forked from rahul-goel/fused-ssim
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtorchssim.py
146 lines (114 loc) · 4.91 KB
/
torchssim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import torch
import torch.nn.functional as F
from math import exp
import numpy as np
from fused_ssim import fused_ssim, fused_ssim_opt
# 计算一维的高斯分布向量
def gaussian(window_size, sigma):
gauss = torch.Tensor([exp(-(x - window_size//2)**2/float(2*sigma**2)) for x in range(window_size)])
return gauss/gauss.sum()
# 创建高斯核,通过两个一维高斯分布向量进行矩阵乘法得到
# 可以设定channel参数拓展为3通道
def create_window(window_size, channel=1):
_1D_window = gaussian(window_size, 1.5).unsqueeze(1)
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
window = _2D_window.expand(channel, 1, window_size, window_size).contiguous()
return window
# 计算SSIM
# 直接使用SSIM的公式,但是在计算均值时,不是直接求像素平均值,而是采用归一化的高斯核卷积来代替。
# 在计算方差和协方差时用到了公式Var(X)=E[X^2]-E[X]^2, cov(X,Y)=E[XY]-E[X]E[Y].
# 正如前面提到的,上面求期望的操作采用高斯核卷积代替。
def ssim(img1, img2, window_size=11, window=None, size_average=True, full=False, val_range=None):
# Value range can be different from 255. Other common ranges are 1 (sigmoid) and 2 (tanh).
if val_range is None:
if torch.max(img1) > 128:
max_val = 255
else:
max_val = 1
if torch.min(img1) < -0.5:
min_val = -1
else:
min_val = 0
L = max_val - min_val
else:
L = val_range
padd = 0
(_, channel, height, width) = img1.size()
if window is None:
real_size = min(window_size, height, width)
window = create_window(real_size, channel=channel).to(img1.device)
# import ipdb; ipdb.set_trace()
mu1 = F.conv2d(img1, window, padding=padd, groups=channel)
mu2 = F.conv2d(img2, window, padding=padd, groups=channel)
mu1_sq = mu1.pow(2)
mu2_sq = mu2.pow(2)
mu1_mu2 = mu1 * mu2
sigma1_sq = F.conv2d(img1 * img1, window, padding=padd, groups=channel) - mu1_sq
sigma2_sq = F.conv2d(img2 * img2, window, padding=padd, groups=channel) - mu2_sq
sigma12 = F.conv2d(img1 * img2, window, padding=padd, groups=channel) - mu1_mu2
C1 = (0.01 * L) ** 2
C2 = (0.03 * L) ** 2
v1 = 2.0 * sigma12 + C2
v2 = sigma1_sq + sigma2_sq + C2
cs = torch.mean(v1 / v2) # contrast sensitivity
ssim_map = ((2 * mu1_mu2 + C1) * v1) / ((mu1_sq + mu2_sq + C1) * v2)
if size_average:
ret = ssim_map.mean()
else:
ret = ssim_map.mean(1).mean(1).mean(1)
if full:
return ret, cs
return ret
# Classes to re-use window
class SSIM(torch.nn.Module):
def __init__(self, window_size=11, size_average=True, val_range=None):
super(SSIM, self).__init__()
self.window_size = window_size
self.size_average = size_average
self.val_range = val_range
# Assume 1 channel for SSIM
self.channel = 1
self.window = create_window(window_size)
def forward(self, img1, img2):
(_, channel, _, _) = img1.size()
if channel == self.channel and self.window.dtype == img1.dtype:
window = self.window
else:
window = create_window(self.window_size, channel).to(img1.device).type(img1.dtype)
self.window = window
self.channel = channel
return ssim(img1, img2, window=window, window_size=self.window_size, size_average=self.size_average)
if __name__ == "__main__":
torch.manual_seed(0)
# gt_image1 = torch.rand(1, 3, 1080, 1920).cuda()
gt_image1 = torch.rand(1, 3, 2160, 3840).cuda()
predicted_image1 = torch.nn.Parameter(torch.rand_like(gt_image1)).cuda()
window_size = 11
window = create_window(window_size, gt_image1.size(1)).to(gt_image1.device).type(gt_image1.dtype)
ssim_value_ref1 = ssim(predicted_image1, gt_image1, window=window, window_size=window_size, size_average=True)
ssim_value1 = fused_ssim(predicted_image1, gt_image1)
torch.cuda.nvtx.range_push("fused_ssim")
ssim_value2= fused_ssim_opt(predicted_image1, gt_image1)
torch.cuda.nvtx.range_pop()
# if ssim_value1 != ssim_value2:
# print("Error")
# print(f"ref: {ssim_value_ref1}\nfused_ssim1: {ssim_value1}")
print(f"ref: {ssim_value_ref1}\nfused_ssim1: {ssim_value1}\nfused_ssim2: {ssim_value2}")
# """
# Timing
times = 1000
start = torch.cuda.Event(enable_timing=True)
end = torch.cuda.Event(enable_timing=True)
start.record()
for _ in range(times):
fused_ssim(predicted_image1, gt_image1)
end.record()
torch.cuda.synchronize()
print("fused_ssim elapsed time: ", start.elapsed_time(end)/times, "ms")
start.record()
for _ in range(times):
fused_ssim_opt(predicted_image1, gt_image1)
end.record()
torch.cuda.synchronize()
print("fused_ssim_opt elapsed time: ", start.elapsed_time(end)/times, "ms")
# """