-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
77 lines (64 loc) · 4.02 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import torch
from torch import nn
from torch import optim
import os
from model import BadNet
from backdoor_loader import load_sets, backdoor_data_loader
from train_eval import train, eval
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', default='cifar', help='The dataset of choice between "cifar" and "mnist".')
parser.add_argument('--proportion', default=0.1, type=float, help='The proportion of training data which are poisoned.')
parser.add_argument('--trigger_label', default=1, type=int, help='The poisoned training data change to that label. Valid only for single attack option.')
parser.add_argument('--batch_size', default=64, type=int, help='The batch size used for training.')
parser.add_argument('--epochs', default=20, type=int, help='Number of epochs.')
parser.add_argument('--attack_type', default="single", help='The type of attack used. Choose between "single" and "all".')
parser.add_argument('--only_eval', default=False, type=bool, help='If true, only evaluate trained loaded models')
args = parser.parse_args()
def main():
dataset = args.dataset
attack = args.attack_type
model_path = "./models/badnet_"+str(dataset)+"_"+str(attack)+".pth"
# CIFAT10有RGB 3通道,但是MNIST只有灰度 单通道
if dataset == "cifar":
input_size = 3
elif dataset == "mnist":
input_size = 1
print("\n# Read Dataset: %s " % dataset)
train_data, test_data = load_sets(datasetname=dataset, download=True, dataset_path='./data')
print("\n# Construct Poisoned Dataset")
train_data_loader, test_data_orig_loader, test_data_trig_loader = backdoor_data_loader(datasetname=dataset,
train_data=train_data,
test_data=test_data,
trigger_label=args.trigger_label,
proportion=args.proportion,
batch_size=args.batch_size,
attack=attack)
badnet = BadNet(input_size=input_size, output=10)
criterion = nn.MSELoss() # 在分类问题中,MSE通常会比CE表现得更好
sgd = optim.SGD(badnet.parameters(), lr=0.001, momentum=0.9) # 神经网络的优化器
if os.path.exists(model_path):
print("Load model")
badnet.load_state_dict(torch.load(model_path))
# train and eval
if not args.only_eval:
print("start training: ")
for i in range(args.epochs):
loss_train = train(badnet, train_data_loader, criterion, sgd)
acc_train = eval(badnet, train_data_loader)
acc_test_orig = eval(badnet, test_data_orig_loader, batch_size=args.batch_size)
acc_test_trig = eval(badnet, test_data_trig_loader, batch_size=args.batch_size)
print(" epoch[%d/%d] loss: %.5f training accuracy: %.5f testing Orig accuracy: %.5f testing Trig accuracy: %.5f"
% (i + 1, args.epochs, loss_train, acc_train, acc_test_orig, acc_test_trig))
if not os.path.exists("./models"):
os.mkdir("./models") # Create the folder models if it doesn't exist
torch.save(badnet.state_dict(), model_path)
# when Only_eval == true
else:
acc_train = eval(badnet, train_data_loader)
acc_test_orig = eval(badnet, test_data_orig_loader, batch_size=args.batch_size)
acc_test_trig = eval(badnet, test_data_trig_loader, batch_size=args.batch_size)
print("training accuracy: %.5f testing Orig accuracy: %.5f testing Trig accuracy: %.5f"
% (acc_train, acc_test_orig, acc_test_trig))
if __name__ == "__main__":
main()