y | Y | Y | Y | Y |
DBNetpp | text-detection | N | Y | Y | ? | ? | Y |
PSENet | text-detection | Y | Y | Y | Y | N | Y |
PANet | text-detection | Y | Y | Y | Y | N | Y |
TextSnake | text-detection | Y | Y | Y | ? | ? | ? |
MaskRCNN | text-detection | Y | Y | Y | ? | ? | ? |
CRNN | text-recognition | Y | Y | Y | Y | Y | N |
SAR | text-recognition | N | Y | Y | N | N | N |
SATRN | text-recognition | Y | Y | Y | N | N | N |
ABINet | text-recognition | Y | Y | Y | ? | ? | ? |
-
ABINet for TensorRT require pytorch1.10+ and TensorRT 8.4+.
-
SAR uses
valid_ratio
inside network inference, which causes performance drops. When thevalid_ratio
s between testing image and the image for conversion are quite different, the gap would be enlarged. -
For TensorRT backend, users have to choose the right config. For example, CRNN only accepts 1 channel input. Here is a recommendation table:
Model Config MaskRCNN text-detection_mrcnn_tensorrt_dynamic-320x320-2240x2240.py CRNN text-recognition_tensorrt_dynamic-1x32x32-1x32x640.py SATRN text-recognition_tensorrt_dynamic-32x32-32x640.py SAR text-recognition_tensorrt_dynamic-48x64-48x640.py ABINet text-recognition_tensorrt_static-32x128.py