-
Notifications
You must be signed in to change notification settings - Fork 0
/
ch3-periodogram.nb
2969 lines (2945 loc) · 142 KB
/
ch3-periodogram.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.2' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 145503, 2961]
NotebookOptionsPosition[ 143643, 2928]
NotebookOutlinePosition[ 144002, 2944]
CellTagsIndexPosition[ 143959, 2941]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"ClearAll", "[",
RowBox[{
"f", ",", "sr", ",", "len", ",", "sin", ",", "fsin", ",", "sint", ",",
"rec", ",", "frec", ",", "rect", ",", "tri", ",", "ftri", ",", "trit", ",",
"fm", ",", "ffm", ",", "fmt"}], "]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"f", "=", "1"}], ";",
RowBox[{"sr", "=", "40"}], ";",
RowBox[{"len", "=", "1000"}], ";"}], "\[IndentingNewLine]",
RowBox[{"(*", " ", "sin", " ", "*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"sin", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Sin", "[",
RowBox[{"2", "\[Pi]", " ",
RowBox[{"f", "/", "sr"}], " ", "n"}], "]"}], ",",
RowBox[{"{",
RowBox[{"n", ",", "0", ",",
RowBox[{"len", "-", "1"}]}], "}"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"fsin", "=",
RowBox[{
RowBox[{"Fourier", "[",
RowBox[{"sin", ",",
RowBox[{"FourierParameters", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1"}], ",", " ", "1"}], "}"}]}]}], "]"}], "*",
SqrtBox["2"]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"sint", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
FractionBox[
RowBox[{"n", "*", "sr"}], "len"], ",", " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"Abs", "[",
RowBox[{"fsin", "[",
RowBox[{"[",
RowBox[{"n", "+", "1"}], "]"}], "]"}], "]"}], ")"}], "2"]}],
"}"}], ",",
RowBox[{"{",
RowBox[{"n", ",", "0", ",", "999"}], "}"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"ListLinePlot", "[",
RowBox[{
RowBox[{"sint", "[",
RowBox[{"[",
RowBox[{"1", ";;", "499"}], "]"}], "]"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{"0.5", ",", "0"}], "}"}]}], ",",
RowBox[{"AxesOrigin", "\[Rule]",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}]}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Monochrome\>\""}], ",",
RowBox[{"PlotMarkers", "\[Rule]", "None"}], ",",
RowBox[{"Ticks", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
"1", ",", "3", ",", "5", ",", "7", ",", "9", ",", "11", ",", "13", ",",
"15", ",", "17", ",", "19"}], "}"}], ",", "Automatic"}], "}"}]}],
",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
"\"\<f/Hz\>\"", ",",
"\"\<Pwr/\!\(\*SubsuperscriptBox[\(V\), \(RMS\), \(2\)]\)\>\""}],
"}"}]}]}], "]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Periodogram", "[",
RowBox[{
RowBox[{"sin", "*",
SqrtBox["2"]}], ",",
RowBox[{"SampleRate", "\[Rule]", "40"}], ",",
RowBox[{"AxesOrigin", "\[Rule]",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"-", "60"}]}], "}"}]}], ",",
RowBox[{"FourierParameters", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1"}], ",", "1"}], "}"}]}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{", "Black", "}"}]}], ",",
RowBox[{"AxesStyle", "\[Rule]", "Black"}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
"\"\<f/Hz\>\"", ",",
"\"\<Pwr(\!\(\*SubsuperscriptBox[\(dBV\), \(RMS\), \(2\)]\))\>\""}],
"}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"-", "60"}], ",", "0"}], "}"}]}], ",",
RowBox[{"Ticks", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
"1", ",", "3", ",", "5", ",", "7", ",", "9", ",", "11", ",", "13",
",", "15", ",", "17", ",", "19"}], "}"}], ",", "Automatic"}],
"}"}]}]}], "]"}], "\[IndentingNewLine]",
RowBox[{"(*", " ", "rect", " ", "*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"rec", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"SquareWave", " ", "[",
RowBox[{
RowBox[{"f", "/", "sr"}], " ", "n"}], "]"}], ",",
RowBox[{"{",
RowBox[{"n", ",", "0", ",",
RowBox[{"len", "-", "1"}]}], "}"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"frec", "=",
RowBox[{
RowBox[{"Fourier", "[",
RowBox[{"rec", ",",
RowBox[{"FourierParameters", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1"}], ",", " ", "1"}], "}"}]}]}], "]"}], "*",
SqrtBox["2"]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"rect", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
FractionBox[
RowBox[{"n", "*", "sr"}], "len"], ",", " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"Abs", "[",
RowBox[{"frec", "[",
RowBox[{"[",
RowBox[{"n", "+", "1"}], "]"}], "]"}], "]"}], ")"}], "2"]}],
"}"}], ",",
RowBox[{"{",
RowBox[{"n", ",", "0", ",", "999"}], "}"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"Print", "[",
RowBox[{"\"\<square THD = \>\"", ",", " ",
FractionBox[
SqrtBox[
RowBox[{
RowBox[{"Total", "[",
SuperscriptBox[
RowBox[{"Abs", "[", "frec", "]"}], "2"], "]"}], "-",
SuperscriptBox[
RowBox[{"Abs", "[",
RowBox[{"frec", "[",
RowBox[{"[", "26", "]"}], "]"}], "]"}], "2"]}]],
RowBox[{"Abs", "[",
RowBox[{"frec", "[",
RowBox[{"[", "26", "]"}], "]"}], "]"}]]}], "]"}], "\[IndentingNewLine]",
RowBox[{"ListLinePlot", "[",
RowBox[{
RowBox[{"rect", "[",
RowBox[{"[",
RowBox[{"1", ";;", "499"}], "]"}], "]"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{".85", ",", "0"}], "}"}]}], ",",
RowBox[{"AxesOrigin", "\[Rule]",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}]}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Monochrome\>\""}], ",",
RowBox[{"PlotMarkers", "\[Rule]", "None"}], ",",
RowBox[{"Ticks", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
"1", ",", "3", ",", "5", ",", "7", ",", "9", ",", "11", ",", "13", ",",
"15", ",", "17", ",", "19"}], "}"}], ",", "Automatic"}], "}"}]}],
",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
"\"\<f/Hz\>\"", ",",
"\"\<Pwr/\!\(\*SubsuperscriptBox[\(V\), \(RMS\), \(2\)]\)\>\""}],
"}"}]}]}], "]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Periodogram", "[",
RowBox[{
RowBox[{"rec", "*",
SqrtBox["2"]}], ",",
RowBox[{"SampleRate", "\[Rule]", "40"}], ",",
RowBox[{"AxesOrigin", "\[Rule]",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"-", "60"}]}], "}"}]}], ",",
RowBox[{"FourierParameters", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1"}], ",", "1"}], "}"}]}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{", "Black", "}"}]}], ",",
RowBox[{"AxesStyle", "\[Rule]", "Black"}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
"\"\<f/Hz\>\"", ",",
"\"\<Pwr(\!\(\*SubsuperscriptBox[\(dBV\), \(RMS\), \(2\)]\))\>\""}],
"}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"-", "60"}], ",", "0"}], "}"}]}], ",",
RowBox[{"Ticks", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
"1", ",", "3", ",", "5", ",", "7", ",", "9", ",", "11", ",", "13",
",", "15", ",", "17", ",", "19"}], "}"}], ",", "Automatic"}],
"}"}]}]}], "]"}], "\[IndentingNewLine]",
RowBox[{"(*", " ", "tri", " ", "*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"tri", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"N", "[",
RowBox[{"TriangleWave", "[",
RowBox[{
RowBox[{"f", "/", "sr"}], " ", "n"}], "]"}], "]"}], ",",
RowBox[{"{",
RowBox[{"n", ",", "0", ",",
RowBox[{"len", "-", "1"}]}], "}"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"ftri", "=",
RowBox[{
RowBox[{"Fourier", "[",
RowBox[{"tri", ",",
RowBox[{"FourierParameters", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1"}], ",", " ", "1"}], "}"}]}]}], "]"}], "*",
SqrtBox["2"]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"trit", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
FractionBox[
RowBox[{"n", "*", "sr"}], "len"], ",", " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"Abs", "[",
RowBox[{"ftri", "[",
RowBox[{"[",
RowBox[{"n", "+", "1"}], "]"}], "]"}], "]"}], ")"}], "2"]}],
"}"}], ",",
RowBox[{"{",
RowBox[{"n", ",", "0", ",", "999"}], "}"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"Print", "[",
RowBox[{"\"\<triangle THD = \>\"", ",", " ",
FractionBox[
SqrtBox[
RowBox[{
RowBox[{"Total", "[",
SuperscriptBox[
RowBox[{"Abs", "[", "ftri", "]"}], "2"], "]"}], "-",
SuperscriptBox[
RowBox[{"Abs", "[",
RowBox[{"ftri", "[",
RowBox[{"[", "26", "]"}], "]"}], "]"}], "2"]}]],
RowBox[{"Abs", "[",
RowBox[{"ftri", "[",
RowBox[{"[", "26", "]"}], "]"}], "]"}]]}], "]"}], "\[IndentingNewLine]",
RowBox[{"ListLinePlot", "[",
RowBox[{
RowBox[{"trit", "[",
RowBox[{"[",
RowBox[{"1", ";;", "499"}], "]"}], "]"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{"0.4", ",", "0"}], "}"}]}], ",",
RowBox[{"AxesOrigin", "\[Rule]",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}]}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Monochrome\>\""}], ",",
RowBox[{"PlotMarkers", "\[Rule]", "None"}], ",",
RowBox[{"Ticks", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
"1", ",", "3", ",", "5", ",", "7", ",", "9", ",", "11", ",", "13", ",",
"15", ",", "17", ",", "19"}], "}"}], ",", "Automatic"}], "}"}]}],
",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
"\"\<f/Hz\>\"", ",",
"\"\<Pwr/\!\(\*SubsuperscriptBox[\(V\), \(RMS\), \(2\)]\)\>\""}],
"}"}]}]}], "]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Periodogram", "[",
RowBox[{
RowBox[{"tri", "*",
SqrtBox["2"]}], ",",
RowBox[{"SampleRate", "\[Rule]", "40"}], ",",
RowBox[{"AxesOrigin", "\[Rule]",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"-", "60"}]}], "}"}]}], ",",
RowBox[{"FourierParameters", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1"}], ",", "1"}], "}"}]}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{", "Black", "}"}]}], ",",
RowBox[{"AxesStyle", "\[Rule]", "Black"}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
"\"\<f/Hz\>\"", ",",
"\"\<Pwr(\!\(\*SubsuperscriptBox[\(dBV\), \(RMS\), \(2\)]\))\>\""}],
"}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"-", "60"}], ",", "0"}], "}"}]}], ",",
RowBox[{"Ticks", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
"1", ",", "3", ",", "5", ",", "7", ",", "9", ",", "11", ",", "13",
",", "15", ",", "17", ",", "19"}], "}"}], ",", "Automatic"}],
"}"}]}]}], "]"}], "\[IndentingNewLine]",
RowBox[{"(*", " ", "fm", " ", "*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"fmfunc", "[", "t_", "]"}], ":=",
RowBox[{"N", "[",
RowBox[{"Sin", "[",
RowBox[{
RowBox[{"20", "\[Pi]", " ", "t"}], "-",
RowBox[{"\[Pi]", " ",
RowBox[{"Cos", "[",
RowBox[{"2", "\[Pi]", " ", "t"}], "]"}]}]}], "]"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"fm", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"N", "[",
RowBox[{"fmfunc", "[",
RowBox[{
RowBox[{"f", "/", "sr"}], " ", "n"}], "]"}], "]"}], ",",
RowBox[{"{",
RowBox[{"n", ",", "0", ",",
RowBox[{"len", "-", "1"}]}], "}"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"ffm", "=",
RowBox[{
RowBox[{"Fourier", "[",
RowBox[{"fm", ",",
RowBox[{"FourierParameters", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1"}], ",", " ", "1"}], "}"}]}]}], "]"}], "*",
SqrtBox["2"]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"tfm", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
FractionBox[
RowBox[{"n", "*", "sr"}], "len"], ",", " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"Abs", "[",
RowBox[{"ffm", "[",
RowBox[{"[",
RowBox[{"n", "+", "1"}], "]"}], "]"}], "]"}], ")"}], "2"]}],
"}"}], ",",
RowBox[{"{",
RowBox[{"n", ",", "0", ",", "999"}], "}"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"fmfunc", "[", "t", "]"}], ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "2"}], "}"}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Monochrome\>\""}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<t/s\>\"", ",", "\"\<fm/V\>\""}], "}"}]}], ",",
RowBox[{"AspectRatio", "\[Rule]", "0.25"}]}], "]"}], "\[IndentingNewLine]",
RowBox[{"ListLinePlot", "[",
RowBox[{
RowBox[{"tfm", "[",
RowBox[{"[",
RowBox[{"1", ";;", "499"}], "]"}], "]"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{"0.2", ",", "0"}], "}"}]}], ",",
RowBox[{"AxesOrigin", "\[Rule]",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}]}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Monochrome\>\""}], ",",
RowBox[{"PlotMarkers", "\[Rule]", "None"}], ",",
RowBox[{"Ticks", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
"1", ",", "3", ",", "5", ",", "7", ",", "9", ",", "11", ",", "13", ",",
"15", ",", "17", ",", "19"}], "}"}], ",", "Automatic"}], "}"}]}],
",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
"\"\<f/Hz\>\"", ",",
"\"\<Pwr/\!\(\*SubsuperscriptBox[\(V\), \(RMS\), \(2\)]\)\>\""}],
"}"}]}]}], "]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Periodogram", "[",
RowBox[{
RowBox[{"fm", "*",
SqrtBox["2"]}], ",",
RowBox[{"SampleRate", "\[Rule]", "40"}], ",",
RowBox[{"AxesOrigin", "\[Rule]",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"-", "60"}]}], "}"}]}], ",",
RowBox[{"FourierParameters", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1"}], ",", "1"}], "}"}]}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{", "Black", "}"}]}], ",",
RowBox[{"AxesStyle", "\[Rule]", "Black"}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
"\"\<f/Hz\>\"", ",",
"\"\<Pwr(\!\(\*SubsuperscriptBox[\(dBV\), \(RMS\), \(2\)]\))\>\""}],
"}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"-", "60"}], ",", "0"}], "}"}]}], ",",
RowBox[{"Ticks", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
"1", ",", "3", ",", "5", ",", "7", ",", "9", ",", "11", ",", "13",
",", "15", ",", "17", ",", "19"}], "}"}], ",", "Automatic"}],
"}"}]}]}], "]"}], "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{"with", " ", "noise"}], " ", "*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"fmnoi", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{
RowBox[{"N", "[",
RowBox[{"fmfunc", "[",
RowBox[{
RowBox[{"f", "/", "sr"}], " ", "n"}], "]"}], "]"}], "+",
RowBox[{"RandomReal", "[",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.1"}], ",", "0.1"}], "}"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"n", ",", "0", ",",
RowBox[{"len", "-", "1"}]}], "}"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"Periodogram", "[",
RowBox[{
RowBox[{"fmnoi", "*",
SqrtBox["2"]}], ",",
RowBox[{"SampleRate", "\[Rule]", "40"}], ",",
RowBox[{"AxesOrigin", "\[Rule]",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"-", "60"}]}], "}"}]}], ",",
RowBox[{"FourierParameters", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1"}], ",", "1"}], "}"}]}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{", "Black", "}"}]}], ",",
RowBox[{"AxesStyle", "\[Rule]", "Black"}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
"\"\<f/Hz\>\"", ",",
"\"\<Pwr(\!\(\*SubsuperscriptBox[\(dBV\), \(RMS\), \(2\)]\))\>\""}],
"}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"-", "60"}], ",", "0"}], "}"}]}], ",",
RowBox[{"Ticks", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
"1", ",", "3", ",", "5", ",", "7", ",", "9", ",", "11", ",", "13", ",",
"15", ",", "17", ",", "19"}], "}"}], ",", "Automatic"}], "}"}]}],
",",
RowBox[{"AspectRatio", "\[Rule]",
RowBox[{"1", "/", "3"}]}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Thin"}]}], "]"}]}], "Input",
CellChangeTimes->CompressedData["
1:eJwdzk0ogwEAxvF3yhwWBzHtTWyHF43aSmQcRL5Tai1fmWyxqS1v1GJiZYUy
XyEHdpgWy2whtSLLrJF8bEg77cBlO/hYyDhsZc97ePrd/j0CJS0dSCEIIi85
+Luav0Z9v9Y8qbyMdd2DLhh0s05hpSXhhYk7Mgrv44kYTL8QEgVJ1+/UqXBP
TKXBjM41DvwIzJJQprvmQ9XoUhm0O+0SOMS2V8G51p1a6LHpOiB/IySHIq9W
AVsO3yfgj7tlEvrHAptMTx86gXHFyxmsaJy6hDmf1A38cvf64ZuTeoRBUXkE
xoIpUTghNxKF+EO3ZcORYR8J/zgKDdTOWmiYq72dhjwWdxeWNz/tQ+XBmwey
aVcALuuzHmAs28AtSpq5ahZAw/ZWAQy3y4phg7lJBHsWIoxSIU8N68NmDXTw
j0bg80qNAY7r++bhVbVyEZaeG63QRJpsTM/qOIZDXQ2nsF8y44PikgjjP765
AdU=
"],ExpressionUUID->"97663981-56be-49c3-9d82-a6418a9aedf5"],
Cell[BoxData[
GraphicsBox[{{}, {{}, {},
{GrayLevel[0], PointSize[0.011111111111111112`], AbsoluteThickness[1.6],
Dashing[{}], CapForm["Butt"], LineBox[CompressedData["
1:eJxTTMoPSmViYGCQAmIQjQ6qRda5P6xaYv9ul86R/Vo3LCD8LfYw+R1yra8D
d+yzX2rabMSpMAsqfwQuP2smCJy0/1Hq3XYscJ0FRP05uPybQJDIRXu2goPn
n/6dCNV/BS7PdX1xgS3Xdfu1QbozVzbyWULMuwmX14zpP/RV44595ooXXR2n
+6Dm34PLLwHpXvzAftYXiyy3U8csIPY9hMsbg8Fj+80plyd++v0Nav8TuPzh
rxpAG57aB0rtuqMSK2oJcc9zuHwQ2MIX9voPbi79pjfJAuK+l3D5h1UgA1/Z
X1j1OPLUlB8WEPe+gcsXgpxX8NY+ZW7yImmrHVD3v4PLQ8AHKP+BPQABx5f9
"]], LineBox[CompressedData["
1:eJxdl3lYjXkbgNtQiFRKSts57XU6i+qcGOcZX0jWUllqbI3lIyljUESFNGPJ
TpYkO01MjCFDkzDJmixp9FUIo5j21fJNPY/3ua55/+nKfV3v1e+5n/t3HJuZ
CwNmaWloaJRoamh0/MSnRo0/y9WHI7/q/uTQl981NHwrYowzR9Sq34RN2234
U5yy2v+C5dqqWoEnX210DE2uU7sv97atDG9SKjqfeoE/OdTxwnr168vRqran
hcrl/7ytIqZB4FZrq/55Y6O6ftftt7ajDFV5Ha+72ijw2Z1Pk7o2q5vmVO/l
yu6dL2wWeMfbjDOb1f/VntOePDtPGdDx5/m3CLyp83Ut6ptXPozyNixT7knp
eFoF/lXnC9vUm8IMbxyJrVR2HreiTeCdf97adrV74OMCtThW6dTxOscPAr9z
u+P5oB5vZfrE1zpTGdX5wo8C7zyu8Sf1wujGjEbzIcrOP+/CJ4F3vi70s/pJ
YFzD0vftSvpn+MLxPBoQJTKpC1+xVIl+mOP5NODZFc/e+x6kKdGXpsDxvJqw
JWNQ252DfVTojzmeXws+vJp82vtEuRJ9agkc56EFLqPen/jOYyH51RY4zkcb
DDyfuSTM265E38xxXjrQcG7IxujJ28m/jsBxfjowsm6Mb6iuvQr3oYvAcZ5d
4GW1WcMl/TAl7gdznG9XWJB+99ujgeuUuC9dBY7z7gqF+dZ2nsfraH+6CRzn
3w1U5b0/b2q5ocR9Yo6PLtSZ/v6H4lIT7ZeuwNGHLqRO8vC49mGDEn0wRx96
8FExuHDumULaPz2Bow890PKcE3o28YgSfXQXOProDhsSJi0zMAih/WSOPnrA
xv05Xau3xyjRRw+Bo48eMCfq7tMh7Vdof3sKHH30hB/WtNucrr6rRB/M0Yc+
nH3u3nCjPpT2W1/g6EMfKsdvvlN1cLESffQSOProBcqtOSkJ5l1V6IM5Hrc3
2F2beNnD474SffQWOProDf3qVn8VPDyE+jAQOJ7HAF5Vq/MuDIsiP8zxfAZw
X6ya9DrtJPXDHM9rAD56yz0kn2rJH3M8fx9Y1Dhnn2xYMPXVR+A4jz4wsn9m
N9/EeeSXOc6nD5hscj0l/V8m3Z/McV6G0CdO2ZKpWUj+Df81P0OoDy/WNRAF
UZ/McZ6GUK5n8s3sD9NpP5jjfI1gZcTDXyqvXqJ+jQSO8zaChfl/ZL4o2k77
wxznbwS20z+cHPf3SuqbOZ0CQqI++T2Lu037ZSxw9GEMZcXbDve9lE79M0cf
xhA71bi0LfQR7R9z9GEMD6re1vmEuyvRR1+Bo4++sG+O5eIHGX60n8zRR1/4
PbPbiX1TPtP9wRx99IX7M8cNbDapoP01ETj6MIEj9QYytyUj6H5hjj5MQOuA
htbLHQF0vzNHHyZwUW/sqYxumXT/mAocfZhCZXpVqntjO+0/c/RhCjuHfq2n
P8af7ifm6MMUNJMkz/JWfemjn8DRRz/IHlFZ5tz9LPXBHH30g9ykRV6/R/9M
fTBHH/2gtCnSZ2u7P/XBHH2YwXSD0ogFn7+hPswEjj7M4LWu1cwSzyfUB3P0
YQZpWaUjS0rjqQ/m6KM/bCuuN/Z960999Bc4+ugPf6UaR6cn+FMfzNFHfzj3
eXRNe34R9cEcfZjD0SGKjBFNv1If5gJHH+Yg/bhTfrcuivpgjj7M4dhLmfvy
gHnUB3N8LCBjWNUT7wyFCn1YCBx9WMDpO0bp8nFZ1Adz9GEBrx8OstWsWEh9
MEcfFhCre8Jkz7tF1McAgaOPAXBlqkOU5MBZ6oM5+hgAxtW/hGp+fE19MEcf
AyD50fGU2UV+1IelwNGHJTglS+bMNwukPpijD0uQjsnbseRICvXBHH1YQuq5
LktKt56lPqwEjj6s4OgZn9zfTo6jPpijDys48XhLZdlub+qDOfqwgmeio75b
kw5SH9YCx/NYw81Fk2aszAyn+4s5ns8a+plp7qvfNYH6YY7ntQbDiNvqA4UK
8sccz28N5uHns7qd8qC+mOM8rMHzitlpn4gC8ssc52MNonPWe4uzJlB/zHFe
NhDZsCzQWX8g+bf51/xsYKvmpS31yg/UJ3Ocpw0EgNnFSQV3aT+Y43xt4Mb4
qLFe+f7UL3Octw1UBBmZB9aMof1hjvO3gd06e3p2T1pFfTPHxxYa3sRFzkyw
V6EPW4GjD1uInr4mZvncEOqfOfqwhVZ53K+S8ytp/5ijD1sYO3xnuTownO4H
5ujDFrRA+/Iq7Wu0n8zRhy38Hd/T/pT9ELo/mKMPW7CYvOkCnJxB+ysSOPoQ
QdVMeaOrdzzdL8zRhwj8Dt8rSHTeQfvNHH2IwLNloVGfnkPo/mGOPkTQdchI
kx1JwbT/zNGHCEzehI+6vy+N7ifm6EMEo6s3rJ1lnk59iAWOPsTw8eiRXKu+
Q6kP5uhDDM99I9e+Dw+iPpijDzHIm3KmWO4yUqEP5uhDDJldrodkN16gPpij
DzFEfLPPbIzJUOqDOfoQw4M932YteziZ+mCOPuxgXsT7a5J72dSHncDRhx2s
8cjZv8HyD+qDOfqwg82DI4LbK5XUB3P0YQdtpqGRRzPCqA/m6MMOHh5MDNXJ
T6c+mKMPO1g9XuP9NcUP1AdzfOwhrjjR+FhzOd2/9gJHH/age3Wl9qEDy6kP
5ujDHmxu7+p1fNRr6oM5+rCHDTYmBbEW31MfzNGHPVTHBfaqiXjrhT6Yow97
sI3JTvpJPZz6YI4+7KE1pHBZ736F1IeDwNGHAxQ0OF660rSO+mCOPhzg5bsd
Y5URYuqDOfpwALOlRfeePbKlPpijDwc4fdT2wMJaLRX6YI4+HGD4iJb9Le/v
UR/M0YcDxCSWSPIHqKkPR4GjD0eYJraT5d2wpj6Yow9HqPdYv0y6Jpr6YI4+
HCEjasLzZvEb+vxgjj4c4Zr2uZkran2oD+bowxFen+3rON9nBPXBHH04wuab
XjoJbzdRH8zRhxMsuJ9pu+ZjAfXhJHD04QSzgtYf797sTn0wRx9OkJ63tL/9
3hDqgzn6cIJx8bMcVHq51Adz9OEEQzOzK2M3p1EfzNGHE5Reru71Z68k6oM5
Ps7gM7t47aold6gPZ4GjD2cIChm+okCSSn0wRx/O8Hn0174bCzOpD+bowxmi
4ouMbuXEUB/M0Ycz/GpX/clONJc+P5ijD2cweh70LkCvhwp9MEcfzqB8HJRa
cf0V9eEicPThAqrY/C0PukykPpijDxfYs+Kk11PdWdQHc/ThAkuu2Iz7vHYx
9cEcfbhA6lW9gqEb3tHnB3P04QK5bQleTmfsqA/m6MMFBooMl2zo8uX7h6vA
0YcrGC/xU1XpHqY+mKMPVyhvX6aR+dtO6oM5+nCFkPnmb8RucuqDOfpwBV3t
1S1jfh5OfTBHH64wXb/svPK3KuqDOfpwhcFB36fqmqZRH8zRhxu4zJ3UNCd0
MvXhJnD04QY3JfGtt3MHUR/M0YcbaK/fObfl6j3qgzn6cIOfavZFbM9Kpj6Y
o49/fu/jef/84xXUB3P04QaRRed1TK6upz6Y4yMB8RKjrIu5LvT/K4nA0YcE
njqO7dnQepj6YI4+JFCbNtHPf3sw9cEcfUhg8tkzP5w5MZL6YI4+JFD27C8n
/9jN1Adz9CGBVfEJv/gaVtHnB3P0IQEnCNn96k4A9eEucPThDqXHYo4oyqTU
B3P04Q7773WbYv7dGeqDOfpwB6OUXu8crGdQH8zRhzvMmOwRMKpoPPXBHH24
Q+CJknJd+0HUB3P04Q4q6c2B0zKuUx9SgeN5pODRmvym57o8ur+Y4/mk8Ped
w83ipT7UD3M8rxS2iobumXpfRf6Y4/mlcD7Ga2dIbjz1xRznIQXHxP27J1bn
kl/mOB8pvGi1WtDc+uX7DXOclxRMs9uCtHZJyT9znJ8U1MkK1a3mWuqTOc5T
CouOJ8cM88ui/WCO85VCScH7xPG6btQvc5y3FHKu58QeS3ei/WGO85fCbbPR
aRNKIqlv5vjIQKfsUNKkj+9ov2QCRx8y2Kr3YsqtxMHUP3P0IYPnOhv/dHMS
0f4xRx8y+K5sxtKH21bT/cAcfcigxqbJLbtLLu0nc/QhgxXRYYOXBQ2m+4M5
+pDBQ/8jHnv/K6f9ZY4+ZDAzZmrCq++/fH9jjj5kULnNqiQxpYj2mzn6kEGr
pnzTC29Pun+Yow8Z2MzfXn3x+kDaf+boQwZehtO8LUtm0/3EHH3I4JZN7SUH
rRzqQy5w9CEHo0MrxFXmIuqDOfqQwyGVyj0/z4H6YI4+5PAm+NTJsMWfqQ/m
6EMOL91Sknv/dZL6YI4+5HA6doLnjxZdqQ/m6EMObY3DRnnbF3uhD+boQw5+
D/TG/5hwmfpgjj7kkJkQmD3r+n3qgzn6kMPQQaIQjafO1Adz9CGHomGzxY1V
PtQHc/Qhh+llwXVS6Uvqgzn6kMOfdROux1mkUB/MaYqg9zbRJiy3mvpQCBx9
KGBSy380Fh+KpT6Yow8FxHmfTHr8tIb6YI4+FFAxYNrrRZUbqA/m6EMBxUU1
o8POBlAfzNGHArROHA+J3u1BfTBHHwr4+uGe1XuDo6kP5uhDAYHGq/Rl3unU
B3P0oYBH4RdPu4yYSH0wRx8KWJcyN9JroB/1wRx9KGCYblh1sE499cEcfSjg
pfe0udOnPqA+mP8fkmKPtw==
"]]}}, {}, {}, {}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{
FormBox["\"f/Hz\"", TraditionalForm],
FormBox[
"\"Pwr/\\!\\(\\*SubsuperscriptBox[\\(V\\), \\(RMS\\), \\(2\\)]\\)\"",
TraditionalForm]},
AxesOrigin->{0., 0.},
AxesStyle->GrayLevel[0],
BaseStyle->GrayLevel[0],
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameStyle->GrayLevel[0],
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
FrameTicksStyle->GrayLevel[0],
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0],
AbsoluteThickness[1],
AbsoluteDashing[{1, 2}]],
ImagePadding->All,
ImageSize->{214.796875, Automatic},
LabelStyle->{FontFamily -> "Helvetica",
GrayLevel[0]},
Method->{"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0., 19.92}, {0.5, 0}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {0, 0}},
Ticks->{{{1,
FormBox["1", TraditionalForm]}, {3,
FormBox["3", TraditionalForm]}, {5,
FormBox["5", TraditionalForm]}, {7,
FormBox["7", TraditionalForm]}, {9,
FormBox["9", TraditionalForm]}, {11,
FormBox["11", TraditionalForm]}, {13,
FormBox["13", TraditionalForm]}, {15,
FormBox["15", TraditionalForm]}, {17,
FormBox["17", TraditionalForm]}, {19,
FormBox["19", TraditionalForm]}}, Automatic},
TicksStyle->GrayLevel[0]]], "Output",
CellChangeTimes->{{3.751360193453521*^9, 3.7513602021851397`*^9},
3.751360250419784*^9, {3.7513603005076036`*^9, 3.751360315998617*^9}, {
3.751360376555468*^9, 3.751360427377*^9}, {3.75136045992686*^9,
3.751360517483371*^9}, {3.751360552517618*^9, 3.751360572757415*^9}, {
3.7513606831672583`*^9, 3.7513607266517267`*^9}, 3.751361056733567*^9, {
3.7513616770855618`*^9, 3.751361785236533*^9}, 3.751361827475211*^9, {
3.751361865429679*^9, 3.751361946778017*^9}, {3.751361986989298*^9,
3.7513620558011703`*^9}, 3.751362185152842*^9, 3.7513627866298656`*^9,
3.751362830406103*^9, {3.7513628765554123`*^9, 3.751362955930048*^9},
3.751363537666675*^9, 3.751363570482811*^9, 3.7513636234866543`*^9, {
3.751363686070058*^9, 3.75136369997149*^9}, 3.751363901307798*^9,
3.751364067959855*^9, 3.7513641370983458`*^9,
3.75136424257232*^9},ExpressionUUID->"76dd6120-1426-4d88-bee3-\
830809d0cd25"],
Cell[BoxData[
GraphicsBox[{{}, {{}, {},
{GrayLevel[0], PointSize[0.011111111111111112`], AbsoluteThickness[1.6],
LineBox[{{0.9871259628517236, -60.}, {
1.002004008016032, -3.0102999566398085`}, {
1.0168820531803404`, -60.}}]}}, {}, {}, {}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{
FormBox["\"f/Hz\"", TraditionalForm],
FormBox[
"\"Pwr(\\!\\(\\*SubsuperscriptBox[\\(dBV\\), \\(RMS\\), \\(2\\)]\\))\"",
TraditionalForm]},
AxesOrigin->{0., -60.},
AxesStyle->GrayLevel[0],
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
ImageSize->{214.796875, Automatic},
Method->{"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0., 20.}, {-60, 0}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {0, 0}},
Ticks->{{{1,
FormBox["1", TraditionalForm]}, {3,
FormBox["3", TraditionalForm]}, {5,
FormBox["5", TraditionalForm]}, {7,
FormBox["7", TraditionalForm]}, {9,
FormBox["9", TraditionalForm]}, {11,
FormBox["11", TraditionalForm]}, {13,
FormBox["13", TraditionalForm]}, {15,
FormBox["15", TraditionalForm]}, {17,
FormBox["17", TraditionalForm]}, {19,
FormBox["19", TraditionalForm]}}, Automatic}]], "Output",
CellChangeTimes->{{3.751360193453521*^9, 3.7513602021851397`*^9},
3.751360250419784*^9, {3.7513603005076036`*^9, 3.751360315998617*^9}, {
3.751360376555468*^9, 3.751360427377*^9}, {3.75136045992686*^9,
3.751360517483371*^9}, {3.751360552517618*^9, 3.751360572757415*^9}, {
3.7513606831672583`*^9, 3.7513607266517267`*^9}, 3.751361056733567*^9, {
3.7513616770855618`*^9, 3.751361785236533*^9}, 3.751361827475211*^9, {
3.751361865429679*^9, 3.751361946778017*^9}, {3.751361986989298*^9,
3.7513620558011703`*^9}, 3.751362185152842*^9, 3.7513627866298656`*^9,
3.751362830406103*^9, {3.7513628765554123`*^9, 3.751362955930048*^9},
3.751363537666675*^9, 3.751363570482811*^9, 3.7513636234866543`*^9, {
3.751363686070058*^9, 3.75136369997149*^9}, 3.751363901307798*^9,
3.751364067959855*^9, 3.7513641370983458`*^9,
3.751364242637621*^9},ExpressionUUID->"cf74c3b5-0a34-440e-aae8-\
1a0dec83260d"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"square THD = \"\>", "\[InvisibleSpace]",
"1.2092691515839038`"}],
SequenceForm["square THD = ", 1.2092691515839038`],
Editable->False]], "Print",
CellChangeTimes->{
3.751363537828582*^9, 3.751363570631585*^9, 3.751363623636595*^9, {
3.751363686149262*^9, 3.7513637000523367`*^9}, 3.751363901387949*^9,
3.751364068045309*^9, 3.751364137196575*^9,
3.751364242648653*^9},ExpressionUUID->"9556244b-aa71-4a0d-a691-\
1b94d8da0763"],
Cell[BoxData[
GraphicsBox[{{}, {{}, {},
{GrayLevel[0], PointSize[0.011111111111111112`], AbsoluteThickness[1.6],
Dashing[{}], CapForm["Butt"], LineBox[CompressedData["
1:eJxdmXk8lWkbgAllSdmiku0c+5LjHJOD9N5tGlPN4KsxLSoq01SKJrRNi/bl
a5EmNCVDqzL6MGmajFQaZBrDh0oSMjUahRayzDfcd+/9++b9p59z5Zz3ua/n
el7KKnRl4OIBKioq7aoqKn1//vNab5Qx5fG6NCHJ5MtowbhRiV9nC+95rvn2
5oDcPGGQ7ZNt/h/fIH5T5EmJfVeREKCt0TVotp4n/v1fRP48oO+VMqFj8r19
fj2l9P0VIteuSo3w0a4SKl4uOf3TDkNPfL97IneYe6DgtX2NsKi7IOV43S0l
vn+tyNP6vju1TjCdYOsQ8UGGEj/vscgV/VeDYGqzr+urfC1P/PxGkd94bf/3
JzwRXtZFW302SdMT7+d3kQf2f+BTIWmpe8IJ1Uwl3t8zkT9e1/eGfwjer/cv
z3NpU+L9Phd5ZN/tRfwpdOcdnl7iUED33yJyvF4KFzPftt/veSbgel6K/MP+
D2gVlLlNam92pNH6WkXe92lzD7QJxr/o+BUO61biettFjuNtF3Ys0HZWndFE
838lcou+2zF/LZx3q5QWLTL0xHm8FnlY//VGeJPZUfT7rdtKnM9bkfe9m1HG
WyE5RNp6dMU9Jc6rQ+Rv+t+uQ4i5oLcpZdclml+nyPvH4/NOyJmh6Nb6+Z0S
5/lO5P23t71L2Bm+7OR281M0326Rl97pu7qFXN/gsqhrr5Q47x6R9y/XqFc4
v/u+antFGc2/V+T9bzf3L6Hs2YsHc1q7lfQy/L9/FXhiVJehCL+nRD/McX0q
sKE0dkx5XpYSfamKHNerConB039MTHXwRH/Mcf0DYGym+/NszQYl+hwgcpzH
ANj2bpqqY1Qx+VUTOc5HDVatKLlx1uC6En0zx3mpw7+6ru+/L39M/tVFjvNT
h0eXN8xvGyD1xP2gIXKcpwZMqa8tj7leqcT9wRznOxD878c0NdveVOJ+GShy
nPdAmOe+yu/B/FbaP4NEjvMfBL+GV0Ta+l9U4n5ijpcmdBTbTazccFlAH5oi
Rx+aYJEb8MbA9rwSfTBHH1qQF/Sfyk/fGtH5oiVy9KEFJjcWh7jWFirRh7bI
0Yc2NOloJYbF3PRAH8zRhw68Mku8MX5dtxJ96IgcfehA5oKv9JofVNH+HSxy
9DEYYr7IvLQkrFiJPpijD1242phw7/KqKtrfuiJHH7qwZY5uUM7uq0r0MUTk
6GMIJDUEZ13QsKPzmTkudyhEmz4fK53UpkQfQ0WOPoZCqE5hxv6BCdSHnshx
PXpgt1IWrv1bCfXPHNenB8Gp1t6TS7KoH+a4Xj2w6C510et8Rf6Y4/r14dln
mQWmyzKoL32R4zz0Yev++Cde5Y/pfGGO89GHlRrTPu+pKabzkznOywCuVgaa
72wvIP8G/5ifAQScPVW2LraV+mSO8zSApvIzV4zif6PziznO1xACy8Z1TN/1
vl9DkeO8DaHntoX20mEvaP8wx/kbgk6OT8OvEVuob+a0CogqqXxruD5FQB9G
IkcfRlA262h377Qp1D9z9GEEnfU2tzb9coP2H3P0YQQTbRwX3XLepkQfw0SO
Pv7+OthNJf90He1P5uhjGFwuKd1WstiAni/M0ccwCP06seH3YhVPvD1jkaMP
Yxh2Xj8r09OSzhfm6MMYXlwM11mdcZXOd+bowxhmF0PpIZWTdP6YiBx9mIBv
RsuqTpdC2v/M0YcJtByu/SReL4XOJ+bowwSuninMT467SH0MFzn6GA4T3i28
edyvnPpgjj6GQ5Iwp3xGQxr1wRx9DIfG1frqCwuvUx/M0ccIaDpgFjvz50XU
xwiRo48RMLayUjvsYhn1wRx9jADrqYU+m5eupD6Yo4+R0KwRN6tIK4X6GCly
9DESSkt8zWs/y6Y+mKOPkeBdOWL5zDsnqA/m6MMUqt9VjSvdF0d9mIocfZhC
c7PDRumMC9QHc/RhCgfLt1btalxAfTDHaxSMqx+YaXw9jvoYJXL0MQqU50yf
J0Yeoj6Yo49REG5p2/10wtfUB3P0MQpCHY5tmS0RqA8zkaMPMwhpj/Lf33Sc
+mCOPsxgkpeNemfTCXq+MkcfZpDQ3KA4nxxF57u5yNGHOawasfvPlhIZ9cEc
fZiD6hUdk8HWcdQHc/RhDtf0YoM+SvqY+rAQOfqwgCCvL0aN61lCfTBHHxZw
UPigeV5dkwf6YI4+LGCod32LQ6Ia9WEpclyPJbhEygKUaW0e6Ic5rs8SfvKt
/X7Pr2rUD3NcryW4lr4+bdUcRv6Y4/otYUH25bjJ492pL+Y4D0uYPdT6QELk
dvLLHOdjCWuuj6/fdmY89ccc52UF1pLrE/zzZeTf6h/zswKfgnbThzlx1Cdz
nKcVLLswZvKlj76m/cEc52sFQ2atbO00mkD9Msd5W0FgdLD8ZtYu2j/Mcf5W
EJQwYby3fTD1zRwvCUjqJ62znrJLQB8SkaMPCbRPjvPx0vSl/pmjDwk89R28
tdwqhfYfc/QhgY44L0nJhf10PjBHHxJImVS9U6XgGu1P5uhDAsHa9ZeWe66m
84M5+pCAYUJL9+7KnbR/pSJHH1Lw2ZxQNUY1lM4X5uhDCmM09W0/7bxI+5s5
+pDCEJ3SFQVps+j8YY4+pNCbHxTX7Z5Ozwfm6EMK2vEPHz913k3nE3P0IYWz
3m0f7XqWQ31Yixx9WEO8QdPlRfHx9PMjc/RhDfumnk5o04ykPpijD2twH6mo
WL/1d+qDOfqwhs23k65FxH5LfTBHH9YQPVNQXvLYS30wRx/WMKrbu0FrTyz1
wRx92EBhc8bmyAup1IeNyNGHDZg35ZSde9hEfTBHHzbgVD6v586Vb6gP5ujD
Bl5ELF5fcmYP9cEcfdjAdH+9nS+0c6kP5ujDBkqfF+995BpFfTDHyxYWmC25
ezZnC/VhK3L0YQsPGn1Gz9+zmvpgjj5sofSVYbiO9DH1wRx92EKqa9dMzfDD
1Adz9GELCU87Bx4YHOeBPpijD1tYmzz4m3k6xdQHc/RhC19p5x9yPXaa+rAT
Ofqwg7u51VPyGxKpD+boww5G1Ne7Tbx9hvpgjj7sILLa8Cf5/X3UB3P0YQdF
sUlHjjZ1UB/M0YcduBqnnjEIuUl9MEcfdtA4cqL+i5PLqA97kaMPe1CL+2Hn
/bUnqQ/m6MMeSk/vbkqz2kV9MEcf9vCbhrfXj9OKqQ/m6MMebt2TTGxM2kp9
MEcf9pCe0jb/TtJl6oM5+rCHqIjz+YMmfkt9MEcfDlCw1OXTbyOSqA8HkaMP
BzArD9x9Q7eI+mCOPhygKCIlNU9Ipz6Yow8HmGw7fG3oi1Tqgzn6cIC/zlqZ
HP7jNvXBHH04wCdT5pw7umYO9cEcL0eQRMdaf++0gfpwFDn6cAT1JJOxCxRS
6oM5+nCE0s79N8d/d5L6YI4+HKHRZcKRrOAQ6oM5+nCEjS1TP30+5f3zgzn6
cISipi1hsO0l9cEcfTjCtGcPdmwsrKU+nESOPpygdeqKXllQrwf6YI4+nEDd
Kn6cVVgS9cEcfThBpXJWgr3FJuqDOfpwggHOR1dKuk9RH8zRhxPMSjmle3zs
+9//mKMPJ1gqKfhx+Ir91IezyNGHM0R/U9YTOiab+mCOPpwhO96rZpnfDuqD
OfpwhsbQ3EE101OpD+bowxmqEpJd8t76Uh/M0YczfFYdtLr9URb1wRx9OIOt
c8iqxW8CqA/m6MMFUuuGaFXc3Up9uIgcfbjAkdjSYYt1E6gP5ujDBSqOqmfM
2hxLfTBHHy4wX8v93JlT0dQHc/ThAtmqh/dsOnSI+mCOPlzggF6zmtOHk6kP
5niNBvcPf9i4tDeG+hgtcvQxGhYc0Xh35Ww09cEcffz9dczTrmuzv6I+mKOP
0SC/GGsS9V9r6oM5+hgNHfOum2VP30Z9MEcfo2Hx92vXmX60nfpgjj5Gw78/
LrB395xHfbiKHH24wu0nJ0z23jWh5wdz9OEKFba5knbDddQHc/ThCo5frtec
Pn0M9cEcfbjC+bRpZ6yiA6kP5ujDFbz/KPku2KrMA30wRx+u4DM16lVL3p8e
+KpM5LgeGexc5jBwS3qNB/phjuuTwbLdqlLduhb6/YQ5rlcG1QNfHjtuHEj+
mOP6ZVC3ZuExhZsl9cUc5yGD5qqesTFzI8kvc5yPDNIPjfeKa3Om/pjjvGRw
c2+3zqK7puSfOc5PBvJvr0zasWoT9ckc5ymDhPUH7/37TSztD+Y4Xxl06GdX
u0tdqV/mOO+/1xfusm/ejijaP8xx/jJIdqi+n53jR30zx8sNvhx0NEL/XJSA
PtxEjj7coDMmSsOoQUH9M0cfbqAbtFFtn98B2n/M0YcbBC4t7BoycwOdD8zR
hxsY99Y+3HwnnfYnc/ThBv/tenZihulCOj+Yow83WBZ50Fq7MJr2L3P04QYN
pxqOLV8UQOcLc/ThBmaPphW5+h6n/c0cfbiB9s9GD/MD/Oj8YY4+3GCNLHZB
lt0xej4wRx9uYFjz3RXNsLV0PjFHH26gKq2fXRt0mp4fcpGjDznsSctpkHyw
nf79gTn6kMOXwfpbI66F0POFOfqQQ7iu9YCAvGrqgzn6kEPlkvpnDhmHqQ/m
6EMON36b49g79v35xxx9yCG0863iR/PV1Adz9CGH4Jbx91IPHaE+mKMPOUiT
ln6SFPj+/3eYow85pKgPm9+md5D6YI4+5HD884WuIWYbqQ/m6EMOn1sGu1Su
SKc+mKMPOdhZJMgqvlhCfTCnKUKXf3r67GOrqQ+FyNGHAirl/pfmSpZQH8zR
hwKyahaGJc+ooD6Yow8FXOyYrSyYtJP6YI4+FKD5qmhzRvl2D/TBHH0o4FTU
H+cflfxEfTBHHwrIGbq8MqTmGPXBHH0oIFi+N/nayIPUB3P0oQDZgVXLvWre
98EcfShgzYTWmiF+sdQHc/ShAO9ZyWpDH7ygPpijDwWMKvSVDfL/gfpg/j+W
0TMj
"]]}}, {}, {}, {}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{
FormBox["\"f/Hz\"", TraditionalForm],
FormBox[
"\"Pwr/\\!\\(\\*SubsuperscriptBox[\\(V\\), \\(RMS\\), \\(2\\)]\\)\"",
TraditionalForm]},
AxesOrigin->{0., 0.},
AxesStyle->GrayLevel[0],
BaseStyle->GrayLevel[0],
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameStyle->GrayLevel[0],
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
FrameTicksStyle->GrayLevel[0],
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0],
AbsoluteThickness[1],
AbsoluteDashing[{1, 2}]],
ImagePadding->All,
ImageSize->{214.796875, Automatic},
LabelStyle->{FontFamily -> "Helvetica",
GrayLevel[0]},
Method->{"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0., 19.92}, {0.85, 0}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {0, 0}},
Ticks->{{{1,
FormBox["1", TraditionalForm]}, {3,
FormBox["3", TraditionalForm]}, {5,
FormBox["5", TraditionalForm]}, {7,
FormBox["7", TraditionalForm]}, {9,
FormBox["9", TraditionalForm]}, {11,
FormBox["11", TraditionalForm]}, {13,
FormBox["13", TraditionalForm]}, {15,
FormBox["15", TraditionalForm]}, {17,
FormBox["17", TraditionalForm]}, {19,
FormBox["19", TraditionalForm]}}, Automatic},
TicksStyle->GrayLevel[0]]], "Output",
CellChangeTimes->{{3.751360193453521*^9, 3.7513602021851397`*^9},
3.751360250419784*^9, {3.7513603005076036`*^9, 3.751360315998617*^9}, {
3.751360376555468*^9, 3.751360427377*^9}, {3.75136045992686*^9,
3.751360517483371*^9}, {3.751360552517618*^9, 3.751360572757415*^9}, {
3.7513606831672583`*^9, 3.7513607266517267`*^9}, 3.751361056733567*^9, {
3.7513616770855618`*^9, 3.751361785236533*^9}, 3.751361827475211*^9, {
3.751361865429679*^9, 3.751361946778017*^9}, {3.751361986989298*^9,
3.7513620558011703`*^9}, 3.751362185152842*^9, 3.7513627866298656`*^9,
3.751362830406103*^9, {3.7513628765554123`*^9, 3.751362955930048*^9},
3.751363537666675*^9, 3.751363570482811*^9, 3.7513636234866543`*^9, {
3.751363686070058*^9, 3.75136369997149*^9}, 3.751363901307798*^9,
3.751364067959855*^9, 3.7513641370983458`*^9,
3.751364242705449*^9},ExpressionUUID->"249bf67d-779c-4dda-8f3f-\
674dd760ce2e"],
Cell[BoxData[
GraphicsBox[{{}, {{}, {},
{GrayLevel[0], PointSize[0.011111111111111112`], AbsoluteThickness[1.6],
LineBox[{{0.9867847471173175, -60.}, {
1.002004008016032, -0.9031659247685769}, {1.0172232689147465`, -60.}}],
LineBox[{{2.992403675933842, -60.}, {
3.006012024048096, -10.374005024928472`}, {3.01962037216235, -60.}}],
LineBox[{{4.997212756468953, -60.}, {
5.01002004008016, -14.667093168301431`}, {5.022827323691368, -60.}}],
LineBox[{{7.001750872664599, -60.}, {
7.014028056112225, -17.372001992519785`}, {7.026305239559851, -60.}}],
LineBox[{{9.006141516476939, -60.}, {
9.01803607214429, -19.261188277263358`}, {9.029930627811638, -60.}}],
LineBox[{{11.010433665337981`, -60.}, {
11.022044088176353`, -20.63121026403784}, {11.033654511014724`, -60.}}],
LineBox[{{13.014651528417417`, -60.}, {
13.026052104208416`, -21.625615688860233`}, {
13.037452679999415`, -60.}}],
LineBox[{{15.018808482473375`, -60.}, {
15.030060120240481`, -22.322606875058554`}, {
15.041311758007588`, -60.}}],
LineBox[{{17.022912254763728`, -60.}, {
17.034068136272545`, -22.766930272131436`}, {17.04522401778136, -60.}}],
LineBox[{{19.02696717105388, -60.}, {
19.03807615230461, -22.983482902371005`}, {
19.049185133555337`, -60.}}]}}, {}, {}, {}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{
FormBox["\"f/Hz\"", TraditionalForm],
FormBox[
"\"Pwr(\\!\\(\\*SubsuperscriptBox[\\(dBV\\), \\(RMS\\), \\(2\\)]\\))\"",
TraditionalForm]},
AxesOrigin->{0., -60.},
AxesStyle->GrayLevel[0],
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
ImageSize->{214.796875, Automatic},
Method->{"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[