-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_isic.py
192 lines (148 loc) · 6.57 KB
/
train_isic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
from torch.autograd import Variable
import argparse
from datetime import datetime
from lib.clcformer_model import CLCFormer
from utils.dataloader import *
from utils.utils import *
import torch.nn.functional as F
import numpy as np
import os
from tqdm import tqdm
from torch.optim import lr_scheduler
import torch.backends.cudnn as cudnn
import random
from optimezer_looka import Lookahead
def structure_loss(pred, mask):
weit = 1 + 5*torch.abs(F.avg_pool2d(mask, kernel_size=31, stride=1, padding=15) - mask)
wbce = F.binary_cross_entropy_with_logits(pred, mask, reduction='none')
wbce = (weit*wbce).sum(dim=(2, 3)) / weit.sum(dim=(2, 3))
pred = torch.sigmoid(pred)
inter = ((pred * mask)*weit).sum(dim=(2, 3))
union = ((pred + mask)*weit).sum(dim=(2, 3))
wiou = 1 - (inter + 1)/(union - inter+1)
return (wbce + wiou).mean()
#multi-class loss
# def structure_loss(pred, mask):
# ce_loss = SoftCrossEntropyLoss(smooth_factor=0.05, ignore_index=6)
# wbce = ce_loss(pred,mask.squeeze(1).long())
# dice_loss = DiceLoss(6)
# dice = dice_loss(pred, mask, softmax=True)
#
# return wbce+dice
def train(train_loader, model, optimizer, epoch, best_iou):
model.train()
loss_record2, loss_record3, loss_record4,loss_record1 = AvgMeter(), AvgMeter(), AvgMeter(),AvgMeter()
accum = 0
for i, (img_file_name,inputs,pack) in enumerate(tqdm(train_loader)):
# ---- data prepare ----
images, gts = inputs,pack
images = Variable(images).cuda()
gts = Variable(gts).cuda().float()
# ---- forward ----
lateral_map_4, lateral_map_3, lateral_map_2,lateral_map_1 = model(images)
# ---- loss function ----
loss4 = structure_loss(lateral_map_4, gts)
loss3 = structure_loss(lateral_map_3, gts)
loss2 = structure_loss(lateral_map_2, gts)
loss1 = structure_loss(lateral_map_1, gts)
loss = loss1*0.4 + 0.3 * loss2 + 0.15 * loss3 + 0.15 * loss4
# ---- backward ----
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), opt.grad_norm)
optimizer.step()
optimizer.zero_grad()
# ---- recording loss ----
loss_record2.update(loss2.data, opt.batchsize)
loss_record3.update(loss3.data, opt.batchsize)
loss_record4.update(loss4.data, opt.batchsize)
loss_record1.update(loss1.data, opt.batchsize)
# ---- train visualization ----
if i % 20 == 0 or i == total_step:
print('{} Epoch [{:03d}/{:03d}], Step [{:04d}/{:04d}], '
'[lateral-2: {:.4f}, lateral-3: {:0.4f}, lateral-4: {:0.4f}]'.
format(datetime.now(), epoch, opt.epoch, i, total_step,
loss_record2.show(), loss_record3.show(), loss_record4.show(),loss_record1.show()))
save_path = 'snapshots/{}/'.format(opt.train_save)
os.makedirs(save_path, exist_ok=True)
if (epoch+1) % 1 == 0:
meanIOU = test(model, test_loader)
if meanIOU > best_iou:
print('new best iou: ', meanIOU)
best_iou = meanIOU
torch.save(model.state_dict(), save_path + 'CLCFormer-%d.pth' % epoch)
print('[Saving Snapshot:]', save_path + 'CLCFormer-%d.pth'% epoch)
if (epoch) % 5 == 0:
torch.save(model.state_dict(), save_path + 'CLCFormer-%d.pth' % epoch)
print('[Saving Snapshot:]', save_path + 'CLCFormer-%d.pth'% epoch)
return best_iou
def test(model, test_data):
model.eval()
mean_loss = []
mean_iou = []
dice_bank = []
iou_bank = []
loss_bank = []
acc_bank = []
for i, (img_file_name,inputs,pack) in enumerate(tqdm(test_data)):
image, gt = inputs,pack
image = image.cuda()
gt = gt.cuda().float()
with torch.no_grad():
_, _, _, res = model(image)
loss = structure_loss(res, gt)
res = res.sigmoid().data.cpu().numpy().squeeze()
gt = gt.detach().cpu().numpy().squeeze()
gt = 1*(gt>0.5)
res = 1*(res > 0.5)
dice = mean_dice_np(gt, res)
iou = mean_iou_np(gt, res)
TP = float((res * gt).sum())
FP = float((res * (1 - gt)).sum())
FN = float(((1 - res) * (gt)).sum())
TN = float(((1 - res) * (1 - gt)).sum())
acc = (TP + TN) / (TP + FP + FN + TN)
# acc = np.sum(res == gt) / (res.shape[0]*res.shape[1])
loss_bank.append(loss.item())
dice_bank.append(dice)
iou_bank.append(iou)
acc_bank.append(acc)
print('{} Loss: {:.4f}, Dice: {:.4f}, IoU: {:.4f}, Acc: {:.4f}'.
format('test', np.mean(loss_bank), np.mean(dice_bank), np.mean(iou_bank), np.mean(acc_bank)))
mean_iou.append(np.mean(iou_bank))
return mean_iou[0]
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--epoch', type=int, default=50, help='epoch number')
parser.add_argument('--lr', type=float, default=1e-4, help='learning rate') ###
parser.add_argument('--batchsize', type=int, default=8, help='training batch size')
parser.add_argument('--grad_norm', type=float, default=2.0, help='gradient clipping norm')
parser.add_argument('--train_path', type=str,
default='./WHU_bulding/train', help='path to train dataset')
parser.add_argument('--valid_path', type=str,
default='./WHU_bulding/val/image', help='path to valid dataset')
parser.add_argument('--train_save', type=str, default='./save_model')
parser.add_argument('--beta1', type=float, default=0.9, help='beta1 of adam optimizer')
parser.add_argument('--beta2', type=float, default=0.999, help='beta2 of adam optimizer')
opt = parser.parse_args()
cudnn.benchmark = False
cudnn.deterministic = True
random.seed(1234)
np.random.seed(1234)
torch.manual_seed(1234)
torch.cuda.manual_seed(1234)
# ---- build models ----
model = CLCFormer(pretrained=True).cuda()
params = model.parameters()
base_optimizer = torch.optim.AdamW(params, opt.lr, betas=(opt.beta1, opt.beta2))
optimizer = Lookahead(base_optimizer)
image_root = '{}/image'.format(opt.train_path)
train_loader = get_loader(image_root, batchsize=opt.batchsize)
test_loader = get_loader(opt.valid_path, batchsize=opt.batchsize)
total_step = len(train_loader)
print("#"*20, "Start Training", "#"*20)
best_iou = 1e-5
scheduler = lr_scheduler.CosineAnnealingLR(
optimizer, T_max=opt.epoch, eta_min=1e-5)
for epoch in range(1, opt.epoch + 1):
best_loss = train(train_loader, model, optimizer, epoch, best_iou)
scheduler.step()