-
Notifications
You must be signed in to change notification settings - Fork 1
/
ml_pipeline_lch.py
531 lines (379 loc) · 17.5 KB
/
ml_pipeline_lch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
import pandas as pd
import numpy as np
import re
from dateutil.relativedelta import relativedelta
from datetime import datetime, timedelta
from collections import defaultdict
from sklearn.preprocessing import MinMaxScaler, normalize
def retrieve_data(filename, headers = False, set_ind = None):
'''
Read in data from CSV to a pandas dataframe
Inputs:
filename: (string) filename of CSV
headers: (boolean) whether or not CSV includes headers
ind: (integer) CSV column number of values to be used as indices in
data frame
Output: pandas data frame
'''
if headers and isinstance(set_ind, int):
data_df = pd.read_csv(filename, header = 0, index_col = set_ind)
elif headers and not set_ind:
data_df = pd.read_csv(filename, header = 0)
else:
data_df = pd.read_csv(filename)
return data_df
def print_null_freq(df, blanks_only = False):
'''
For all columns in a given dataframe, calculate and print number of null and non-null values
Attribution: Adapted from https://github.com/yhat/DataGotham2013/blob/master/analysis/main.py
'''
df_lng = pd.melt(df)
null_variables = df_lng.value.isnull()
all_rows = pd.crosstab(df_lng.variable, null_variables)
if blanks_only:
try:
return all_rows[all_rows[True] > 0]
except:
return False
else:
return all_rows
def still_blank(train_test_tuples):
'''
Check for remaining null values after dummy variable creation is complete.
'''
to_impute = []
for train, test in train_test_tuples:
with_blanks = print_null_freq(train, blanks_only = True)
print(with_blanks)
print()
to_impute.append(list(with_blanks.index))
return to_impute
def create_col_ref(df):
'''
Develop quick check of column position via dictionary
'''
col_list = df.columns
col_dict = {}
for list_position, col_name in enumerate(col_list):
col_dict[col_name] = list_position
return col_dict
def abs_diff(col, factor, col_median, MAD):
'''
Calculate modified z-score of value in pandas data frame column, using
sys.float_info.min to avoid dividing by zero
Inputs:
col: column name in pandas data frame
factor: factor for calculating modified z-score (0.6745)
col_median: median value of pandas data frame column
MAD: mean absolute difference calculated from pandas dataframe column
Output: (float) absolute difference between column value and column meaan
absolute difference
Attribution: workaround for MAD = 0 adapted from https://stats.stackexchange.com/questions/339932/iglewicz-and-hoaglin-outlier-test-with-modified-z-scores-what-should-i-do-if-t
'''
if MAD == 0:
MAD = 2.2250738585072014e-308
return (x - y)/ MAD
def outliers_modified_z_score(df, col):
'''
Identify outliers (values falling outside 3.5 times modified z-score of
median) in a column of a given data frame
Output: (pandas series) outlier values in designated column
Attribution: Modified z-score method for identifying outliers adapted from
http://colingorrie.github.io/outlier-detection.html
'''
threshold = 3.5
zscore_factor = 0.6745
col_median = df[col].astype(float).median()
median_absolute_deviation = abs(df[col] - col_median).mean()
modified_zscore = df[col].apply(lambda x: abs_diff(x, zscore_factor,
col_median, median_absolute_deviation))
return modified_zscore[modified_zscore > threshold]
def convert_dates(date_series):
'''
Faster approach to datetime parsing for large datasets leveraging repated dates.
Attribution: https://github.com/sanand0/benchmarks/commit/0baf65b290b10016e6c5118f6c4055b0c45be2b0
'''
dates = {date:pd.to_datetime(date) for date in date_series.unique()}
return date_series.map(dates)
def make_boolean(df, cols, value_1s, ints = True):
if ints:
true_val = 1
neg_val = 0
else:
true_val = True
neg_val = False
for col in cols:
df.loc[df[col] != value_1s, col] = neg_val
df.loc[df[col] == value_1s, col] = true_val
def view_max_mins(df, max = True):
'''
View top and bottom 10% of values in each column of a given data frame
Inputs:
df: pandas dataframe
max: (boolean) indicator of whether to return to or bottom values
Output: (dataframe) values at each 100th of a percentile for top or bottom
values dataframe column
'''
if max:
return df.quantile(q=np.arange(0.99, 1.001, 0.001))
else:
return df.quantile(q=np.arange(0.0, 0.011, 0.001))
def view_likely_outliers(df, max = True):
'''
View percent change between percentiles in top or bottom 10% of values in
each column of a given data frame
Inputs:
df: pandas dataframe
max: (boolean) indicator of whether to return to or bottom values
Output: (dataframe) percent changes between values at each 100th of a
percentile for top or bottom values in given dataframe column
'''
if max:
return df.quantile(q=np.arange(0.9, 1.001, 0.001)).pct_change()
else:
return df.quantile(q=np.arange(0.0, 0.011, 0.001)).pct_change()
def remove_over_under_threshold(df, col, min_val = False, max_val = False, lwr_threshold = None, upr_threshold = False):
'''
Remove values over given percentile or value in a column of a given data
frame
'''
if max_val:
df.loc[df[col] > max_val, col] = None
if min_val:
df.loc[df[col] < min_val, col] = None
if upr_threshold:
maxes = view_max_mins(df, max = True)
df.loc[df[col] > maxes.loc[upr_threshold, col], col] = None
if lwr_threshold:
mins = view_max_mins(df, max = False)
df.loc[df[col] < mins.loc[lwr_threshold, col], col] = None
def remove_dramatic_outliers(df, col, threshold, max = True):
'''
Remove values over certain level of percent change in a column of a given
data frame
'''
if max:
maxes = view_max_mins(df, max = True)
likely_outliers_upper = view_likely_outliers(df, max = True)
outlier_values = list(maxes.loc[likely_outliers_upper[likely_outliers_upper[col] > threshold][col].index, col])
else:
mins = view_max_mins(df, max = False)
likely_outliers_lower = view_likely_outliers(df, max = False)
outlier_values = list(mins.loc[likely_outliers_lower[likely_outliers_lower[col] > threshold][col].index, col])
df = df[~df[col].isin(outlier_values)]
def basic_fill_vals(df, col_name, test_df = None, method = None, replace_with = None):
'''
For columns with more easily predicatable null values, fill with mean, median, or zero
Inputs:
df: pandas data frame
col_name: (string) column of interest
method: (string) desired method for filling null values in data frame.
Inputs can be "zeros", "median", or "mean"
'''
if method == "zeros":
df[col_name].fillna(0, inplace = True)
elif method == "replace":
replacement_val = replace_with
df[col_name].fillna(replacement_val, inplace = True)
elif method == "median":
replacement_val = df[col_name].median()
df[col_name].fillna(replacement_val, inplace = True)
elif method == "mean":
replacement_val = df[col_name].mean()
df[col_name].fillna(replacement_val, inplace = True)
# if imputing train-test set, fill test data frame with same values
if test_df is not None:
test_df[col_name].fillna(replacement_val, inplace = True)
def check_col_types(df):
return pd.DataFrame(df.dtypes, df.columns).rename({0: 'data_type'}, axis = 1)
def is_category(col_name, flag = None, geos = True):
'''
Utility function to determine whether a given column name includes key words or
phrases indicating it is categorical.
Inputs:
col_name: (string) name of a column
geos: (boolean) whether or not to include geographical words or phrases
in column name search
'''
search_for = ["_bin","_was_null"]
if flag:
search_for += [flag]
if geos:
search_for += ["city", "state", "county", "country", "zip", "zipcode", "latitude", "longitude"]
search_for = "|".join(search_for)
return re.search(search_for, col_name)
def summarize_df(df):
type_dict = defaultdict(list)
geos = ["city", "state", "county", "country", "zip", "zipcode", "latitude", "longitude"]
geos = "|".join(geos)
summary = pd.DataFrame(columns = ["col_name", "num_values", "num_nulls", "unique_values", "data_type", "col_type", "most_common", "prevalence"])
for col in df.columns:
num_values = df[col].value_counts().sum()
uniques = len(df[col].unique())
nulls = df[col].isnull().sum()
most_common = list(df[col].mode())[0]
mode_count = (df[col].value_counts().max() / num_values) * 100
dtype = df[col].dtype
if re.search(geos, col):
col_type = "geo"
type_dict["geo"].append(col)
elif re.search("id|_id", col):
col_type = "ID"
type_dict["ID"].append(col)
elif df[col].dtype.str[1] == 'M':
col_type = "datetime"
type_dict["datetime"].append(col)
elif df[col].dtype.kind in 'uifc':
col_type = "numeric"
type_dict["numeric"].append(col)
elif uniques == 1 or uniques == 2:
col_type = "binary"
type_dict["binary"].append(col)
elif uniques <= 6:
col_type = "multi"
type_dict["multi"].append(col)
elif uniques > 6:
col_type = "tops"
type_dict["tops"].append(col)
summary.loc[col] = [col, num_values, nulls, uniques, dtype, col_type, most_common, mode_count]
summary.set_index("col_name", inplace = True)
return summary, type_dict
def recateogrize_col(col, new_category, col_dict):
for category, cols_list in col_dict.items():
if col in cols_list:
col_dict[category] = [column for column in cols_list if column != col]
col_dict[new_category].append(col)
return col_dict
def replace_dummies(df, cols_to_dummy):
return pd.get_dummies(df, columns = cols_to_dummy , dummy_na=True)
def isolate_categoricals(df, categoricals_fcn, ret_categoricals = False, keyword = None, geos_indicator = True):
'''
Retrieve list of cateogrical or non-categorical columns from a given dataframe
Inputs:
df: pandas dataframe
categoricals_fcn: (function) Function to parse column name and return boolean
indicating whether or not column is categorical
ret_categoricals: (boolean) True when output should be list of
categorical colmn names, False when output should be list of
non-categorical column names
Outputs: list of column names from data frame
'''
categorical = [col for col in df.columns if categoricals_fcn(col, flag = keyword, geos = geos_indicator)]
non_categorical = [col for col in df.columns if not categoricals_fcn(col, flag = keyword, geos = geos_indicator)]
if ret_categoricals:
return categorical
else:
return non_categorical
def change_col_name(df, current_name, new_name):
'''
Change name of a single column in a given data frame
'''
df.columns = [new_name if col == current_name else col for col in df.columns]
def drop_unwanted(df, drop_list):
df.drop(drop_list, axis = 1, inplace = True)
def time_series_split(df, date_col, train_size, test_size, increment = 'month', specify_start = None):
if specify_start:
min_date = datetime.strptime(specify_start, '%Y-%m-%d')
else:
min_date = df[date_col].min()
if min_date.day > 25:
min_date += datetime.timedelta(days = 7)
min_date = min_date.replace(day=1, hour=0, minute=0, second=0)
else:
min_date = min_date.replace(day=1, hour=0, minute=0, second=0)
if increment == 'month':
train_max = min_date + relativedelta(months = train_size) - timedelta(days = 1)
test_min = train_max + timedelta(days = 1)
test_max = min(test_min + relativedelta(months = test_size), df[date_col].max())
if increment == 'day':
train_max = min_date + relativedelta(days = train_size)
test_min = train_max + timedelta(days = 1)
test_max = min((test_min + relativedelta(days = test_size)), df[date_col].max())
if increment == 'year':
train_max = timedelta(months = train_size) - timedelta(days = 1)
test_min = train_max + relativedelta(years = train_size)
test_max = min(test_min + relativedelta(years = test_size), df[date_col].max())
new_df = df[df.columns]
train_df = new_df[(new_df[date_col] >= min_date) & (new_df[date_col] <= train_max)]
test_df = new_df[(new_df[date_col] >= test_min) & (new_df[date_col] <= test_max)]
date_refs = (increment, min_date, train_size, test_min, test_size)
return train_df, test_df, date_refs
def create_expanding_splits(df, total_periods, dates, train_period_base, test_period_size, period = 'month', defined_start = None):
num_months = total_periods / test_period_size
months_used = train_period_base
tt_sets = []
set_dates = pd.DataFrame(columns = ("period", "training_start", "training_period", "test_period_start", "test_period"))
while months_used < total_periods:
print("original train period lenth: {}".format(train_period_base))
train, test, date_ref = time_series_split(df, date_col = dates, train_size = train_period_base, test_size = test_period_size, increment = period, specify_start = defined_start)
print("train: {}, test: {}".format(train.shape, test.shape))
tt_sets.append((train, test))
train_period_base += test_period_size
months_used += test_period_size
set_dates.loc[len(set_dates)] = list(date_ref)
return (tt_sets, set_dates)
def train_top_dummies(train_df, tops_list, threshold, max_options = 10):
set_distro_dummies = []
counter = 1
dummies_dict = {}
for col in tops_list:
col_sum = train_df[col].value_counts().sum()
top = train_df[col].value_counts().nlargest(max_options)
top_value = 0
num_dummies = 0
while ((top_value / col_sum) < threshold) & (num_dummies < max_options):
top_value += top[num_dummies]
num_dummies += 1
keep_dummies = list(top.index)[:num_dummies]
dummies_dict[col] = keep_dummies
counter += 1
set_distro_dummies.append(dummies_dict)
return set_distro_dummies
def apply_tops(set_specific_dummies, var_dict, train_df, test_df):
counter = 0
for set_dict in set_specific_dummies:
counter += 1
for col, vals in set_dict.items():
train_df.loc[~train_df[col].isin(vals), col] = 'Other'
test_df.loc[~test_df[col].isin(vals), col] = 'Other'
def iza_process(train_df, test_df, var_dict, tops_threshold = 0.5, binary = None, geos = False):
# for i, (train_df, test_df) in enumerate(dfs):
# print("Starting set {}...".format(i))
drop_unwanted(train_df, var_dict['datetime'])
drop_unwanted(test_df, var_dict['datetime'])
if binary is not None:
make_boolean(train_df, var_dict['binary'], value_1s = binary)
make_boolean(test_df, var_dict['binary'], value_1s = binary)
print("Binary columns successfully converted.")
train_df = replace_dummies(train_df, var_dict['multi'])
test_df = replace_dummies(test_df, var_dict['multi'])
# print("Values in columns {} successfully converted to dummies".format(var_dict['multi']))
tops = train_top_dummies(train_df, var_dict['tops'], threshold = tops_threshold, max_options = 10)
apply_tops(tops, var_dict, train_df, test_df)
train_df = pd.get_dummies(train_df, columns = var_dict['tops'], dummy_na = True)
test_df = pd.get_dummies(test_df, columns = var_dict['tops'], dummy_na = True)
# print("Top values in columns {} successfully converted to dummies".format(var_dict['tops']))
if geos:
geo_tops = train_top_dummies(train_df, var_dict['geo'], threshold = tops_threshold, max_options = 5)
apply_tops(geo_tops, var_dict, train_df, test_df)
train_df = pd.get_dummies(train_df, columns = var_dict['geo'], dummy_na = True)
test_df = pd.get_dummies(test_df, columns = var_dict['geo'], dummy_na = True)
# print("Values in columns {} successfully converted to dummies".format(var_dict['geo']))
print("Converted nonbinary, non-numeric columns to dummies.")
for col in var_dict['numeric']:
basic_fill_vals(train_df, col_name = col, test_df = test_df, method = 'mean')
train_df.loc[:, col] = normalize(pd.DataFrame(train_df[col]), axis = 0)
test_df.loc[:, col] = normalize(pd.DataFrame(test_df[col]), axis = 0)
print("Filled missing values and normalizied values in numeric columns.")
train_cols = set(train_df.columns)
test_cols = set(test_df.columns)
extra_train = train_cols - test_cols
extra_test = test_cols - train_cols
if len(extra_train) > 0:
for col in extra_train:
test_df[col] = 0
if len(extra_test) > 0:
for col in extra_test:
train_df[col] = 0
print("Moving to next set!")
return (train_df, test_df)