Skip to content

Latest commit

 

History

History
201 lines (153 loc) · 6.53 KB

visualization_feature_map.md

File metadata and controls

201 lines (153 loc) · 6.53 KB

Wandb Feature Map Visualization

MMSegmentation 1.x provides backend support for Weights & Biases to facilitate visualization and management of project code results.

Wandb Configuration

Install Weights & Biases following official instructions e.g.

pip install wandb
wandb login

Add WandbVisBackend in vis_backend of visualizer in default_runtime.py config file:

vis_backends=[dict(type='LocalVisBackend'),
              dict(type='TensorboardVisBackend'),
              dict(type='WandbVisBackend')]

Examining feature map visualization in Wandb

SegLocalVisualizer is child class inherits from Visualizer in MMEngine and works for MMSegmentation visualization, for more details about Visualizer please refer to visualization tutorial in MMEngine.

Here is an example about SegLocalVisualizer, first you may download example data below by following commands:

wget https://user-images.githubusercontent.com/24582831/189833109-eddad58f-f777-4fc0-b98a-6bd429143b06.png --output-document aachen_000000_000019_leftImg8bit.png
wget https://user-images.githubusercontent.com/24582831/189833143-15f60f8a-4d1e-4cbb-a6e7-5e2233869fac.png --output-document aachen_000000_000019_gtFine_labelTrainIds.png

wget https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x1024_40k_cityscapes/ann_r50-d8_512x1024_40k_cityscapes_20200605_095211-049fc292.pth
# Copyright (c) OpenMMLab. All rights reserved.
from argparse import ArgumentParser
from typing import Type

import mmcv
import torch
import torch.nn as nn

from mmengine.model import revert_sync_batchnorm
from mmengine.structures import PixelData
from mmseg.apis import inference_model, init_model
from mmseg.structures import SegDataSample
from mmseg.utils import register_all_modules
from mmseg.visualization import SegLocalVisualizer


class Recorder:
    """record the forward output feature map and save to data_buffer."""

    def __init__(self) -> None:
        self.data_buffer = list()

    def __enter__(self, ):
        self._data_buffer = list()

    def record_data_hook(self, model: nn.Module, input: Type, output: Type):
        self.data_buffer.append(output)

    def __exit__(self, *args, **kwargs):
        pass


def visualize(args, model, recorder, result):
    seg_visualizer = SegLocalVisualizer(
        vis_backends=[dict(type='WandbVisBackend')],
        save_dir='temp_dir',
        alpha=0.5)
    seg_visualizer.dataset_meta = dict(
        classes=model.dataset_meta['classes'],
        palette=model.dataset_meta['palette'])

    image = mmcv.imread(args.img, 'color')

    seg_visualizer.add_datasample(
        name='predict',
        image=image,
        data_sample=result,
        draw_gt=False,
        draw_pred=True,
        wait_time=0,
        out_file=None,
        show=False)

    # add feature map to wandb visualizer
    for i in range(len(recorder.data_buffer)):
        feature = recorder.data_buffer[i][0]  # remove the batch
        drawn_img = seg_visualizer.draw_featmap(
            feature, image, channel_reduction='select_max')
        seg_visualizer.add_image(f'feature_map{i}', drawn_img)

    if args.gt_mask:
        sem_seg = mmcv.imread(args.gt_mask, 'unchanged')
        sem_seg = torch.from_numpy(sem_seg)
        gt_mask = dict(data=sem_seg)
        gt_mask = PixelData(**gt_mask)
        data_sample = SegDataSample()
        data_sample.gt_sem_seg = gt_mask

        seg_visualizer.add_datasample(
            name='gt_mask',
            image=image,
            data_sample=data_sample,
            draw_gt=True,
            draw_pred=False,
            wait_time=0,
            out_file=None,
            show=False)

    seg_visualizer.add_image('image', image)


def main():
    parser = ArgumentParser(
        description='Draw the Feature Map During Inference')
    parser.add_argument('img', help='Image file')
    parser.add_argument('config', help='Config file')
    parser.add_argument('checkpoint', help='Checkpoint file')
    parser.add_argument('--gt_mask', default=None, help='Path of gt mask file')
    parser.add_argument('--out-file', default=None, help='Path to output file')
    parser.add_argument(
        '--device', default='cuda:0', help='Device used for inference')
    parser.add_argument(
        '--opacity',
        type=float,
        default=0.5,
        help='Opacity of painted segmentation map. In (0, 1] range.')
    parser.add_argument(
        '--title', default='result', help='The image identifier.')
    args = parser.parse_args()

    register_all_modules()

    # build the model from a config file and a checkpoint file
    model = init_model(args.config, args.checkpoint, device=args.device)
    if args.device == 'cpu':
        model = revert_sync_batchnorm(model)

    # show all named module in the model and use it in source list below
    for name, module in model.named_modules():
        print(name)

    source = [
        'decode_head.fusion.stages.0.query_project.activate',
        'decode_head.context.stages.0.key_project.activate',
        'decode_head.context.bottleneck.activate'
    ]
    source = dict.fromkeys(source)

    count = 0
    recorder = Recorder()
    # registry the forward hook
    for name, module in model.named_modules():
        if name in source:
            count += 1
            module.register_forward_hook(recorder.record_data_hook)
            if count == len(source):
                break

    with recorder:
        # test a single image, and record feature map to data_buffer
        result = inference_model(model, args.img)

    visualize(args, model, recorder, result)


if __name__ == '__main__':
    main()

Save the above code as feature_map_visual.py and execute the following code in terminal

python feature_map_visual.py ${image} ${config} ${checkpoint} [optional args]

e.g

python feature_map_visual.py \
aachen_000000_000019_leftImg8bit.png \
configs/ann/ann_r50-d8_4xb2-40k_cityscapes-512x1024.py \
ann_r50-d8_512x1024_40k_cityscapes_20200605_095211-049fc292.pth \
--gt_mask aachen_000000_000019_gtFine_labelTrainIds.png

The visualized image result and its corresponding feature map will appear in the wandb account.