-
Notifications
You must be signed in to change notification settings - Fork 0
/
ch4-全差分运放和阻抗匹配.nb
985 lines (971 loc) · 48.4 KB
/
ch4-全差分运放和阻抗匹配.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.2' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 49422, 977]
NotebookOptionsPosition[ 48659, 955]
NotebookOutlinePosition[ 49017, 971]
CellTagsIndexPosition[ 48974, 968]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJzt3XusZWdd+H9aWlsEkRogeIn4c6LGGInGiRGViH/o6B+g8k1ttPUCfvli
g7eI8ScTlMQ/iPWfxsTLGGP4w5jRmBBrM01E81VTjakQM14jaoloCKiFXoC2
Tmn3l89pnuGZddZt770uz1rr9UoWHc5eZ+999tlzZr3P86xn/X9v+PHX/Z/r
n/Oc57zl5k/9z+te//9/80/+5Ovf+r9e9Kn/c+uPveXON/3YG//3t//YT73x
TW/8ya97w3M/9cH/e91znvOdn/rDDZ/68w4AAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAONr999+/e85zntO6nT17dnfnnXfuHnzwwbmf7iac
O3eu9ftxyy23nOxz8eLFuZ8qAABsTt5QcVyeu3z58u622267etwe+zKuhx56
6OprHlv+msdt0U3xvYjbYj8AAGBa6Vj9rrvuqr09jYmcOXNm4me2TfF9SN+T
OnnzGocCAIDpxLy8dCx+6dKl2n3y43nz+MYX8yXT3Mkm6fsR+wIAANOI8Yt0
LB7zw+rk/RRz+pYif95NW4ypxTy4kuYmxnOK53b+/PnGfdLzN4cPAACmE8fo
XWMdaTykaT5ZyfKGqs5PjLG0/PYSxnKiYbvGA/Mxw6Y5lwAAwPCim9raIY7n
03oFJfTFvvJzhZrGmEoaX4tm6poraT4lAABMLx/raFqHIK0FF53VNL+vZH3m
J+aNdeHChYmf4bXSeGDTWh3Rd9aOAACA6eXdkI+7xJhGHJvnY1NLbKfQ1SOh
pH5Kax1Wz2uK55h/LU1z+wAAgHF0ra8Qx+tLnx+WGrBtnYV8jGru+Xtd1zI2
5gQAAPOoG+uIXkrN0bb+2xLk8xPb1llIr0PbGhpTaBoPjDGxdA3jpfcsAAAs
VdOctT7jMdEmsV+0V1pvu7Qxkj5rR+RtMvfYUxoPjOdSlV7jrvXK87US2zYA
AKC/trboM26TjvWjl9KYSNxPWquvhHW18/mJ1fO34rmmtTFi/GnudgppHCz+
W5XOferTPunrqn4P0lqKdfcPAAA0S+MuTcfjabyj6Vg7js3jWLzaJel+SzhG
Tz3StpUyVhba2jMfE+y61m/qp7r94jUpoW0BAGBJ8rGXttvr5pK1SeNaJfRT
6pHqeVwxXhadl24voaHydcnruie/vWuNwPR1LXXNRAAAKE1TWySHXqM1zTOb
e4yjz3WS9hnTGVs+HtjUPen2tusYp6+7uhaGNc8BAOAweVs0dU5+flTf8Zm4
3+iyrjUOppD3SFP/9V2fbwppvK/t/KY0H7HtWlapCfPGSq+FtfsAAGA/0Qz5
sXr8uW68I2+LOF7vmgsWt8d+Me5RwryxtA5d2/zDUvopb9W2sbB8DYmmOXxN
6+/tOw8TAADYXbPWeNd61vn6C3H83TT/Kzokuin2L6GdQp/1vuPrmbuf8jmE
+Vb3fKqdVXeOWfq687Gm2K+E89EAAGDrUju1nZMztWiHPl2Uj8OtYW5b+rqr
8/viNZh7fiIAAGxdie0U+qwLke+zlraoO/cJAAAoQxynV9d5C2le3FzyeYdV
0VP5uVFda4EvSfq61vQ1AQDAGuTnDjVtU0vjYW3PKea2RV9FY5RyrtYQYu5e
WpNePwEAQFnyMZ66rW5civH0WX8CAADY3w033LB76qmnOvf7jM/4jN3//M//
DLYf9W6++ebdE088Mch+sU/0U5/7AwAA2kU7pTGKK1euNO4XTZT2a2ujvvtR
L/VOV/MMvR+UqGlecN14atMY+Jrm5QIA88v7qa2h8i5qa6O++82p+hxLeZ55
67T1ztD7QfKCF7zg1N+Nj33sY7M+pzh/L38+TefzVa8FHuc2Xr58eeJnCwCs
WbWdmvqpb2+U2iW5uudYyvOt9k5T8wy9H4S6dsq3xx57bLbnltZC6VqHJr8O
gXYCAIZW1091DdHUHIfuN5eudprzuda1Tl3vDL0fJCX3U5qbF/9tk9bst14K
AKxDU6+UtuUN0dYcQ+9nq9/y5mnqojH2s9mm2B599NHOn51t13BLYs3+uD3m
7QEA61BqP8Xae9Xnlpqnuh5E0/lNh+xnq9+ib+rWfag7n2nI/Wy2ObY+/ZTG
lWJrks59imtiAwDrUHI/hRtvvPHqx4Zupbr9bKc3rWTb2tann2I+Xtq/TjRT
3BYNBQCsR95Pfa63NLW8n6rbmHP6plLy+U91ppqr55wous59im3O85+6+inm
7MUaEzGHDwBYj9L7KTQ11FrWlCh5/b0qa0owpZLXj2jrp7S+uTUjAGB9ltpP
x6xVXtqa5qWNiXUZe01z7USuqaHmbKeQX0c3F9d8inEna0YAwDotoZ/C0NfK
LfGautVzs0rlmrrMIe+oua+fG9L5TbHl13VK60pYMwIA1mmJ/dTWFkPvN6US
n1OTuvUg2vbraqK++7FdJfdTaqXoqPj/fdaMiHGqmN939uzZq/cTf47r7QIA
5VpKP23BkvoJpraEfoprQsXcvWijNtFZaX2J1EvxOefPnz+5v/gvAFAm/VQO
/QTNSuun6J28n6KD4s+xdkSbWI8vuim2fN5fEl0V99Nn3b50DV8AYDr6qRz6
CZqV1k8hPZ9YSyJ6KObfdUnN09RZ6fY+8/j0EwBMTz+VQz9Bs5L7KZ3D1LVm
RJrzF63VJDVRn7XP9RMATE8/lUM/QbOS+ym2WHevS1qbr+38pq7xqbp9AYDp
6Kdy6CdoVmI/pXGnPmtGhNiva5wqnf/UZ/1z/QQA09NP5dBP0KzEftpnrCit
bd7WO7FmRNqn2mPpsfpuAMA49FM59BM0K7Gf9pHOfYrxpSZpDb+6dSj0EwCU
QT+VQz9Bs7X0U3RQkzQfsO81dM3fA4Dp6ady6CdotvZ+6jM+VaWfAGB6+qkc
+gmaLb2fQlo/onpuU/z/tmvqNtFPADA9/VQO/QTN1tBP6fymWMc8NVRcezfG
nKKd+qy5l9NPADA9/VQO/QTN1tBPIXopneeU5uvF9aD6rH9epZ8AYHr6qRz6
CZqtpZ8AgGXTT+XQT9BMPwEAJdBP5dBP0Ew/AQAl0E/l0E/QTD8BAH3kfbP0
TZ+100/QTD8BAF3W1E76qZt+gmb6CQDoop+2RT9BM/0EAEBOP0Ez/QQAQE4/
QTP9BABATj9BM/0EAEBOP0Ez/QQAQE4/QTP9BAAco9S1+ayxdzj9BM30EwBw
DP20PvoJmuknAOBYpTWUdjqOfoJm+gkAgJx+gmb6CQCAnH6CZvoJAICcfoJm
+gkAgJx+gmb6CQAY01hrS1gjYjz6CZrpJwBgTGOuzaehxqGfoJl+AgDGZPxp
efQTNNNPAADk9BM0008AAOT0EzTTTwAA5PQTNNNPAADk9BM0008AAOT0EzTT
TwDAXLrW5rPG3jz0EzTTTwDAXPRTmfQTNNNPAMCcmhpKO81HP5XnMz/zM3ef
+MQn5n4a7PQTAADX0k9liXZK3w8NNT/9BABATj+VRT+VRT8BAJDTT2XRT2XR
TwAA5PRTWfRTWfQTAAA5/VQW/VQW/QQAQE4/lUU/lUU/AQCQ009l0U9l0U8A
AOT0U1n0U1n0EwAAOf1UFv1UFv0EAEBOP5VFP5VFPwEAkNNPZdFPZdFPAADk
9FNZ9FNZ9BMAADn9VBb9VBb9BABATj+VRT+VRT8BAJDTT2XRT2XRTwAA5PRT
WfRTWfQTAAA5/VQW/VQW/QQAQE4/lUU/lUU/AQCQ009l0U9l0U8AAOT0U1n0
U1n0EwAAOf1UFv1UFv0EAEBOP5VFP5VFPwEAkNNPZdFPZdFPAADk9FNZ9FNZ
9BMAADn9VBb9VBb9BABAbi39dPPNN1/9OmJ74okn5n5KB9FPZdFPAADk1tpP
S+0o/VQW/QQAQG7t/bS0jtJPZdFPAADkttJPc3bU3/7t3+7e+ta3nmx/93d/
t3v66acb99VPZdFPAADk1thPqZHammrojvrWb/3W3fXXX7977nOfu7t48eLu
qaeeOvn4y172slOPHY3U1Eb6qSz6CQCA3Nz99Cd/8ie7l7/85Uc/dl0/1d02
Rkf90A/90O6GG244Oda+9dZbd9/xHd+xu3Dhwu4d73jHycdvvPHG3c/+7M/u
PvShD5000c/8zM/sXvGKV9T2kX467cqVKycdet99913t0qnoJwAAcnP106//
+q/vPu/zPm+wjmnrp7p9huyo1DyPPPLI1Y899thju8/5nM85+fhf/uVfnpqz
90u/9Eu7v/iLvzj1cf102jd/8zefjO3pJwAA5jb3+FNqmin6qW7fIToqmuct
b3nLqWP7d73rXbsXvehFu8cff/zU58THXv3qV596PP10rQceeGD3kpe85OT1
0E8AAMxti/1U9znHdFQ0z8/93M/VHtvffffdtR//7//+75PHrzaSfvq0GMP7
3M/93N373ve+k9dFPwEAMLct91Pd5x7SUa95zWt2t99+e+3r17TWXvRWnBul
n5q99rWv3b33ve/d/cd//Id+AgCgCPqp/j726ag4pv+Kr/iK3d/8zd+0rk2e
PPPMMyc9EMfm+qlenBv2Az/wAyev+wc/+EH9BABAEfRT+31Vt7pzmcInP/nJ
3S//8i/3bp6v/Mqv3L3nPe+xfkSN6JQ4byytx6GfAAAohX7qd5/Vbay20U+7
k/Xf//3f//1knC7oJwAASqGf9rvvsTtq6/30x3/8xydrGebvRf0EAEAp9NNh
jzFWR225n+I6uS9+8YtP1t3L6ScAAEqhn/aXN87QHbXlfnrb2952zfuxaYtr
D0/VUfoJAICcfjrcGB215X76p3/6p92lS5d299577zXbO9/5zpPv79vf/vbd
Pffcs3v/+9/fa53DIegnAABy+ul4Q3bUlvupifl7AACUQj8NZ4iO0k+n6ScA
AEoxZz+9613vuvr47373u4+ak1VCPyXHdJR+Ok0/AQBQirnHn4ZSUj8lh3SU
fiqLfgIAIFdaP1XXCO/bQiX2U7JPR62pn9bQHmv4GgAAGE6J/ZTP0brhhht6
dVHJ/ZT06ai19VN6T+XvsyV1iH4CACBXej/l2lpqCf2UtHXUEGuglyLvp9yS
Wko/AQCQ63O90qm3PmsE5C1V3br6qTpHcN9tqK7p6qiS+qlv81W3riYv8f3X
tOknAIB+Dj3GK2E8p0uJx6/7rrFWbam+8/yO2YZsmzGuwzukQ9tp378HJb4X
800/AQA0u/HGGwc99iq1pUo8Zt1aPyUldtSx7bTPe7/E92K+6ScAgNPa5oUN
sZXaUaVoO/8pVz0XaknnP3UppaOqz2Pfx246/ym3pHOhAAC4Vls77ds9bb9L
11DNtrB+RF9zdtSx7RTWsH4EAACnNXXTUJ3T1FI66rS1rV8eHdLWHm23p9um
7qgh2imsYf1yAACuVddOV65cGeWx6jpqqw1177337r72a792d/311+++/uu/
fvf7v//7u6effnpV18/tupZT2+11t03RUUO1U7D2NwDAejSNOe27dsG+jEXt
dt/yLd9y0k3V1+ANb3jDwa9/6f1UbZGuTunbVkN21JDtBADAetS109jdVLXV
sag///M/333RF33RNV/rH/3RH+1uuummk9fgve9978k41L5K7KfQ1EHHjE3V
7XNsR2knAADqlNBOSbWhttBPP/zDP1zbN3fcccfJmNRP/dRPHfT9WFI/9WmV
Pv1Ut+8hHaWdAACoU22nubopt7WGevLJJ2s/ns59+vEf//FN9VOfc5v6NtEh
HaWdAABokvdTCe2UbK2h6nz0ox89aaAHHnhgtfP3mrrmkGvUdq3p1+fztBMA
AE1KHHvK5Q21xX56/etfv3vZy1528DF8qf0UmnrmkLGnY+blHXt/AABsQ+nt
FLY8BhXjTbHW9X333XfQ2FNYcj91fc6xbdNnDAwAAJJS5+1VbbWh3v72t+++
//u//6jvzdL6aZ81Ica6tpOGAgCgagljT7mtzeP78Ic/fHL93GO/Vv103PPR
UQAALK2dwpbGoB577LHdmTNndo8//vjR91VyP4V9e2jMfqp7DB0FAMBS5u1V
bWEMKprpJS95ye6RRx4Z5P700zDPTUcBAGzXGvppjQ0VX88tt9yye/jhh0/d
9rGPfWz3u7/7u3uvI1F6Py2BjgIA2K4lzt3LrXUM6uMf//juRS960e67v/u7
T66Vm2/f+73fe3IMf0j/6KfhtHVUfP8AAFifpY49JWvsp09+8pO75z//+a1r
aX/bt33bQV+vfhqejgIA2I419dOaGmos+mk8OgoAYP2W3k9hjWNQXfIO2qeF
9NP4dBQAwHrpp2WKDsq/X/n3sa2L9NN02uZg6igAgGXST8tU7adcW0vpp+m1
dVSsowgAsBXVtetstim3Pr3b9h7VT9PSUQDAlmkn29zbvuOF1fesfppHU0dp
KABgzfSTbe5tn36qe7/qp3noJwBgi9Zw3lBYw9fh/Kd6dedBOf9pPubvAQBb
tobuCGv4OvTTp3Wtw6efpqebAADK7470/PYZoyjx6+hjn35K+y69s/J+6rt2
efo8/TQN65cDAHxayd2xz3Mr+evoq28/LXGc6q/+6q92r3nNa3bXX3/97gUv
eMHuTW960+7f/u3fdjfddNNBHaSfxjf19XO/8Ru/8eT9kT/OG97wBt9fAKAo
JXfHlvopb6K19dPv/M7v7G688cbde97znt3TTz998pzvueee3Wd91medNNQh
9NN4pu6m8JGPfKR2nOs///M/R3k8AIBDldwdh/ZTiV9Ll0Pm7i2hn5555pnd
Z3/2Z+9+/ud//tT35MyZM7sv+ZIvOehr0E/Dm6Obki/+4i/efehDHxr1MQAA
hrCWfjpk/5KstZ8++MEPnjzft73tbae+J6985StP5msd0j/6aThzdlN4//vf
v/uar/ma3Sc+8YnRHwsA4FglN8dW+qlr7l719q6ttKZKrVNdoy0+/hu/8RsH
fa9K7adokbYO6Lp9Sm3dNOVzvPXWW6/+3Y1z5B5//PHJHhsAYF8lN8cx/VTi
19Okazxp6f10xx13XF0X4H3ve9/JnL7v/M7v3H3Xd33Xwe1TYj/lPVLXH123
T6WUbgqPPPJI7XlPd9999+7KlSuTPhcAgD7W1E/Vzynxa6rqs27E0vspvPGN
bzxpqOc+97m7L/zCLzxZPyLWkjhU6f1UbZG22+Z6fnM/nyTerw899NDuz/7s
z3Zf8AVfsLvuuutOntOv/uqvFv/3FwDYnrX10zGfN7V91txr+rwSW6nJN3zD
N1wdh/qRH/mRo557if0UmsaY5hx7KrWbmvziL/7i1fd4jE8BAJSk5NYYop9K
/LqSQztoif305je/efcLv/ALu3e/+91Xn/+rXvWqVc3fC3WdNNfY09K6KfcT
P/ETJ2ve/8qv/Eqxf38BgG1aYz9VP7fEr+3Qsafq5y6hn173utftvuqrvurq
c43/xjV04/n/6I/+6OrWj2jrp6amatv2bZ2u+y69nUJ6j7zjHe9YxHscANiO
tfbTEJ8/lmPaqfr5pR9bfvjDH97ddNNNu9/+7d++5nynJ5988moDrWn98j7t
sk877dM8YzbZHF760pfuLly4UNTfXQCAUhsjSc/v2H4q6esbon/SfZTeT7/3
e7938lz/8R//8dR6Eb/5m7958j1aUz+Fpo45ZOypT+/0nadXwhoW+4jrLj/8
8MNzPw0AgGuU3k/HKq2hjh17Wpp//ud/PvmaY02A6msfa/DFbXP20zFjYE26
+mnsx2l7rKU0VLxfYo2RGKcEACjJ2vsplNBQdWuQr72dklh374UvfOHuAx/4
wDUfj3XMf+3Xfm2285/GGsOq65ohO+XYdSGmbKh0nlt1S9dS/qZv+qbd133d
1+3+4R/+4WR88r/+6792t99+++7cuXOuowsAFGkL/RSqDTXl17vldkpinYg4
Dyq+9ri+T6ytdu+99x58Dagt9tOQ6+mN3Xipm5re5/F3Ihrqp3/6p3fPe97z
rr4v4uMPPPDAUdcGAwAY01b6KUzdUE3Xvd1aO42h5H4KQ17vaax1yMdqqGin
Pu/x1FDpc9KfAQBKtqV+CnUNFduVK1cGfRxjTv3kDbNPx2yhn6a4ftPQDdW3
nZLUUNV5floKACjV1vopaeqoYxqnabxJOzWLhsnfd/n3pa1pSu+nY8xx3duh
zonat59C3VqS+d8lLQUAlGSr/RSaGmqf7mlrJt3UrdpPubaWWmM/zdFNbY+/
72Me0k6hay1+LQUA7KPPMf5StlL7LNYyGOPrLbWdupqvxPdF29+DrvapzhHc
dxu7Xebupr7PZaz3/D7XMpvqvavTAGCZ1tRO+xwrz2WIY7NSmykprZ0OeU9U
/170ned3zDZGx5TUTX2f1xh/Bw69FvTY72UNBQDLs7Z+Krmd6vQ5Piu9l6qW
3k91fyeW1k+ldlPumIaaop+meB/rJwAA8uPOEtqv7fynpO48qCWe/9TVJKW0
06HGOv+put+YbZOvA6ifAABYSj91rcO3pH7qO5ajn05/7tRrR+gnALbmoYce
2p05c+bUccmdd955zX51+1y4cGGmZ80xzp49W3ssWnX//ffX7nf+/PkZnvV8
Su6nvmuXp88rvZ/6zNMb8jq7JTjm+k/p8+Zcb08/AbBF0VC33HJL6/Hxgw8+
qJ1WIr6XeUPFn+NjdaoNtbV2CiX20yENU3I/7XN+09r6KezTUHXXz52zW0p5
HgAwtbvuuuvqv4FxzFwVjZVuv3jx4gzPkCFF/6bvZ3zv26Sxx9tuu22iZ1eW
0vrpUCX20yHrQqyxn0JXQ6X3YWmNop8A2Kp8fKmuj+LYuc+xdulKXJ9vjjX2
8nGlul5O0vsixiejobdIPw17H+GY9fTW2k8hb5HqVmqb6CcAtuzcuXO14wxp
rKJ6TtTSlNhOJfRTWxPH93zrY476abj7GGId8jX30xLpJwC2LI6R07+Daazh
0qVLJ/8/2moNSmuoua7vlI83NvXT5cuXV/W9P5R+qr+ffe5jyOs36aey6CcA
tqx6jlMcP8e8rVhfYKtzt9asq5/SeGS8D7ZMPx1ujOve6qey6CcAti7N14pm
inUDtnzey9q19VMai9zientV+ml/Y3RT3X3rp/npJwC2Ls3Xiy3aaetjD2vW
1E/pmmDa+Vn66bDHGLqbEv1UFv0EwNblc/iWvl4E7dI1oKr9lNay3/KaETn9
tN99H9JNv/Vbv7W79dZbd9/3fd+3+/u///vd008/3bivfiqLfgJgy6Kd8uuq
xvjD1oyxvsRca0R0qVtvMa0rsfU1I3L6qd99tnXTO9/5ztq/Bx/4wAdq7+O6
667bffSjH619TP1UFv0EwJalc5/ya6tuaQxizLX5Smyo1E95K6XrfPWZtxmt
Fe+ZdH3d1GJt15NKYp/0WGmL51Hi+Vb6qf2+qtvjjz9+av+v/uqvPvWYTz75
5O6lL33pyec8//nP333P93zP7q1vfevuLW95y+6Vr3zl7sUvfnFtQ+mnsugn
ALYqjltTO4V0bFu9FtSajdVPJbZTqPZTuiZUn2skR1entRlTL0VPpfuM8+jq
xBhn6vR4nHR+VWr26rhX2jdtbc+t2mND0U/191Hd2u7zhS984e6xxx675mN/
+qd/urvppptO3ktXrlw59Tn33Xffyc+l6m36qSz6CYAtSmut5ec75deCiuNi
1ic1c2qWGEeKrWvNiLTGSN269mn+X9xPndQ4deOacX91fZTPKW0an6quezLk
e1Y/Hd5NSbTSHXfccc3rd8899+xe//rXt76mX/qlX3rq/vVTWfQTAFuTxhyq
x8L5OhJpTIp1SetERD+lPzeNGyXxvog+aZvj19Td+ePtI/ZP3VX3ufl6gdXf
Awxhy/10bDclsR7El3/5l+/e/OY3X30N//qv/3p39913t47P6qfy6ScAtiRd
H7dpnep0zNo0lsCypZ5J7dGna9LntM3rTMdS+XlQeXf1OT8qF5+X5vdF51fF
mFR8vG1s6xhb7Kehuin3kY98ZPe85z1v94pXvGL38MMPn7TPG9/4xsbX9A//
8A93r3rVq/RT4fQTAFuRfmffdryZjpUPOealfPn3t+88zfSeaRunSveXj0+l
+aB1/dMm7iO9/9K5VU23pz4ber7plvppjG7KxfcmPcbtt9++e/WrX737+Mc/
fvX2Rx55ZPcHf/AHu9e+9rW766+/fvcv//Ivp9Yy109l0U8AbEF1nfKmNkrn
xxwy54ry5ecM9VkzIrVK29oM6fyn6j5pbKjP4+RSd+X3kfdRvI/jfZqe2xhj
pVvop7G7Kffoo4/uvuzLvuykj5oeM/1cqrsOlH4qi34CYO3SnL38OKXumDP9
rj/fttxQXWvzlbrGXpt07lufNSNC0xp5uaZxpkPn7sW5TOnx0nhZuo94Pmnu
aXpuY1zzec39NGU3Vf3rv/7r7tu//dt3n//5n3/1MV/+8pfvfvAHf7D1ddZP
ZdFPAECdNfbTvlK/tDVKWm+8uk7ePnMEc9F26b5Sm0Urxf1EO6V5hOlxx7he
2Rr7qW0bu5uOpZ/Kop8AgCZNDbWFdgqpn5rm4OVrNlY7qWveX500FzA1Un59
qpjLl4+DpfOyxlhrfyv9VHo3JfqpLPoJgC2L8xHqzjeA0NVPbeNTh/RTfu5T
fj9pzcjUSl3XnDrW2vtpKd2U6Key6CcAtkw/0Sat0VC3hl7TdcSStPZD3bp9
MR+vrn2iw5rOo8qvSZY6q21N9WOstZ+W1k2JfiqLfgJgy/QTXdJ5Rqlf0toN
0TXROk3z59K6Jfk+8d+mMat0flO1x2LOXt5UcVta60Q/bYN+Kot+AmDL9BN9
RPOk843SmFM+HtQkGiqNQ6Ut2ifaKb9WVKju06S6TmR13Yoh6Key6Key6CcA
tkw/wWn6qSz6qSz6CYAt009wmn4qi34qi34CYMv0E5ymn8qin8qinwDYMv0E
p+mnsuinsugnALZMP8Fp+qks+qks+gmALdNPcJp+Kot+Kot+AmDL9BOcpp/K
op/Kop8A2DL9BKfpp7Lop7LoJwC2TD/BafqpLPqpLPoJgC3TT3CafiqLfiqL
fgJgy/QTnKafyqKfyqKfANgy/QSn6aey6Key6CcAtkw/wWn6qSz6qSz6CYAt
009wmn4qi34qi34CYMv0E5ymn8qin8qinwDYMv0Ep+mnsuinsugnALZMP8Fp
+qks+qks+gmALdNPcJp+Kot+Kot+AmDL9BOcpp/Kop/Kop8A2DL9tG3333//
1eOgfIuPV505c+bUfnfdddcMz3p8+qks+qks+gmALdNPXLx48Zomunz5cu1+
Dz744DX7XbhwYeJnOh39VBb9VBb9BMCW6SfCuXPnrh4PNXnooYeu7hPNtWb6
qSz6qSz6CYAt00/bcsMNN+yeeuqpUx/Px6Caxp9uu+22Vc/Zy+mnsqR+0k5l
0E8AbJl+2pamfsrHlurm5aW+iobaAv0EzfQTAFumn7alqZ/C2bNnT46H4r+5
tMZEfDw6awv0EzTTTwBsmX7alrZ+inGndEwUa0WE+O8tt9xysqWPbYF+gmb6
CYAt00/b0tZPcd5Tvj5EjDWlMam69czXTD9BM/0EwJbpp21p66eQrvEU5zml
9SLWvE55E/0EzfQTAFumn7alq5/Onz9/zTWe7rzzzgmfXTn0EzTTTwBsmX7a
lq5+SmtFbG29iCr9BM30EwBbpp+2ZZ9+unTp0oTPrCz6CZrpJwC2TD9tS1c/
5WvwbXXsKegnaKafANgy/bQtXf2U1oyIdSS2TD9BM/0EwJbpp23p6qe4ztOW
141I9BM0008AbJl+2pa2forr4+bXf9oy/QTN9BOwBunn2LHiWDrux/H0duin
bWnrp/zcp61dL7dKP0Ez/USJ0jXgt/7vF/3l12s5VGon/bQt+mlbmvopxp7S
tXNju+uuu2Z4duXQT9BMPzGH/Fi3bYt/z9rE/Iq4PkfaP/7ti2sf7rNmUtxH
nC+c5ryn+4m57/ptGarvm0Pk7aSftkU/bUtdP+VrlufbuXPnZnqW89NP0Ew/
MYe+/dQm+ib9+xbX6Igt/hwfixaKMaw20WapveLzoqPi39C4n3TfziEu3xDt
FIw9bZd+2pau9SN4ln6CZvqJOaTrukevtG1NYl5F0+8GUxPFf5vE+FTXGkvR
U+nvRoxpUaYh2um6664z9rRh+mlb9FM/+gma6SfmcMy8iHx9pLprw+fd07R+
Uhqn6rq+R7oOiHOxyjTE2JN2Qj9ti37qRz9BM/3EHI7pp3x9pDoxtpRuj/6p
SmtTxBb31Sb6zDy+Mg01by/vJ8fQ26SftkU/9aOfoJl+Yg7H9FMaO2r7/DSH
L+boVcVcvPSe7zpHKj3XPmNVTMu8PYain7ZFP/Wjn6CZfmIOx/RTn3WRUmPV
HVu33VYnX9+PMgwx9lS9D8fP26WftkU/9aOfoJl+Yg5pfYcYC6quPx7z5NrW
LW+bm5fkY0zV85by63v0sW9vMa6h5u3l9/HMM88M+AxZGv20LfqpH/0EzfQT
c4hmirl10Tlprb04Fym1TdxWt15Dfu5S27UN0/p8df2UX+epjzH7qdoCtv02
r30525L7Qz9ti37qRz9BM/3EXOqucRsfy89dqu6TX+Pw0H46dP5e3blUh5r7
WHctm9e/vG2JHaKftkU/9aOfoJl+ojR5I1Wvu9R2W66tn/Jr4+6zfkTbfMF9
zH18u6bN96DMbWktop+2RT/1o5+gmX6iROk9WV0jIl+bvG39iLyfqudS5deH
qrt+VG6ftc776GqAIRthrYbuJ+c+HS/6Y8kNpZ+2RT/1o5+gmX6iRG1z5vr0
U37d26posHQOVNsYVshbq26+4T726SINVW+o10U/jaPaUUtpEv20LfqpH/0E
zfQTJUrrSERHNd3Wdj2mdI5T3eeHND7VdU2n1GHHXjv3kON+/XTaUK+JfhrP
EhtKP22LfupHP0Ez/USJ0nuy7pyj/PylpjGhrvGl+LzUYXXr/IWY95fGwIYc
ezrkczTUs4Yee9JP41haQ+mnbdFP/egnaKafmFpX+8Q5SWmfmD9Xla8h0XV7
fu5T+nj6WPr/TfMA0xhVfo5UtFTbun9tX+8hx/0a6lrm7i1H3lClt4l+2hb9
1I9+gmb6iaml91vdnLh8/fKmuXchzc+LMaRqh6Xbmtbuyz+eGqk6BpXOkcrH
v9K++6wjMUT/aKhP00/LsaQxKP20LfqpH/0EzfQTU8uPqaJPYnwn+iXGkvJ2
apszF2NIaY5e7JvuI52vVPf5+dp91a06ppSv31fdmub7dX2tx9BPz9JPy7KU
MSj9tC36qR/9BM30E1OL9okxnGiddA5SOs8oxo7q5uTViR6KsaT8PqKb2saH
9NOy6adlWcoYlH7aFv3Uj36CZvoJxjHkvDtz+J6ln5ZnCWNQ+mlb9FM/+gma
6ScYx9C9o5/00xLpJ0qjn/rRT9BMP8E49NPwxhjP01DjWsIcPv20LfqpH/0E
zfQTDG+M+Xbm8A33GuinaZU+BqWftkU/9aOfoJl+guGN1Tlb76egn5ZHP1ES
/dSPfoJm+gmGp5/GM3Q/aajxlT6HTz9ti37qRz9BM/0Ew9NP43EO1DKVPAal
n7ZFP/Wjn6CZfoJhjXmekn5yDtRS6SdKoZ/60U/QrJR+unTp0qnjotiq1zUN
cY3Vun3jeqowtzEbRz89a4w5fI6fx6WfKIV+6kc/QbNS+ilcuHDhmuOZ+P91
opNuu+22q/udOXNmd/ny5YmfLUPrezw89H5Dm6qfNNTxr8N1111X7DH92ugn
SnFIP8XnxHv3ypUrrful5ujqjb77zanUfrr55ptPntMTTzwx6X6QK6mfwi23
3NLrmOjixYtX99NOy9e3C4bebwxjP65++jQNtRz6iT5Sp4w5PrRvP6XnlLam
hurbG6V2SVWJzzO1Ttqammfo/aCqtH5Kc/Piv23uvPPOxvl9LI9+Kuf+l2So
10JDjU8/0aTaJ/k2RkdN0U9NzVHdp6Q2SeqeYynPVT8xt7yb8u2xxx6b9Xnl
5zY1efDBB09uj3l7LF/Tz+mx9xuLfpqWMahl0E80aeunMRpqn35qem7Vjujb
RUvvpzmfb7V1mppn6P0gaWqnEhoqjSu1HQulc5/uv//+CZ8ZY9FPZd3/Eg3x
mpR8fL8GJb+++mk+Xe205H6q7lfyuE7S1U76ia3qaqe5+ynm47UdB0UzxW3R
UByu6z1Qytb3+e67X6mvwdjfuyneI3M8Rt/b9tn6Hk9Xrw271Mc45nH6PMYx
X4PNVuKWOqJvF1XPJ2o6v6hPw9iu3VLzNDXRofv12ddmG3t79NFHO/+N7eqn
mLMXa0zEHD4OM/f7oGmre35TfKykbYrv31ofY4zv89hdUFI/lf4YNtucWxqv
uvHGG69+rK6fql107Mdsp7e6BpriYzbbXNux/ZTWN7dmxHHmfh80bX2f37H7
LeE1GOv7N8X7ZK7HGOv73NUGpXfHWh7DZptry+f65f1Ut/Vpqr5jUrb6bayx
Jq1kK3Xr00/5dXRzcc2nGHeyZsTx8u9JqZreQ0PvN8ZrMPbru4Tv31yG+t6W
fK7OUpX8mjr/aV4lrx9Rp6mhDjnXqbRzoko+/6mOc6KYUsnrR6Tzm2LLr+uU
1pWwZsTxlnD8PVU/jf3cl3j/Szd0P5V4vL9E+okma+ynsNQ1+Updf6+OfmJK
S+mn1ErRUfH/+6wZEeNUMb/v7NmzV+8n/hzX2+VZSzn+7ts6h+631L5Zyvdv
LkN9j0s+3l+ikl9P/TS/poYq4fpPdYa81lNp/VTqc2rimlBMqdTrP9X1U1wT
KubuRRu1ic5K60ukXorPOX/+/Mn9xX9ZzvH30P1U3Xcs+ml+QzSUMahh6Sf6
yDtqjHZKjzFFP1X3a+uPvvtNLZ5XSc+njn6CZ3sn76fooPhzrB3RJtbji26K
LZ/3l0RXxf1Yt29Zx999n+fQ+x1DP5Vh6DGoEo/7l0Q/0cdS+imk5unqi6H3
47TUPF2tM/R+UJL0szPWkogeivl3XWKMqq2z0u3m8Tn+HttU/US7IcagQsnH
/UtS8uuon8qxpH4CKEn62ZnOYepaMyLN+YvWapL6ydrn+mkKY72+vnf7MQZV
Dv1EH/oJ4DD5sUqsu9clrc3Xdn5T1/jUluxzTOlY/TBjdY5+2o8xqHKU/Brq
p3LoJ4DDpHGnPmtGhNiva5wqnf9k/fP+x+CO1Q+nn8qhn+ZX+hiefiqHfgI4
zD5jRWlt87Zjo1gzIu1T7bH0WH23NdBP49NP5dBP8yv99dNP5VhSP3UdL8Tv
beO6K2v6vW1+PBXnqJeg6zgufsce+zj/HT4tnfsUP6eapDX86tah0E/H78dp
Y7xv1vhenMLQ/VRqA5RMP9HXkvopWiLNban+fInb4nzrdNtazh3Ij5lKOZ88
fi8enZqeV96rcVscA6Z5Sn2uIwpbkPop/k43SfMB/e7hWfppGmP2E/0N9bqV
3gClWkJ76qdyLKmfQuqJpmOQvKGWfv2UGG/K/y6X0k8hf53r5NcWdSwI3f3U
Z3xqa5qOJ/cZh3MM300/lWGo961+OswSXjf9VI6l9VMaf2pav2pNx+3xtcbv
o0tczzitI9Z2vZv0feizLhlsQRqXrZ7bFP+/7Zq6W1V3LLlvOzmG7zbk6+W1
P45+ms8SXjf9VI4l9VOfc4HyflryHL40vhNfT+qnkjqkq2ND+j6YwwfPSuc3
xd/l1FDxsyz+PkU7renczSEYf5rOGP3E/vTTPJYwdy/op3IsqZ/y+WxNawWn
45PUHksUnZjWYAhdcxanFq99V8fmrVvSuBnMLf7OpPOc0ny9+D1En/XPt6bv
saRj9uPppzIM3U8lt0BJltKc+qkcS+qnOMZIxxtNUmss+RyCtDZDOn+rtH7K
O7bpHLM1nYcGzEM/TWeIMTvjfscb6vVLPeBYu9uSelM/lWNJ/ZR+Z9s0jy3m
68XtSz6HIM0/zL/G1FOl9FNXx+bXuVn6OWjAfPTTtI7pH+00DPP3prek10s/
lWNJ/ZSeZ35eU8x5ifGQvDGW2k4hnQeRz+VJYznx8RKk8bDqeU3RfnlblXK9
KmCZ9NP0DnkttdNw9NO0ljT2FPRTOZbST/m6EHXbGq6bmzqper5Q11rhU2v7
PsQYoTEnYAj6aXqHtJDXfzhDzt1bQg/MaWntFPRTOZbST3VjMDFG02cd7SVI
a0bUzYkrqZ/yjs3H+fK5k853AobguHwe+zSUsafhDH3u01KaYA5LbKegn8qx
lH5qmjOWr/O25PXK0/zDurGbkvqpbS5hWtPceuXAEByXz6dufsE+t7O/ofvJ
cfZp1W5a2uukn8qxlH5Kz7FuLey0rkSf9RVizCruo5RziULX3MR8m3uOYtta
gOncp66f/WnMsGsDts3Pg3n1/XfJNvx2qLo+sLVvS+oR/VSOJfRTvp5bXT/k
x+NtYmwnuunYn09DS+M2TfPe8r6au5/S61fXsftceyuNt1XvJ/o2v/YVsH5z
HGfSz9zHtlvdDqWf+m9L7BD9VI4l9FM6t6bpZ0p+e93ae/GxaJQ4Ji9pLlxo
WjMiV0o/dXVsfnvXXMrUT3X3k75PwHqVdMxJt7mPdbe0HUM/dW9L7g/9VI4l
9FM61m5aIyLvi7rzh+L2fC3tIX5GDSGtGVFdr7wq//rmXBM879Sm55tub7pG
V5LGsdq+bmCdSj32hLkM8R5e6poI9KefyrGEfkrH2m1zuvoet+f7zi11Yddz
zvtpznGZ9HzbXrt0flTTtXVDGqeq9rBrRsG67ds9+9yuo1iqod671t1bP/1U
jtL7KZ9vF8fXTecIpTUkYuu6fm4J/77mYzltXRjjM3m3zLVOe3WNi6Z5hPka
Ek1z+NJ5Unk3ptfD2uewToc0zqH7lvAzHvoy9kRf+qkcJfdT0zptdcfueWd1
jdPM/W9r3kNdXVT39U/dUPm6EF2vcbWz6tqw6fta0pqIwDCOGR86Zn8dxRIM
8V7VTtuhn8pRcj+Nxb+p86pbbzA6y5p7sC7HtswQn+fnPaUyb4996ady6Cem
lK53XD0/KsayrLkH6zFEwwz1uX7mUyLz9tiXfiqHfmJKdec+AesyVLcMfR9+
7lMK8/Y4hH4qh35iSuncp67rQwHLNGSvjHE/fvYzN/P2OJR+KseW+inWssvX
vYs/u/7QdNL1rvQTrNeQnVLqfcExhnov6qft0U/lyPtprIYqoZ+a1mXy7+l0
qq+5851gXYb+uTrWffmZz9yGeA+mfnI8vR36qRzVfhqjo0roJwDGM0afjHl/
GgpYGv1UlrEbSj8BrNsYXbKU+wSYgn4qz5gNpZ8A1muscZ2x71NDAUuin8rR
1E3GnwDoMmaPTHG/GgpYCv00vym6KX8s/QSwPn075JA1fMZsnCHu++zZs72+
lvvvv792v/Pnzx/zJQAbs9V+6vr348yZM7vbbrvt5GftWKbspvwx9RPA+vTp
kK5/+5ruo/R+imsy5A0Vf46P1ak2lHYC9rXVfoqfq9FIdT+z47ZYzzndNsb1
caZYa6/pcfUTwLrsO4a0b0NN1U/H3H9+TcGuazKkf//j96QA+9pqP4Vz586d
/PyM/9bJG6rp91iHquunKbpGPwGsz77t1Od+8n3H7Keh7j8fV2qbOxL/nsc+
cQ1x120HDrHlfkq/f2oau89/Fl+8eHHQx55j7l56XP0EsC5t/XHI+E7feX1D
Gbqf2saf7rzzzlH+XQe2Y6v9lH7/FNulS5dq98l/Fo8xhy9M3VH6CWB9+vbT
ofe5hH7K/11v6qfLly+3zjsB6GOr/RTNlH7ONo3fx++m+swFGMJUHaWfANan
qT+ObZ8l9VN+P039lObtR0cBHGqr/RRz9uJnaMzha5J+zrbtM7Sx15XQTwDr
U9cfQ3XP1P00xHOt66f0O1Hr7QHH2mo/pXVOYx50nbSOT5xfOvXvqcZsKP0E
sC5N7TH0mM7Q/dQ2VnbMfdb1U8wzid+FWjMCGMJW+6nuvKb4mRrz+mI90zQ/
esp2mmIOn34CWJcxx57aHmPo+xviMdLvRqv9lNbTtWYEMIQt9lPT9cfTNvZ1
c6umXENCPwGsT9u5T0Pe/5jjWUPcf5p3n1/XKa0rYc0IYChb7Kf0e6gYx09i
7CmtaRq/v5rCXGuYA7AuSzk/qXpfdR8/Rt11HdOcEmtGAEPZYj/V/X4q5Guf
tq1Xnl/jvGtr+n3X2OtEALAdU/fToY8z9rla1X5K803argeV/9uftinnoADL
s8V+ajq/NKS5023j/DFOFWNX6edrjF1Vx7PS+uhNP7Pr+kk7AXCIOfpp38dq
+9yhnn9aWzf9Gx5rRsTWtWZEui5UbE3XhARIttZP+c/Iut8vpTl8bT/D42dx
3kWplarjWW0/h83dA2Aoc/XTPo83RT+l+fnRT+nPfXooHRtMNX8fWLat9VM+
967r9qa50vEzOf9dVvp9V3XOX3W/OjoKgGNN2U/7Pl6f5hq6n9Ja5X3XjEj/
9rs2FNDH1vopnUfa9DumfG2+vuucpjl/x8yX1lEAHGqIc5P63n/d4zU95r7t
NFQ/pS3ObeojHRuYuwf0sbV+it9HdZ3flH7uNl1bt2n/IVhXAoBDTNlP1Y/1
3cZ+3mk+fWxta0ZUxXhVfI5r6wJ9bKmf8t9Lxc/Kpt9LpfGktjl8SRqvGvK6
EhoKgH1N3U/Vj+/bTWM87/Rvcp81I5K0/l58DkAfW+mnfF2IfKubc1cd/2/7
HVbad5/fczUxhw+AQ405h++QeXr7ttMY3ddHzNXfZ84JwFb6aSzpWhPOfQJg
bmP1yFxdNoX0+9W+5zwD6KfjpPOpDqGbABjaUvqphLGnkM596rvWBIB+Otwx
14twjhMAYxijS8a8vznbyblPwCH00+HytdD3XbOnrp+0EwBDGLpPSu+xQ6Xr
N+6z3gSAfjpMOu8pbfuOQZm7B8CYSu2nUsaeqmtFHTKXBNgm/TQv8/gAGMOQ
nTLG/cw99gRwKP1UhmpH6ScAjjVUrwx9H9oJWDL9VI68ofQTAEMYoluG/Hz9
BCydfiqHfgJgDMf2yxCfp52AtdBP5dBPAIzlmI459nN0E7Am+qkc+gmAMR06
HnTovtoJWCP9VA79BMAU9m2cfffRTcCa6ady6CcAptLUO3X9U9dDfT8XYG30
Uzn0EwBT69tR+2wAa6afyqGfAJiLbgJgafQTACXRSQCUTD8BUCLtBECJ9BMA
JdJPAJRIPwFQIv0EQIn0EwAl0k8AlEg/AVAi/QRAifQTACXSTwCUSD8BUCL9
BECJ9BMAJWrqJ9fWBWBO+gmAEtV10D7tpKEAGIN+AqBEQ4w/6ScAhqafACiR
BgKgRPoJgBLpJwBKpJ8AKJF+AqBE+gmAEuknAEqknwAokX4CoET6CYAS6ScA
SqSfACiRfgKgRPoJgBLpJwBKpJ8AKJF+AqBE+gmAEuknAEqknwAokX4CoET6
CYAS6ScASqSfACiRfgJgX3nbrGHTZwD0pZ8A2Jd+AmCr9BMA+9JPAGyVfgIA
AOhHPwEAAPSjnwAAAPrRTwAAAP3oJwAAgH70EwBDKnVtPmvsATAE/QTAkPQT
AGumnwAYWmkNpZ0AGIp+AgAA6Ec/AQAA9KOfAAAA+tFPAAAA/egnAKY01toS
1ogAYAr6CYApjbk2n4YCYGz6CYApGX8CYMn0EwAAQD/6CQAAoB/9BAAA0I9+
AgAA6Ec/AQAA9KOfAChF19p81tgDYG76CYBS6CcAjjXWNQbn2gCgTVNDaScA
uszdOvoJAABYkrl7Rz8BAAAAAAAAAAAAAAAAAAAAAAAAMLe519Kzxh4AALAU
c3eSfgIAAJZk7lbSTgAAAAAAAAAAAAAAAAAAAADjsUYEAABAN2vsAQAA9Kef
AAAAAAAAAAAAAAAAAAAAANbN+hAAAADdrLEHAADQj34CAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAEr3/wAoAFl9
"], {{0, 446}, {848, 0}}, {0, 255},
ColorFunction->RGBColor],
BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True],
Selectable->False],
DefaultBaseStyle->"ImageGraphics",
ImageSize->{299.796875, Automatic},
ImageSizeRaw->{848, 446},
PlotRange->{{0, 848}, {0, 446}}], ";"}], "\[IndentingNewLine]",
RowBox[{
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJzt3U2uJcURhuGW7YGHZgkWW2DggSceIU+xLMYgY8QES9iSZUaesgN2wApY
ARtgA+yAPbQ7uhXm6+iq/KnKkxlV532kMurrc89f1c2MiozM/P2n//jo7796
8eLFP3/76n8++uTff/rqq0/+85ffvfrHX7/85xeff/nZ3/785b8++/yzr/7w
6a9f/fC/r44/vnr8b1799yUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAECn77///uXHH3/8+gDef//9l1988cXLH3/8cfVb
AQDgtB9++OHlBx988PLFixevD+vj8Nx++umn13GvXxMffvjh658BuAf7e7a2
34+jfv7557eep3TYY1dofX+0cX2ucO7V119//f8+zfq32vm+2ue7iqzfq10P
FuvY9fHee++9/O6776a9NoBx7G/522+/fes+Jh5232t5/h7WJljbsPec8bDH
2j31rNjC8tOWq259f94XnokBn0X2c6/sdf19tPZjV/p8V5L9e/3mm2+6rxUA
61l/H2Mc6//tXtf+rq0diW1Pb47f7sFiTGH3SXrE17B/98ZWZ8TvwGI7fX9b
MZF9Pyi7wrnXvE5v/3WFz3dF2b9Xuzck5gGuRe9V9mIZa3u0puHI37jngT2e
2hJrJ6z9WnHPZsfW68ZxfDuu0G9ZTHt2XPKMzOfezt/Z+DXz5zuD66bM2wJ7
TeqYgfy0ny/NRbE2JOY/emjb1fM6du89g34P1n6V6H1n7/ewgn73q18/07m3
ON5zBHv9aYusn+8srpsye12/fuy9AshN+/nafZG2P71toP6e5YJL4lyIGVrb
VqO57FV9QY/V/VbWcz+qDiPr5zuL66ZOx0Kp6QNys3be2oeWmpw45tOaw433
X7V2Ib7ODJqzqY1r2Pvv+Tyrrey3Mp97vzev5fNKMn++s7hu6vR9Zo9fAbSL
bUrrXFCLqXraop6xpRF629YY72Qfu1/Zb2U99/q+zqyxk/XzjcB100brh7LX
ZAFoo3N2e9oUzfm21LvMzk1rzWpLHMd4Vrus515f50zNedbPNwLXTRuNtWrj
bgCuQcd8eu6Jtd1sqSXUeaYzag+1veptW6lXbn/tTOdeX+fMPXnWzzcC100b
zfdmj2EB1J2pWdHfq9WFxjz2jPywtq21OC6OfV1h7Y2V/VbGc2/jj6PGPjJ+
vlG4btrENgHAtfXeb7kYJ5XaIp0fPPM+radt1e/hCrkds6rfynrudfzyzP14
1s83CtdNO32/2ev5AOzTepXePl5/t3QvbW3cinVt9F6/1Fbp3jn+WbLfn7tV
/VbWc6/jl2finayfbxSum3b6PrLP1wSwLeb+e/fn0xpna490rz+7z7a+J67d
PPMeLebC436E9v7imsrWD1xp/8dV/VbWc6/xzpnXy/r5RuG6aaff1RXGuAG8
TXPFR9dM79mL09qM2fdG2rbWDvssmdoyXe+/dGjfMHPf6aznXuOdM3ugZf18
NVw342m8w756wLXEPbOOxDr2HNo26R6c8f5s1T5U+j6sndX9CDPdP26J73Hk
cbYPyXzuR8Q7mT9fDdfNeMQ7wHXpGM7RnEZc1ybWu+j/v6IeJrat8XPq/jjZ
2ldjMVjcM3rr0M/Q8ng7ztZcrjj3rXmGEfFO9mu7hOtmPOId4Jp0jOfM+I32
K3v7MeprnakdtXavt+1rmQei9T1H6pfs8aPz/b1W1GHMOvd2zux57NxoH13a
A03f29G1lbNf2yPc9bqx71L/Jkegfge4Hp0bcXat0JY9OGv3czXe3x25r2pZ
g76WA9pij7HP63UIcXxsxH1wjxX91oxzb9+hnTf7nj2OtP/aa5dycSPmZ2W/
tke4y3Vj14S1ZR4Pe2ys42P2PZ+5F9FcWIZ6IgBl2o6c2VPIaRuwFzvFeKJ1
zMh+z/oAfY3ePkHH7Er5AG0XW+p49P5U4xprl/25ZubiV/Rbjzz3/rseT/be
T49Yfyf7tT3CXa6buP6xxjX2//lrnpnPru+H9XeA3LRWZcQ6FnFdm9I9T8/e
5MbaQZ03drRPaP3d3vx56TNrXzurD5vdbz3y3DvNQ/bel8f31+sK1/YId7lu
PN7ZG4/WvbqO5GbOXk8A5vK2raVGxWtSSvmJnv2Ne/b681oNa+P8fRzpE3r2
RO/dH9Q+Qyk/dja30Gt2v/Woc+80txPXZ2mNfc7sn5X92h7lLteNxSP2mL18
0dnvedR63QAeT/vzlpy7P35UTkTrKWrtnLVd2j8dbat62tYze4dFmosvjaGN
NLvfetS5t/Nuj9fPE9cQaI1dzsw/zH5tj3KX66ZG45UjNYuaH2JuFpCXrikY
75W3Dq0rKPUTmm+u9esxnuip4zjaJ2jb2rJnpL6/M2vxaJw1ax7H7H7r0ede
f+do7KnnoTfuzH5tj3K362aPtgVHaur0fWeZHw/gXfE+qefY62tiW9RS+6yP
78kJH+kT4h6De/NeVdw768hcjjgOM8vMfmvGuT9Tu6P0Gmh9nuzX9kh3u262
aO3NkfsY/X3GsoDctM0fEe/YfXN8Tvu39VGle5+4R5X9u+XevbdPiOvka1tX
mlcRa3jsOeyesqe/9fvIo3tzHDWr35p17v17bIlTSzTWbxnHyH5tj3a36ybS
NeTtv0di51FrlQF4vNZ1U1vWUvW1T/aOUntgsUN8fMs4Q2+fYO3T3vsr3d/5
/ujxaM1fr4p1zIx+a+a59z7qbP2T5vl0DZ/Vn889Q7yz4nv11z0b6+icB3I7
AB5tdZ/QwmtFVsQ6RvcPuIOR51trVbPtkbb62r7bdaP8/uNorGM0HmTNHQCP
trpPqFkd69zNiFrlKOuYRPZr+6pGxDo6JyvTNQPgvjL3CSvmYt2d1tyM3Iss
Y8yT+dq+qhHjysQ6AFbI2ifovI2tNtHXk0Mfr1E9W6u8Rfsxe53Vc4uzXttX
5XMO9mIdO9+lGMhr+Pw5iHUwW+v8It8jztq01e1Yjb5vpfe2tH9vZOwTtA52
r030vhV9fD7/o9ZqtOtJ11MZsY/cmfeS7dq+Kt1TYi+msfGtrVol+3uO6zln
70NmiXPkSoevO8993nF2LWouuvXI3H4Q77RbsR9VjdYHbK3Z6PNv71gH+ki6
NvWjz7VdV9aWr4x3Ml7bV+UxrPe3W+uolr5n+3366m1xrY6Ww/62Ro5HP5O4
VlVcS8O+V5+7qI/Lmo8k3inbWuvZ793sZ717KY1+bz33O2j3iFrlbDJf21fV
s6bqM7erZ8RYJrJrNuYlVt5LXFnP/kZxndyMiHfKjq4PNIPF0K3vL9v85+we
VaucSeZr+6p0Xn3tyHoPnF1rzBhjT67jfj37V2uOOOt9IvEO8K5H1ioDOEbn
ZtT6VB2Tph87RudVtIwRlMa+MiDeAd7l4zvkxYA8Yg6hRsdYHjXv4M50P6SW
tjB7fEm8A7xN7yGZGwPkofmGln2QNd6hhrFfTw2y7nnCeBZwDT6WRW4HyEXj
l5YaZF3vgX6sT6xVrt376Zq3We8ViXeAX9Zk9Ove2tW71ikDV3Um30B9eB+t
VW6Zb3WFXBrxDvDLXDe7Z6RdBPKJtcq1+Vbah1l/zf1LH13fsVb7dIW5WYZ4
BwCel/YBo4+RevINltvRNaXow/q1jgVarHOV75p4BwCe11XiHV1DsDReYnkf
nVeUdWwlsziXP+Zr7Dv2nLg+LuMcdEW8AwDITmOY2CdZPsfyDFvrKjOO1S+O
T9WOq6xLSrwDAMgs5htqh43FWJ+NY1r3RbEY9ApxjpsR7zwyX8rBwcHB8ea4
q9a9Aq2OhDjnvNI6jXYutLbnSvM79v5WiHc4ODg4rnXcVZxrpWwsq3ddHpTp
NbVVk6Pxp52P1rV2LBfk+xD3HKNySHt/K4xnAQAyqO0LYeNdOkfoaI7H+m3t
Z59R6x5lmuNpXZs11pH74T+z5/SfHXn+GuIdAEBmLfOdtVa5Za8JZ7GSPaf2
r3rYz7PPOxoprpO8p3W+nPMaLDuXmq/RXJGOjWkMO2qMkngHAJ5X9vG11n2Z
WvtpZX2q5xys/9ZxGX2+Zxoja41jdD2klu/b53zFeEKfJ46Lee5n1Bw74h0A
eF7Z453WOKZ1HEb5GsJ76wf7/qRXqsk9q3VP9FhDXqux8fV6Yuzi52BrDUl7
fE+uroZ4BwCQVc+e6Nqf1cagdI77XjxjOQnrczPuffkIcd5/bRyp5/ve4+OI
tT0rRiDeAQBk1ZpvMLW6ZqX5iWeqzynp3QdLz82ReEXHKmfEGcQ7AICMYr6h
1hdpLqi2x5Y+t/XbrMP88p31qWvfiX7fW/U3NRpfzZgPR7wDAMgo1u7Uxldi
fqJWdxPndD3LuNWWWH/sfX8p5onfd+93qPHSDMQ7AIBs7H5f56H7mEmpP435
IPv9Ut5A52c9c38X8zQ9defxHPWMD/r448ia5BLiHUS63taZ+53WtTSvtP9K
Fq3rkj7z/Squq7ZfZSmG8fk+MU7aYzFP7O8Z35qjtS5r9OsR7zwva1vsettb
b8vi9yP7DMf7ptphj3+meZ9HWXy4d672Dmvvn3W9WKBF3BdqVs7hWWm9+Kw9
z4h3ntfWmqLWL9rP7YjxSlwXs0UcE9b1wn1thdg3t6zViXfvY+271O92Kybi
bxnYF8e32Hv0cUrrDD4K8c7zaollYr2g9aE94ppUW/kbX89dHzcrv3mG7rWz
Ivcdv7OtNsN+FuMi2nBgn65bSN/3ON4u9fYpwBHaB5byNnGOYk9/2bMGZ+9c
yNU03lgxVlTaMzoiTw+84fcpJcQ7j+d1zjPWGQT8b7q2N0yMWXragJ4++ch6
8Cutjnd61lbr3esGuCu/r9qj7RBzKR6DHBpm8zqPlr461vi06t1D90q1Jqvj
Hc3Z1L6rGLNmjyWBR/G/m7050z7O8kx7hM5kbY/WSNn5YIwdmRytrenpk+Pr
ZF/jfWW807pntOvd2w+4o7g+j7VlXoPn+1lepX7wqiyO1HkVfgAZxL61NQ7p
3XuO8ax2cX2SWq0T41nAG9bOWGxjf7/a31pex/5OWLMKeF5xjlZrexBzCr19
MvXKba/dUn+sc7SoVwYA4F1aF9uTd9Q+uWXOoY59XWHsfGW8o+ek9l3F/Bxr
OgIA8DbN0dj8qp5cb0+fHOdxXSGnvDLe6Ylf9DyQ2wEA4G02nqQ5l94aet1H
bq/mZ2vvmqvU6q+Kd2Kd017tscWMGutcJY4EAGAmrfnonRu+VeOs+1javy3n
ozGRxVZXmje0Kt6J9VRxj1B7X3FNZYt7stdDAQAwm/blR2ppYp9cOizmsdfL
0h/rPhGlQ9cWivHcI/crj+tQlw6LIanXAQDgXRqrHF3rW8eoLJ7ReZ+a08lY
TxL3pRp5jFhDMa7Vpd+tvhZriAAAsE1rQ6xfPZpz0T455ofsObVvztYv+7pj
tSPuSdXyO2dzLXFNo/h8lj/SePJsLZRdD5a7sjjNDnJFAICrs77N+8ozsY6p
zR/qXR9Y2fvyOhXth2fX4q6o34lrGm19Zs3P2fk8ch7tWvCYzj6nj6GxlzEA
4Mp0Lpb990ys07p3QSkHtMXyDP4erR+3vJCvkboiV7Qi3mnZf7WWA6rxuDfG
SvY8V5k7BwDAFo89rI87O0dK10ku7YmuNT4tdTwe12zNq9bXnLXP6Ip4R+dd
lWqrNJbsjQH9d7ONMwIAcIbGHSPu37VPLq3HHOdw1Xi8s5ev0LG4GVbEO1qb
U4rreveld7ov15XWBgAAoETHnlryItYH1vr21j3Re/cH9T3+9ui41gyz452e
mqcj+4Pa+dC8kNZHZd+7FQCAPVqz05IT0cfv6a1DHjlXW+uPZpgd7/Tkw2IN
Ve39eVyjOTKNd8j1AACuSvvr2np5Ns7h+ZNSPBH75Fo/OWpvp9481Qiz4x0d
oyrVRTk9D621OLO/QwAAHslyNVoL0nOU6kHimne1OeJxbb+jcYOPw5ydW9Zj
ZrwTz1dLDivunVX7XjRmZPwKAHAHsb7jbLxjcU3cs8nnEJVqoGMNj/XLvWvp
eN5jxNyyHrPiHXturavRnE3p88ZzbM9h52Iv7tHHZ9nbAwCAM1rXEN46tsZG
rK8s/U6JxUTx8a3zxHxu2exYx8yKdyye6zkXzvdHj8deLMmaggAA5OO1Qiti
HX99jyHuUM/rOaSje6YBAICxtC76DrHGaromM7XKAACsp7EO+1eOQa0yAAB5
6J6mW7GO5SksPzF779Cr01okapUBAFhH1zu0+ugtnvthjKuPz62jVhkAgLU8
B2H5HV371w+bq+S5H/TxOJJaZQAA1on7VNQOtKNWGQCAHCze2crp7B1oR60y
AAC4O2qVAQDA3fk+W9TuAACAO9LaHcayAADAHfn+Y+R2AADAnfiajL4/qMU6
1O0AAIA78blutmYj6zICAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA83v8A4Kvq3w==
"], {{0, 128}, {572, 0}}, {
0, 255},
ColorFunction->RGBColor],
BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True],
Selectable->False],
DefaultBaseStyle->"ImageGraphics",
ImageSize->{197.03125, Automatic},
ImageSizeRaw->{572, 128},
PlotRange->{{0, 572}, {0, 128}}], ";"}], "\[IndentingNewLine]",
RowBox[{
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJztnU1OHUcQx8nHIstwhIgrsMg22aBk6ShibSvEYkMk21IUbsANuAEn4ARc
gAtwA+5AKEvllCpvpnvem+7q7vn9pDHmGQ8z/6n3r+rP98O7v978+fXR0dHH
717/ePP2758+fHj7z2/fv37z+9XHy/dXF3/8cvXp4v3Fhx/fffP64s+vx69f
HR19+/r1BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAALri+Pj4RT52InXIz52dnb1cX1+/PD09RV92l6B1GUbU1V63
5ebm5svr8ve1OT8/z9JSDtHy8vLy5eHhYfXraI3n5+fP95qrTclnNDpoXYYR
dY3ySeH29naxluKv8hxGRvKBvWfRySL3f39//zl/2J+7u7sLuuJ+QesyjKZr
pE/63y8e6BG9fW6S70fGx9hcHW3jTNoxsIxRtbb3FVGnjaZrSz4593vs9cjx
+PhY7Jqi8XX2HJKTc+MR/s+oWkf75Gi6RvqkeF2uPlKn99KXcSjSr633Kbk2
xVz7BuYZVetonxxN10if9Hkkha3Pd7XRR+H09PTLfUq8pdhK/ijBqFpH++Ro
ukb6pM05omsK65M5OapXlvRry3yK1tssLTOq1tE+OZqukT5pfS9nbObk5KTp
nLMGvv87Na9MYnDJz8N/jKx1pE+OqGukTx6Sc1qdP3Aotv87Z+xvKzV2CUbW
OtInR9Q1yif9GE5q/Npej2g/6hxKO/8+1Qfb4jihryXWPNZ+D/Wu9RyRPjmi
rlE+uSTnSC1p10KN2uYWcvsWJL5a1KQnn+xd6zkifXJEXaN80s4dn4t/qTPt
2Fmrdfka+LlPPreKFtLf4NcwtDiPonVG1zrKJ0fVNconrff580v9KLlm1zqc
Udvbgm+D5NRXI8+3L8noWkf55Ki6RvikzzmpQ+p40X90/JqjqUNyTA+x1TK9
at16v0avuqaI8MncZy19F1vwR2VuHr1oZvt9Rh3vr0WvWrfuk73qmiLCJ/3Y
tUXa3EvnVY6CfRa7+mvse0R022eemZxDjxbnqdWihtb2XLWJaneX0tXG7ZJj
rRiP8MnU+kNpl9txsH1rStHIatYyuWvdbT7OWQ+m+y1pf7B8Ff1V3630aVhK
ae2ReknPUZsInyylq+2n07195bBjHBrXNrYP8Q5PhE/mzAWwYzg5axoV0VTO
aZ+FPeT1FsfW/JqEKXLnCSg2J9mY8XuprhVPrbcLhVJaK6KBH8+tTYRPltJV
x4bEB+w4rvUoWzfae19r3Le2T+au5czV3CKaaI6RZ2G1s+drsS2fGztL9qsS
9P266xnaPL2WB/Xgk6W0tn1G/rMPahPhk6V01X0gvFfofHapfTxL66sUtX0y
1/+W7LmmqG5TawBU7xb7j3P3V/E+lBozlHNJzE7lVVv3bIUSWmv+Fz01ViO1
jfDJkjG8q7bRXLTr/Z66hqXU9sklewTZa0u1lW1tNOWDus98a+MXfp5Uqg28
RJcUGtut7iO9NiW19ufakk/WjmHbLq3Rj1bbJ5fsS7dkv0kbFy32P86xdI2r
1fCQfThtrLXYF1GCmlpvySdrx7Btl9YYo63pk0v3JLe1Z6resef2/b2t49cd
pa7d6iLHvvWx9lMcOu+lJ2pqvSWfrB3D9v/XoKZP+r7JVG3uc1SqX9GPkffw
3t/1mZOi91yceV32uVf7LFrsry1Bba234pMRMaz1aK39Hmr5pDw3PwYo9cyc
Nr7+lP+f+gwdW8/XyqX74nOqP+bY9Vnyuf0NW/TICK234JNRMaw/v+ZYTc7v
K+mTqbXxc95n97Kz/jqFeKV/dr21w0siY4san1vxyCi24JMR2HurtUaiZru7
Jn4t6ZpzqXoFj6zLFudc1cB6U636Z1SfFHw7fGvr8yzWI7cyth0NPlmGufnl
pRjZJwU7X73n+zgEyRdaW095pNTf9E2sCz5ZBvL9cnSvizm27pP6fp2KK+0/
bn2vkN7AJ9fH1j29zZOOROcCTWF17Wlf0LXQsW3dy9PvOyWvad8ErIvt84F1
sHOQyOv5aHtyKrdoX8YWa3S/P13qgMPQto3kJj9PQ76X1+Xft5iv10D0s/Hc
y2dGROPnV8p8IK2T7GcV1Zpj1RoSQ7onX84Bh6Exlzq2Go+HIO91tNwf/fw2
6Xu0+kn+lhqzhzU5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
U/wL5FfHFw==
"], {{0, 66}, {330, 0}}, {0, 255},
ColorFunction->RGBColor],
BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True],
Selectable->False],
DefaultBaseStyle->"ImageGraphics",
ImageSize->{126.85546875, Automatic},
ImageSizeRaw->{330, 66},
PlotRange->{{0, 330}, {0, 66}}], ";"}], "\[IndentingNewLine]",
RowBox[{
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJztnUuOFdkRhvFj4KFZgsUWGHjqEfK0LYtxt4xbTLBEW7LNDtgBO2DmGStg
A2yAHbCHcv22wvxEZ55HVj5O3vw+6TRUcW/V7ZMn4x2Rv/vhb9/99ZePHj36
6Tf3//nu+3/84fXr7//1p9/ef/HnVz+9/PHVi7/88dXfX/z44vXvf/jV/Tf/
eb/+/YtHj359/+cdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAwIl5/vz5nR7P17KePXt29/Lly7uPHz8e
/bFhgsePHzddR71O1/LNmzd3nz9/PvpjAwB08+7du2bdFUv67suXL0d/dDB0
PWRX9F7Lt2/fHv3RAQC6yTopIx8ry0R9DWOh6+TXSDaJI9324cOH//pb/rr3
798f9IkBAJbRan/r3/y1nz592vFTQo2st0oxXdddih0CAJwF6Z5WWSd7nRjT
uOSYbwn5Xa3XHQBgJLL8quF2+lRMEY5DtRZeR1OjFFMEABgVl3VPnz6tvt71
VotshP3Q9Ytro+taA98Z1ka50jiHij+3nMMnT578/xzKjgao4XqopdbCzxiy
bix6ai1UA0+cENZCOYRc77Mk90BvBrTwEFlHHdo45JqM2v2va4e8gDVQjlz2
rPyr0FGuw0r2recpqA+CFnJNRq0+0OsJdcbo4RoHr8louf+J98JaSG7oDLn8
cFnRWqNMvhxa6JF1ssd9JgMxwrHw2Se1+59aQtga7/cs1fy0+mUAgZ+tks0t
O8pz/tjn49Gad5TOwv6ArXF5UbKLsJ+gFz9bWX7Jv5KMm5qTQXxwLHJuO9//
sjuUz8p5c2rfYStaemtyngK5AjWyrKst2fPUqI5JjvvVVs5FAKyJ1wiVYjNe
G9TSgwOQ68/mlmJK6KuxyfO35pZkA/oKtqa1JsNjOUfPO9V9IZkYi/tkTHJt
oKMYYW9fFxxHaYaJ7kHPfdG7AFvj57Ek/0c6lzmG3tIvDftTm9ekOKLn71t9
rmy3tC7sm+XUclbuW+ua9vRq9V5H+sCgpUY5x7ZHuP89bnm0HoVpWmrK3I9v
jT/nusNYnieL77m9hX2zjNa5yEv32q9nnAO/rlp+lrjfr01rbiv7NyPguhT7
azxaZ/zkmQo1otZDcsztJz/LLtfcpyOHtozWa9Ta8zCFy5gp/Dxxv18b7wmd
s4fzcwtG6auJ3IlsPBiPVlnX84wTEfZKPq9+TrNcC5lIDewyWvVRzzNOMnGN
Sj637A/m9ICfxym9JZmic+J98kt7CB+SY5C8ybHt+Ezk88ekZwZ8LXfiRI9Q
1kFxHqbkml5PDexyWmfA5/rRnns9fOLS/azfTawXSvMvQmfpNX4ee/oIpWNC
N0bMOnyklpjN1PvjM8U5p69xTHqed7HG87Yit8L8sXXJPXi1+7bHBgk8Bkju
CmrkXHb4Mjo74ZPre17P7HGcmHU4FX/xn+Hv8Rl0pXsgZsXk9+t3ef53hBoR
+JbeZxa7b7YkDuRyj5lC69I7Z9DtlVYbwmPK+X6OWAtAkOfr5BXnxfVW2M4R
y9Y5zXrLz/qUXgk5NZebipxHzr0HoW+JdY9Jzm3VbPQsG3ttbn8/Mm5dsoyo
5QjdBmmtofDfkZHuI4cNTs6Ju83rsibLoVhTc+S8fmvO9nU9mM+1+1Nz7w+9
NUqNCHxFesNrlsPuLsmv7J9lH7uGy0pYj1xnEfdkSXdlG0R2bU13xf2u13qf
VsgJctiQ0TnzZx7rjEydM5cN0hdzNnRJJ029JsunuFdKz16q6UU4htoMu5Iu
8tqf3jhTSy0a9JH9prxKZLullOtym8X77jyHQc4LtsZtpzlKui106JzMch+R
mBCIHMOG81CK8YbupF8LtqQ1Pz7XY+i2V0uMEcBrXekrPh+lGK/8LOpDYWvm
ZhY4rpum5nOWfCnPfZHbAlHqN4bxIVfdRuhwr6WOfIr2TvkdvYbe+n5qekd4
jUd+Te39bpsREwIReTFqzs4J93OZ6Ccq5Rp9sY/9eJxwKmbj/tKU/+96a2qO
j65frjXUz+T5uNcl7mniSeejJT5zVSTPvFZJ51w6yfuC9Pdcz0SsfBnh90/V
rvrsiyk94zHEqMXXivkYMcMj5FTUQs79PLhtvEaH2tLz4fETaqy+Ilnm/du1
Z3F67JBY+TJct+hc6jyG7gl9VtIxU/W33n+c7Qt01jXRufJ7u3V2GIxBjn9J
LjD75n/kOUY1+caM8XXQPiuuF30Y0jXa21ZbwN+rv/t1C984/g2uieRcfkYT
uf3zMHXt8Jm/rZfWatHlEW+lPxsAAPbEZ7cS+wYAgNHxOY2leUEAAABHk58P
jq8FAAAjk+vR8LUAAGBkvJb96F7EXBuy5sKPXB+vP1170Z8CAFPk50kd3YON
3joX6C0A2JusJ4gRAsDVUI4/erKZVzc+bi/zDDkAuCJeTz1C3AnK5LkhJUox
oVvuu98qDjbauhWO3kfWGKuHLNt6cwpH/79utS+j0nut/Nk9sW59dtDR54zz
3MfR+8gaY/XwUH/r6P/XrfZlRHwmvlbrjE1/zy37WQBwDchvnYest1rrtx5i
lwAAACxlid7K71l7jj518OeCOngA2JMlesvzW6rpWBv01rlAbwHA3vTG/Dx/
SW4LAAD2xp9/WquDV08yzzoBAIAjkY/lcb/S83Xz896J4wAAwBG4z6UZu14P
Lx9Lus1fE4uZUAAAcATSP1N6KS/FEcPnkn4DAAA4EvlV0kuew5I+Ux9exA/1
p3QWuS04E7LNFNduWcQR2lEfTMuert0vcybYIwBYgmwyt8dqS69VfKGU74W7
pjiNL73+arMK2CMAWIr8KH9GavRy+Mq6TV+3zj+7KnlmqfbY93RKbl+th4Y9
AoCleJ/0XI5WMRuXI7U626PxGOgRnzPPL5jyFfQZ80yBK80BZI8AYCmut5TL
nUPy/yzyw2XiEXnnntlvee76VXKJ7BEALMXlQe35O96vOHLM5mi95T5Cbfab
5PUVe0DZIwBYQvahavIgx2xG5Wi91Tv7zff0KnXJ7BGcDcnLntwDNdnb4LNh
WvRQj418JEfrLa91afn9PT7vrcAewVmQv5/npdfyJDlGAOuhvfda4xrECevI
rvLzWqu9vGIMjD2CsxC2veysXONa8rvcJ2iRrdCO2xAtdRZeE09dRv13t9QQ
5HrwK8QT2CM4A2HX+3x9jxOU7CePg9fm80MfLgtqfZ05pjhyHfyRestjqS2z
3/w+uMr5Zo/gDMjPzzFpt/VLest9M3rm1yPbvCU9lJ/XM7KvJY7UW36uazI2
5wtHtgXWhD2Cs+JycO4s5jg488rWo/U53dIBbu+eIVZ7pN7ycz1XP6Bz7bnF
lhzPLcEewRnx+uuazKQmYxs8/ipd5DWbkg+S9zkPObqfFRylt3JfgWSy76u+
1r673JZNcCV7jD2CsyK5GGeyNKPBYwQj16+dkTyXsLS09yPUcLXOsHdfUjJw
r9njOQdYWpLLOt9XqzFgj+CsuP9f6sXwumt6Ddcjx1/lV83NMx0pNpP97zXX
GnaRn2vJ3Ln5xGeItW4FewRnxWVjyc71c9wqP2XPScfRmziP+7tT+UX/95Fy
4dH/V1v5eeUt71kjBuq/N9cbyFbo7Tu4RdgjOCNu65dqYHt7PIKIfxFXnKel
Drl3Dk9G1yvyZLH09R55iqPyW35ep2pfe+dqBb6HPWuE2G5mqz0SEUf2PdDv
GMXugvPitnypBtblZkuPh/AzT1xxnpYZ8DWfbA7Jjrh2HgfKefYtOUJvtc43
L/kbU/iZ1j6GPPYYun5OfN9//mh6a6s9Umwl7FWdM/lp2gt8N1gLt/XnYnl5
rkupdsPRPR73L/VH87TWIffmufSekDmlGNDWuYsj9FZrX0HvbK2oY8j3gN9H
HotwPTcaW+1RnKupmLb/TmxZWEpLv3GuDSBXtR49s956Z5+GvJmTNaFPtrZ9
j9BbrbMbe2cZh++a5XHJBhg1Tr7VHsVezM0lCDuNWg9Yitv6UzIzejfc5qrF
O6IWw2PaME2PTOidoxt6bk4vxfNrt/aFj9BbrTq+d0asrtfUeS7F0XStRrwH
ttyj0s9zWxlgCaXYU9iW+r7rrWxr5hoNj28TDyjTU2/R+7ytHh23JXvrrd5a
An/tks/ncn1E/TTF3nvkhGzYOq8Kt4ufR/nt0lFaYROF/eg2UuipyPlP+fvu
R4yWjx4J1++1vGHOo9dyXO6fHSlP99Zb2Yet+ZN+tpfErjxnc5Y87t57FBz9
LDa4DXLuKuuxwM9t1FDHe6dkovsGME3WQy21Wv76mh+Vf/5Rsw72llX5mXK1
2svsx/baWV6veRb23qMgZIbsNeZuwFLmZh7oXvRzlc9tnL05Oy1s/aNjVKMi
Xe+5xZB7st1LMsR9qPDRSjIk29W6Znv7v3vpLe1b3p/Yo5JvmvM3ug49fUZn
6lE8ao+E6/ez+KUwLpIrOlO672J+3BTRg6EzLvlaspfiXiYW8HOiBn1ulWJ6
EcP1VYsvSkZkv3rPuOFeektnsrSvJbSH+fWtvQZninsdsUci8uPoLBgVz/mO
NE/v6qwV6+nF50GdpW6hFe8HJ487Tfj86CwYGY9NEcMeC782PKv24ZDHLePn
DZ0FIxNxbPoKx+RM+ZjR2WvmyBlxnXVrfjbcHpFLYQbZ/sRsrVK+PGRt67wu
mCfkMmf9W+RbRd3RlM6Knndm7MIo5Dy1zjDPSN2H6CWayyt6HQE28MPwehP2
8is6Y+HTz82EC18MmQCj4P1fskNld+nv5Lq2J2qc5/Y7Yrjkth6Oz5Ch/ugr
kfOL5yPnFTKBnCCMRO5pREbuh++9bN54hoT+1NchS+Bh+Hyu2Gt8rp/Pj6ot
gJFQfIDnlxxDPK8vrsHIzy08I5GbyQu99e2zi1oWAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMAW/AfGox95
"], {{0, 120}, {
430, 0}}, {0, 255},
ColorFunction->RGBColor],
BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True],
Selectable->False],
DefaultBaseStyle->"ImageGraphics",
ImageSize->{149.19140625, Automatic},
ImageSizeRaw->{430, 120},
PlotRange->{{0, 430}, {0, 120}}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"ClearAll", "[",
RowBox[{
"R1", ",", "R2", ",", "Rf", ",", "RT", ",", "RS", ",", "G", ",",
"\[Alpha]"}], "]"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"$Assumptions", "=",
RowBox[{
RowBox[{"R1", ">", "0"}], "&&",
RowBox[{"R2", ">", "0"}], "&&",
RowBox[{"Rf", ">", "0"}], "&&",
RowBox[{"RT", ">", "0"}], "&&",
RowBox[{"RS", ">", "0"}], "&&",
RowBox[{"G", ">", "0"}], "&&",
RowBox[{"\[Alpha]", ">", "0"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Rf", "=."}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"RS", "=."}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"G", "=."}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"par", "[",
RowBox[{"x_", ",", "y_"}], "]"}], ":=",
FractionBox[
RowBox[{"x", " ", "y"}],
RowBox[{"x", "+", "y"}]]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"sol1", "=",
RowBox[{"Solve", "[",
RowBox[{
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"par", "[",
RowBox[{"RT", ",",
FractionBox[
RowBox[{
RowBox[{"2", "R1", " ", "R2"}], "+",
RowBox[{"Rf",
RowBox[{"(",
RowBox[{"R1", "+", "R2"}], ")"}]}]}],
RowBox[{
RowBox[{"2", "R2"}], "+", "Rf"}]]}], "]"}], "\[Equal]", "RS"}],
",", "\[IndentingNewLine]",
RowBox[{"R2", "\[Equal]",
RowBox[{"R1", "+",
RowBox[{"par", "[",
RowBox[{"RT", ",", "RS"}], "]"}]}]}], ",", "\[IndentingNewLine]",
RowBox[{"G", "\[Equal]",
RowBox[{
FractionBox["RT",
RowBox[{"RS", "+", "RT"}]], "*",
FractionBox["Rf", "R2"]}]}]}], "\[IndentingNewLine]", "}"}], ",",
"\[IndentingNewLine]",
RowBox[{"{",
RowBox[{"RT", ",", "R1", ",", "R2"}], "}"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Print", "[",
RowBox[{"\"\<RT = \>\"", ",",
RowBox[{"FullSimplify", "[",
RowBox[{"RT", "/.",
RowBox[{"sol1", "[",
RowBox[{"[", "1", "]"}], "]"}]}], "]"}]}], "]"}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Print", "[",
RowBox[{"\"\<R1 = \>\"", ",",
RowBox[{"FullSimplify", "[",
RowBox[{"R1", "/.",
RowBox[{"sol1", "[",
RowBox[{"[", "1", "]"}], "]"}]}], "]"}]}], "]"}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Print", "[",
RowBox[{"\"\<R2 = \>\"", ",",
RowBox[{"FullSimplify", "[",
RowBox[{"R2", "/.",
RowBox[{"sol1", "[",
RowBox[{"[", "1", "]"}], "]"}]}], "]"}]}], "]"}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"N", "[",
RowBox[{"sol1", "/.",
RowBox[{"{",
RowBox[{
RowBox[{"RS", "\[Rule]", "50"}], ",",
RowBox[{"Rf", "\[Rule]", "500"}], ",",
RowBox[{"G", "\[Rule]", "6"}]}], "}"}]}], "]"}], "\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{
RowBox[{"sol2", "=",
RowBox[{"Solve", "[",
RowBox[{
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"par", "[",
RowBox[{"RT", ",",
FractionBox[
RowBox[{
RowBox[{"2", "R1", " ", "R2"}], "+",
RowBox[{"\[Alpha]", " ", "R2",
RowBox[{"(",
RowBox[{"R1", "+", "R2"}], ")"}]}]}],
RowBox[{
RowBox[{"2", "R2"}], "+",
RowBox[{"\[Alpha]", " ", "R2"}]}]]}], "]"}], "\[Equal]", "RS"}],
",", "\[IndentingNewLine]",
RowBox[{"R2", "\[Equal]",
RowBox[{"R1", "+",
RowBox[{"par", "[",
RowBox[{"RT", ",", "RS"}], "]"}]}]}], ",", "\[IndentingNewLine]",
RowBox[{"G", "\[Equal]",
RowBox[{
FractionBox["RT",
RowBox[{"RS", "+", "RT"}]], "*",
FractionBox[
RowBox[{"\[Alpha]", " ", "R2"}], "R2"]}]}]}],
"\[IndentingNewLine]", "}"}], ",", "\[IndentingNewLine]",
RowBox[{"{",
RowBox[{"RT", ",", "R2", ",", "\[Alpha]"}], "}"}]}], "]"}]}], ";",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"Simplify", "[",
RowBox[{"RT", "/.",
RowBox[{"sol2", "[",
RowBox[{"[", "2", "]"}], "]"}]}], "]"}], "\[IndentingNewLine]",
RowBox[{"FullSimplify", "[",
RowBox[{"R2", "/.",
RowBox[{"sol2", "[",
RowBox[{"[", "2", "]"}], "]"}]}], "]"}], "\[IndentingNewLine]",
RowBox[{"FullSimplify", "[",
RowBox[{"\[Alpha]", "/.",
RowBox[{"sol2", "[",
RowBox[{"[", "2", "]"}], "]"}]}], "]"}]}]}],
"*)"}]}], "\[IndentingNewLine]"}], "Input",
CellChangeTimes->{{3.750932373181678*^9, 3.750932475545117*^9}, {
3.750932517862873*^9, 3.750932617358588*^9}, {3.750932653772181*^9,
3.750932789718446*^9}, {3.7509328895124407`*^9, 3.750932937098984*^9}, {
3.750933046458908*^9, 3.750933071931981*^9}, {3.750933102045381*^9,
3.750933105645232*^9}, {3.750933203121697*^9, 3.750933204678032*^9}, {
3.750933282542931*^9, 3.75093351024888*^9}, {3.7509336518331423`*^9,
3.7509338521023293`*^9}, {3.7509338949111643`*^9, 3.750933904144013*^9}, {
3.7509339695515547`*^9, 3.750934036157893*^9}, {3.750934196168373*^9,
3.7509342272387657`*^9}, {3.750934262412448*^9, 3.7509342922205563`*^9}, {
3.750934516690688*^9, 3.750934535050212*^9}, 3.750934579835178*^9, {
3.7509348887303963`*^9, 3.7509349532507343`*^9}, {3.7509349845046053`*^9,
3.75093502687049*^9}, {3.7509358983375797`*^9, 3.750935899417224*^9}, {
3.750935934040008*^9, 3.750935935204146*^9}, {3.7509363717872257`*^9,
3.7509364131615667`*^9}, 3.750936886563843*^9, {3.750937330873714*^9,
3.750937380958941*^9}, {3.750937437429126*^9, 3.750937450989081*^9}, {
3.750937482954978*^9,
3.750937485798334*^9}},ExpressionUUID->"e9d040af-dbdb-4a05-b066-\
a6b1f569a5d0"],
Cell[CellGroupData[{
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"RT = \"\>", "\[InvisibleSpace]",
FractionBox[
RowBox[{"RS", " ",
RowBox[{"(",
RowBox[{"Rf", "+",
RowBox[{
SuperscriptBox["G", "2"], " ", "RS"}], "+",
SqrtBox[
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"Rf", "+",
RowBox[{"2", " ", "G", " ", "Rf"}]}], ")"}], "2"], "-",
RowBox[{"2", " ",
SuperscriptBox["G", "2"], " ",
RowBox[{"(",
RowBox[{"3", "+",
RowBox[{"2", " ", "G"}]}], ")"}], " ", "Rf", " ", "RS"}], "+",
RowBox[{
SuperscriptBox["G", "4"], " ",
SuperscriptBox["RS", "2"]}]}]]}], ")"}]}],
RowBox[{
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"1", "+", "G"}], ")"}], " ", "Rf"}], "-",
RowBox[{"2", " ", "G", " ",
RowBox[{"(",
RowBox[{"2", "+", "G"}], ")"}], " ", "RS"}]}]]}],
SequenceForm[
"RT = ", $CellContext`RS (2 (1 + $CellContext`G) $CellContext`Rf -
2 $CellContext`G (
2 + $CellContext`G) $CellContext`RS)^(-1) ($CellContext`Rf + \
$CellContext`G^2 $CellContext`RS + (($CellContext`Rf +
2 $CellContext`G $CellContext`Rf)^2 -
2 $CellContext`G^2 (3 +
2 $CellContext`G) $CellContext`Rf $CellContext`RS + $CellContext`G^4 \
$CellContext`RS^2)^Rational[1, 2])],
Editable->False]], "Print",
CellChangeTimes->{{3.750934208784432*^9, 3.750934227825424*^9}, {
3.750934270767514*^9, 3.7509342927949057`*^9}, {3.750934518368689*^9,
3.750934535688229*^9}, 3.750934580615744*^9, 3.750934954667062*^9, {
3.750934985151909*^9, 3.750935027502613*^9}, 3.7509359365479393`*^9, {
3.750936404182725*^9, 3.750936427116712*^9}, 3.750936888187727*^9, {
3.750937355829399*^9, 3.7509373814662247`*^9}, {3.750937438016425*^9,
3.7509374516342487`*^9},
3.750937486397686*^9},ExpressionUUID->"d8e862bd-dd2e-471c-8462-\
59a13466e3b5"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"R1 = \"\>", "\[InvisibleSpace]",
FractionBox[
RowBox[{"Rf", "-",
RowBox[{"2", " ", "G", " ", "Rf"}], "+",
RowBox[{
SuperscriptBox["G", "2"], " ", "RS"}], "+",
SqrtBox[
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"Rf", "+",
RowBox[{"2", " ", "G", " ", "Rf"}]}], ")"}], "2"], "-",
RowBox[{"2", " ",
SuperscriptBox["G", "2"], " ",
RowBox[{"(",
RowBox[{"3", "+",
RowBox[{"2", " ", "G"}]}], ")"}], " ", "Rf", " ", "RS"}], "+",
RowBox[{
SuperscriptBox["G", "4"], " ",
SuperscriptBox["RS", "2"]}]}]]}],
RowBox[{"4", " ", "G"}]]}],
SequenceForm[
"R1 = ", Rational[1, 4] $CellContext`G^(-1) ($CellContext`Rf -
2 $CellContext`G $CellContext`Rf + $CellContext`G^2 $CellContext`RS + \
(($CellContext`Rf + 2 $CellContext`G $CellContext`Rf)^2 -
2 $CellContext`G^2 (3 +
2 $CellContext`G) $CellContext`Rf $CellContext`RS + $CellContext`G^4 \
$CellContext`RS^2)^Rational[1, 2])],
Editable->False]], "Print",
CellChangeTimes->{{3.750934208784432*^9, 3.750934227825424*^9}, {
3.750934270767514*^9, 3.7509342927949057`*^9}, {3.750934518368689*^9,
3.750934535688229*^9}, 3.750934580615744*^9, 3.750934954667062*^9, {
3.750934985151909*^9, 3.750935027502613*^9}, 3.7509359365479393`*^9, {
3.750936404182725*^9, 3.750936427116712*^9}, 3.750936888187727*^9, {
3.750937355829399*^9, 3.7509373814662247`*^9}, {3.750937438016425*^9,
3.7509374516342487`*^9},
3.750937486441655*^9},ExpressionUUID->"e07364dd-a35d-4032-b299-\
72fbcc331e7e"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"R2 = \"\>", "\[InvisibleSpace]",
RowBox[{"-",
FractionBox[
RowBox[{"Rf", " ",
RowBox[{"(",
RowBox[{"Rf", "-",
RowBox[{"2", " ", "G", " ", "Rf"}], "+",
RowBox[{
SuperscriptBox["G", "2"], " ", "RS"}], "+",
SqrtBox[
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"Rf", "+",
RowBox[{"2", " ", "G", " ", "Rf"}]}], ")"}], "2"], "-",
RowBox[{"2", " ",
SuperscriptBox["G", "2"], " ",
RowBox[{"(",
RowBox[{"3", "+",
RowBox[{"2", " ", "G"}]}], ")"}], " ", "Rf", " ", "RS"}], "+",
RowBox[{
SuperscriptBox["G", "4"], " ",
SuperscriptBox["RS", "2"]}]}]]}], ")"}]}],
RowBox[{"4", " ", "G", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "Rf"}], "+",
RowBox[{"G", " ", "RS"}]}], ")"}]}]]}]}],
SequenceForm[
"R2 = ", Rational[-1,
4] $CellContext`G^(-1) $CellContext`Rf (-$CellContext`Rf + \
$CellContext`G $CellContext`RS)^(-1) ($CellContext`Rf -
2 $CellContext`G $CellContext`Rf + $CellContext`G^2 $CellContext`RS + \
(($CellContext`Rf + 2 $CellContext`G $CellContext`Rf)^2 -
2 $CellContext`G^2 (3 +
2 $CellContext`G) $CellContext`Rf $CellContext`RS + $CellContext`G^4 \
$CellContext`RS^2)^Rational[1, 2])],
Editable->False]], "Print",
CellChangeTimes->{{3.750934208784432*^9, 3.750934227825424*^9}, {
3.750934270767514*^9, 3.7509342927949057`*^9}, {3.750934518368689*^9,
3.750934535688229*^9}, 3.750934580615744*^9, 3.750934954667062*^9, {
3.750934985151909*^9, 3.750935027502613*^9}, 3.7509359365479393`*^9, {
3.750936404182725*^9, 3.750936427116712*^9}, 3.750936888187727*^9, {
3.750937355829399*^9, 3.7509373814662247`*^9}, {3.750937438016425*^9,
3.7509374516342487`*^9},
3.7509374865327187`*^9},ExpressionUUID->"137004bf-2859-4ef8-9780-\
efec8fa1874f"]
}, Open ]],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"RT", "\[Rule]", "150.`"}], ",",
RowBox[{"R1", "\[Rule]", "25.`"}], ",",
RowBox[{"R2", "\[Rule]", "62.5`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"RT", "\[Rule]",
RowBox[{"-", "45.45454545454545`"}]}], ",",
RowBox[{"R1", "\[Rule]",
RowBox[{"-", "333.3333333333333`"}]}], ",",
RowBox[{"R2", "\[Rule]",
RowBox[{"-", "833.3333333333334`"}]}]}], "}"}]}], "}"}]], "Output",
CellChangeTimes->{{3.750937361871139*^9, 3.750937381599278*^9}, {
3.750937438146818*^9, 3.7509374517719517`*^9},
3.750937486538517*^9},ExpressionUUID->"5a4c1694-64b5-4c9f-b796-\
2ce86b0567a1"]
}, Open ]]
},
WindowSize->{808, 755},
WindowMargins->{{65, Automatic}, {9, Automatic}},
FrontEndVersion->"11.2 for Mac OS X x86 (32-bit, 64-bit Kernel) (September \
10, 2017)",
StyleDefinitions->"Default.nb"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
Cell[580, 22, 41679, 765, 969, "Input",ExpressionUUID->"e9d040af-dbdb-4a05-b066-a6b1f569a5d0"],
Cell[CellGroupData[{
Cell[42284, 791, 1961, 48, 56, "Print",ExpressionUUID->"d8e862bd-dd2e-471c-8462-59a13466e3b5"],
Cell[44248, 841, 1663, 39, 49, "Print",ExpressionUUID->"e07364dd-a35d-4032-b299-72fbcc331e7e"],
Cell[45914, 882, 1996, 48, 56, "Print",ExpressionUUID->"137004bf-2859-4ef8-9780-efec8fa1874f"]
}, Open ]],
Cell[47925, 933, 718, 19, 92, "Output",ExpressionUUID->"5a4c1694-64b5-4c9f-b796-2ce86b0567a1"]
}, Open ]]
}
]
*)