-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
51 lines (47 loc) · 1.62 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# %%
import os
import sys
sys.path.append(
(os.path.abspath(os.path.join(os.path.dirname(__file__), '.'))))
# %%
from src.model.AlbertCRF import AlbertCRF,AlbertSoftmaxForNer
from src.dataloader.Dataset import EETaskDataloader
from torch.optim import Adam
import torch
from src.util.utils import load_config_from_json
# %%
if __name__ == '__main__':
# %%
config = load_config_from_json(
"/home/longred/EETask/prev_trained_model/albert_tiny_zh/albert_config.json")
config.vocab_path = r"/home/longred/EETask/prev_trained_model/albert_tiny_zh/vocab.txt"
config.train_data_path = r"/home/longred/EETask/data/train.json"
config.batch_size = 32
config.event_schema_path = r"/home/longred/EETask/data/event_schema.json"
config.pretrained_path = r"/home/longred/EETask/prev_trained_model/albert_tiny_zh"
EE = EETaskDataloader(config)
train_loader = EE.get_train_data_loader()
# %%
config.num_labels = EE.num_labels
config.hidden_size = 312
net = AlbertSoftmaxForNer.from_pretrained(
"/home/longred/EETask/prev_trained_model/albert_tiny_zh/", num_labels=config.num_labels)
# %%
optim = Adam(net.parameters(), lr=0.001)
# %%
for i in train_loader:
net.zero_grad()
loss,out = net(i.input_ids, attention_mask=i.attention_mask, token_type_ids=i.token_type_ids,
position_ids=None, head_mask=None, labels=i.label_ids)
loss.backward()
optim.step()
print(loss.item())
# %%
a = torch.max(out,1)[1]
# %%
a.size()
# %%
out.size()
# %%
a[7]
# %%