-
Notifications
You must be signed in to change notification settings - Fork 0
/
ch5-DAC输出均衡2.nb
3266 lines (3252 loc) · 170 KB
/
ch5-DAC输出均衡2.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.2' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 174113, 3258]
NotebookOptionsPosition[ 173161, 3236]
NotebookOutlinePosition[ 173521, 3252]
CellTagsIndexPosition[ 173478, 3249]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"Gzoh", "[", "\[CapitalOmega]_", "]"}], ":=",
RowBox[{"Abs", "[",
FractionBox[
RowBox[{"Sin", "[",
RowBox[{"\[CapitalOmega]", "/", "2"}], "]"}],
RowBox[{"\[CapitalOmega]", "/", "2"}]], "]"}]}], ";",
RowBox[{
RowBox[{"H1", "[", "z_", "]"}], ":=",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "35"}],
RowBox[{"(",
RowBox[{"1", "+",
SuperscriptBox["z",
RowBox[{"-", "6"}]]}], ")"}]}], "+",
RowBox[{"134",
RowBox[{"(",
RowBox[{
SuperscriptBox["z",
RowBox[{"-", "1"}]], "+",
SuperscriptBox["z",
RowBox[{"-", "5"}]]}], ")"}]}], "-",
RowBox[{"562",
RowBox[{"(",
RowBox[{
SuperscriptBox["z",
RowBox[{"-", "2"}]], "+",
SuperscriptBox["z",
RowBox[{"-", "4"}]]}], ")"}]}], "+",
RowBox[{"6729", " ",
SuperscriptBox["z",
RowBox[{"-", "3"}]]}]}], ")"}], "/", "8192"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"H2", "[", "z_", "]"}], ":=",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"11",
RowBox[{"(",
RowBox[{"1", "+",
SuperscriptBox["z",
RowBox[{"-", "8"}]]}], ")"}]}], "-",
RowBox[{"45",
RowBox[{"(",
RowBox[{
SuperscriptBox["z",
RowBox[{"-", "1"}]], "+",
SuperscriptBox["z",
RowBox[{"-", "7"}]]}], ")"}]}], "+",
RowBox[{"146",
RowBox[{"(",
RowBox[{
SuperscriptBox["z",
RowBox[{"-", "2"}]], "+",
SuperscriptBox["z",
RowBox[{"-", "6"}]]}], ")"}]}], "-",
RowBox[{"563",
RowBox[{"(",
RowBox[{
SuperscriptBox["z",
RowBox[{"-", "3"}]], "+",
SuperscriptBox["z",
RowBox[{"-", "5"}]]}], ")"}]}], "+",
RowBox[{"6662",
SuperscriptBox["z",
RowBox[{"-", "4"}]]}]}], ")"}], "/", "8192"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"LogLinearPlot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"20", "*",
RowBox[{"Log10", "[",
RowBox[{
RowBox[{"Abs", "[",
RowBox[{"H1", "[",
RowBox[{"Exp", "[",
RowBox[{"\[ImaginaryI]", " ", "2", "\[Pi]", " ", "f"}], "]"}],
"]"}], "]"}], "*",
RowBox[{"Gzoh", "[",
RowBox[{"2", "\[Pi]", " ", "f"}], "]"}]}], "]"}]}], ",",
RowBox[{"20", "*",
RowBox[{"Log10", "[",
RowBox[{"Gzoh", "[",
RowBox[{"2", "\[Pi]", " ", "f"}], "]"}], "]"}]}], ",",
RowBox[{"20", "*",
RowBox[{"Log10", "[",
RowBox[{"Abs", "[",
RowBox[{"H1", "[",
RowBox[{"Exp", "[",
RowBox[{"\[ImaginaryI]", " ", "2", "\[Pi]", " ", "f"}], "]"}],
"]"}], "]"}], "]"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"f", ",", "0.001", ",", "0.5"}], "}"}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Monochrome\>\""}], ",",
RowBox[{"Ticks", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
"0.01", ",", "0.02", ",", "0.05", ",", "0.1", ",", "0.2", ",", "0.5"}],
"}"}], ",", " ", "Automatic"}], "}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0.01", ",",
RowBox[{"0.5", "+", "0.00001"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "4"}], ",", "0"}], "}"}]}], "}"}]}], ",",
RowBox[{"GridLines", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
"0.01", ",", "0.02", ",", "0.03", ",", "0.04", ",", "0.05", ",", "0.1",
",", "0.2", ",", "0.3", ",", "0.4", ",", "0.5"}], "}"}], ",", " ",
"Automatic"}], "}"}]}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"Style", "[",
RowBox[{"\"\<f/fs\>\"", ",",
RowBox[{"FontFamily", "->", "\"\<Cambria Math\>\""}], ",",
RowBox[{"FontSlant", "\[Rule]", "Italic"}], ",",
RowBox[{"FontSize", "\[Rule]", "12"}]}], "]"}], ",",
RowBox[{"Style", "[",
RowBox[{
"\"\<\:589e\:76ca\!\(\*StyleBox[\"(\",FontFamily->\"Times\",FontWeight-\
>\"Bold\"]\)\!\(\*StyleBox[\"dB\",FontFamily->\"Times\",FontWeight->\"Bold\"]\
\)\!\(\*StyleBox[\")\",FontFamily->\"Times\",FontWeight->\"Bold\"]\)\>\"",
",",
RowBox[{"FontFamily", "\[Rule]", "\"\<Cambria Math\>\""}], ",",
RowBox[{"FontSize", "\[Rule]", "12"}]}], "]"}]}], "}"}]}], ",",
RowBox[{"AxesOrigin", "\[Rule]",
RowBox[{"{",
RowBox[{"0.01", ",",
RowBox[{"-", "4"}]}], "}"}]}], ",",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"Style", "[",
RowBox[{"\"\<\:5747\:8861\:540e\>\"", ",",
RowBox[{"FontFamily", "\[Rule]", "\"\<Cambria Math\>\""}], ",",
RowBox[{"FontSize", "\[Rule]", "12"}]}], "]"}], ",",
RowBox[{"Style", "[",
RowBox[{"\"\<\:5747\:8861\:524d\>\"", ",",
RowBox[{"FontFamily", "\[Rule]", "\"\<Cambria Math\>\""}], ",",
RowBox[{"FontSize", "\[Rule]", "12"}]}], "]"}], ",",
RowBox[{"Style", "[",
RowBox[{"\"\<\:5747\:8861\:6ee4\:6ce2\:5668\>\"", ",",
RowBox[{"FontFamily", "\[Rule]", "\"\<Cambria Math\>\""}], ",",
RowBox[{"FontSize", "\[Rule]", "12"}]}], "]"}]}], "}"}]}]}],
"]"}], "\[IndentingNewLine]",
RowBox[{"LogLinearPlot", "[",
RowBox[{
RowBox[{"{",
RowBox[{"20", "*",
RowBox[{"Log10", "[",
RowBox[{
RowBox[{"Abs", "[",
RowBox[{"H1", "[",
RowBox[{"Exp", "[",
RowBox[{"\[ImaginaryI]", " ", "2", "\[Pi]", " ", "f"}], "]"}],
"]"}], "]"}], "*",
RowBox[{"Gzoh", "[",
RowBox[{"2", "\[Pi]", " ", "f"}], "]"}]}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"f", ",", "0.001", ",", "0.5"}], "}"}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Monochrome\>\""}], ",",
RowBox[{"Ticks", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
"0.01", ",", "0.02", ",", "0.05", ",", "0.1", ",", "0.2", ",", "0.5"}],
"}"}], ",", " ", "Automatic"}], "}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0.01", ",",
RowBox[{"0.5", "+", "0.00001"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "3.2"}], ",",
RowBox[{"-", "2.8"}]}], "}"}]}], "}"}]}], ",",
RowBox[{"GridLines", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
"0.01", ",", "0.02", ",", "0.03", ",", "0.04", ",", "0.05", ",", "0.1",
",", "0.2", ",", "0.3", ",", "0.4", ",", "0.5"}], "}"}], ",", " ",
"Automatic"}], "}"}]}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"Style", "[",
RowBox[{"\"\<f/fs\>\"", ",",
RowBox[{"FontFamily", "\[Rule]", "\"\<Cambria Math\>\""}], ",",
RowBox[{"FontSlant", "\[Rule]", "Italic"}], ",",
RowBox[{"FontSize", "\[Rule]", "12"}]}], "]"}], ",",
RowBox[{"Style", "[",
RowBox[{
"\"\<\:589e\:76ca\!\(\*StyleBox[\"(\",FontFamily->\"Times\",FontWeight-\
>\"Bold\"]\)\!\(\*StyleBox[\"dB\",FontFamily->\"Times\",FontWeight->\"Bold\"]\
\)\!\(\*StyleBox[\")\",FontFamily->\"Times\",FontWeight->\"Bold\"]\)\>\"",
",",
RowBox[{"FontFamily", "\[Rule]", "\"\<Cambria Math\>\""}], ",",
RowBox[{"FontSize", "\[Rule]", "12"}]}], "]"}]}], "}"}]}], ",",
RowBox[{"AxesOrigin", "\[Rule]",
RowBox[{"{",
RowBox[{"0.01", ",",
RowBox[{"-", "3"}]}], "}"}]}]}], "]"}], "\[IndentingNewLine]",
RowBox[{"LogLinearPlot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"20", "*",
RowBox[{"Log10", "[",
RowBox[{
RowBox[{"Abs", "[",
RowBox[{"H2", "[",
RowBox[{"Exp", "[",
RowBox[{"\[ImaginaryI]", " ", "2", "\[Pi]", " ", "f"}], "]"}],
"]"}], "]"}], "*",
RowBox[{"Gzoh", "[",
RowBox[{"2", "\[Pi]", " ", "f"}], "]"}]}], "]"}]}], ",",
RowBox[{"20", "*",
RowBox[{"Log10", "[",
RowBox[{"Gzoh", "[",
RowBox[{"2", "\[Pi]", " ", "f"}], "]"}], "]"}]}], ",",
RowBox[{"20", "*",
RowBox[{"Log10", "[",
RowBox[{"Abs", "[",
RowBox[{"H2", "[",
RowBox[{"Exp", "[",
RowBox[{"\[ImaginaryI]", " ", "2", "\[Pi]", " ", "f"}], "]"}],
"]"}], "]"}], "]"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"f", ",", "0.001", ",", "0.5"}], "}"}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Monochrome\>\""}], ",",
RowBox[{"Ticks", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
"0.01", ",", "0.02", ",", "0.05", ",", "0.1", ",", "0.2", ",", "0.5"}],
"}"}], ",", " ", "Automatic"}], "}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0.01", ",",
RowBox[{"0.5", "+", "0.00001"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "4"}], ",", "0"}], "}"}]}], "}"}]}], ",",
RowBox[{"GridLines", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
"0.01", ",", "0.02", ",", "0.03", ",", "0.04", ",", "0.05", ",", "0.1",
",", "0.2", ",", "0.3", ",", "0.4", ",", "0.5"}], "}"}], ",", " ",
"Automatic"}], "}"}]}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"Style", "[",
RowBox[{"\"\<f/fs\>\"", ",",
RowBox[{"FontFamily", "\[Rule]", "\"\<Cambria Math\>\""}], ",",
RowBox[{"FontSlant", "\[Rule]", "Italic"}], ",",
RowBox[{"FontSize", "\[Rule]", "12"}]}], "]"}], ",",
RowBox[{"Style", "[",
RowBox[{
"\"\<\:589e\:76ca\!\(\*StyleBox[\"(\",FontFamily->\"Times\",FontWeight-\
>\"Bold\"]\)\!\(\*StyleBox[\"dB\",FontFamily->\"Times\",FontWeight->\"Bold\"]\
\)\!\(\*StyleBox[\")\",FontFamily->\"Times\",FontWeight->\"Bold\"]\)\>\"",
",",
RowBox[{"FontFamily", "\[Rule]", "\"\<Cambria Math\>\""}], ",",
RowBox[{"FontSize", "\[Rule]", "12"}]}], "]"}]}], "}"}]}], ",",
RowBox[{"AxesOrigin", "\[Rule]",
RowBox[{"{",
RowBox[{"0.01", ",",
RowBox[{"-", "4"}]}], "}"}]}], ",",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"Style", "[",
RowBox[{"\"\<\:5747\:8861\:540e\>\"", ",",
RowBox[{"FontFamily", "\[Rule]", "\"\<Cambria Math\>\""}], ",",
RowBox[{"FontSize", "\[Rule]", "12"}]}], "]"}], ",",
RowBox[{"Style", "[",
RowBox[{"\"\<\:5747\:8861\:524d\>\"", ",",
RowBox[{"FontFamily", "\[Rule]", "\"\<Cambria Math\>\""}], ",",
RowBox[{"FontSize", "\[Rule]", "12"}]}], "]"}], ",",
RowBox[{"Style", "[",
RowBox[{"\"\<\:5747\:8861\:6ee4\:6ce2\:5668\>\"", ",",
RowBox[{"FontFamily", "\[Rule]", "\"\<Cambria Math\>\""}], ",",
RowBox[{"FontSize", "\[Rule]", "12"}]}], "]"}]}], "}"}]}]}],
"]"}], "\[IndentingNewLine]",
RowBox[{"LogLinearPlot", "[",
RowBox[{
RowBox[{"{",
RowBox[{"20", "*",
RowBox[{"Log10", "[",
RowBox[{
RowBox[{"Abs", "[",
RowBox[{"H2", "[",
RowBox[{"Exp", "[",
RowBox[{"\[ImaginaryI]", " ", "2", "\[Pi]", " ", "f"}], "]"}],
"]"}], "]"}], "*",
RowBox[{"Gzoh", "[",
RowBox[{"2", "\[Pi]", " ", "f"}], "]"}]}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"f", ",", "0.001", ",", "0.5"}], "}"}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Monochrome\>\""}], ",",
RowBox[{"Ticks", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
"0.01", ",", "0.02", ",", "0.05", ",", "0.1", ",", "0.2", ",", "0.5"}],
"}"}], ",", " ", "Automatic"}], "}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0.01", ",",
RowBox[{"0.5", "+", "0.00001"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "3.1"}], ",",
RowBox[{"-", "2.9"}]}], "}"}]}], "}"}]}], ",",
RowBox[{"GridLines", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
"0.01", ",", "0.02", ",", "0.03", ",", "0.04", ",", "0.05", ",", "0.1",
",", "0.2", ",", "0.3", ",", "0.4", ",", "0.5"}], "}"}], ",", " ",
"Automatic"}], "}"}]}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"Style", "[",
RowBox[{"\"\<f/fs\>\"", ",",
RowBox[{"FontFamily", "\[Rule]", "\"\<Cambria Math\>\""}], ",",
RowBox[{"FontSlant", "\[Rule]", "Italic"}], ",",
RowBox[{"FontSize", "\[Rule]", "12"}]}], "]"}], ",",
RowBox[{"Style", "[",
RowBox[{
"\"\<\:589e\:76ca\!\(\*StyleBox[\"(\",FontFamily->\"Times\",FontWeight-\
>\"Bold\"]\)\!\(\*StyleBox[\"dB\",FontFamily->\"Times\",FontWeight->\"Bold\"]\
\)\!\(\*StyleBox[\")\",FontFamily->\"Times\",FontWeight->\"Bold\"]\)\>\"",
",",
RowBox[{"FontFamily", "\[Rule]", "\"\<Cambria Math\>\""}], ",",
RowBox[{"FontSize", "\[Rule]", "12"}]}], "]"}]}], "}"}]}], ",",
RowBox[{"AxesOrigin", "\[Rule]",
RowBox[{"{",
RowBox[{"0.01", ",", "0"}], "}"}]}]}], "]"}], "\[IndentingNewLine]",
RowBox[{"H1", "[",
RowBox[{"Exp", "[",
RowBox[{"\[ImaginaryI]", " ", "\[Pi]"}], "]"}],
"]"}], "\[IndentingNewLine]",
RowBox[{"H2", "[",
RowBox[{"Exp", "[",
RowBox[{"\[ImaginaryI]", " ", "\[Pi]"}], "]"}], "]"}]}], "Input",
CellChangeTimes->CompressedData["
1:eJxTTMoPSmViYGAQB2IQvfxHg6YB9xtHmTgLMxC95ye/NYi+u+wMmGZ4NMcR
RF9wd/AC0W6zPfxAtMb13Ykg2vTC12KwvqdR9SD62eT6VhBdpLQNTIcfbOoB
0VwlE8D0K/2SCSDa8dMCMK2Q+2IKiO5r+TADRMttN1oAtlfSaAOIVmf7swVE
8/TZ7gTRU/xWvQXRETJFP0G0C+vNBEMgXdHgXACi3/3h7QDRR+5XdYForWNf
JoFo65AfU0D0rUXHZ4LonX+/gGkDiz0LQHTJP+M1INrLpGkDiPbh6QXTXbZl
e0C0U+2rI2B1kqwnQbSewQ4wXct6RrUPSNesydAE0Q0lTwxANM+aZ2A6rnKu
FYiWYPsBpgH3ap/e
"],ExpressionUUID->"92a2b3a8-c78d-43e6-a227-5ad1897cf227"],
Cell[BoxData[
TemplateBox[{GraphicsBox[{{{{}, {},
TagBox[{
Directive[
Opacity[1.],
GrayLevel[0],
CapForm["Butt"],
AbsoluteThickness[1.6],
AbsoluteDashing[{}]],
LineBox[CompressedData["
1:eJwd13c8V+8XAPAPlT0/9mipJA1CUcqMMrIqyaYiKkVokYqUVYpklNDS1yg7
wnPMFolEZGXvvTJ/5/7+4fV+3fu597nPc55zzrPe/oLJaUYajdaAf6j/Y8Kc
DwPjxUD3uqOA8hQzGOxSHoh4LgbSKg50yv8ZO2m9eCYGAzz23JTtA8v+fYwS
g7+NRqyUa+a97YceigHPO7bFveiMlmF5o9tiMF0+2EHZ4+WPOoGTYvAg4Ng7
yjWwJCthJwbpt0eTKO9o3ha0w0YM9knfS6TcLRCgetBCDGIup8RTNr2rnnjl
iBhEv6sKo6zonH71j6YYBKRcuEz5n0y4ePxGMfCcWbWPMpNmygVfCTGQ92hW
pMxvWl58ep0YPA58L09Z1mv2jLS4GNg66Wyl7PDZMiuDTwyOXtIS/f/4bDcZ
lDOKQfBd+5k96OSH2T4DbaLQJsaVSjnvZVVNZYsovBU3fEv5U07vpvdNouAt
EPSScnuzaIX7b1HY1jgRTVlE2kd4qUoUngrfu0vZv/hgGg8RBbP4bBvKNhO/
23c9E4UYp5UclI3c9cX2xYjC4Y9TTJTVpsgRjShRKGNvZ6C8buZ1qcFjUZB6
nDSjRL1vzv21Y4gobC5k6KB8ipHXOcpbFM78y/pA2ZlXZ2zBShQuPBCxpWz+
KH/LCkscH9iaU9bjk7VnNRcF04MJRylvExD6KWAqCvc1+HUoDwl3Ze4wwN8b
ZOykfHHdrSu2KqLgnPObgbKHTO5yyRpRuOz15JkiWimeY2OtuCi4lao8oTxH
tz3UKSoKcp2toZRvTjM9XCkkCifDuP0oBxYcldDiFgV/5o3OlOP0Rg+UL4vA
mWGxXZS/Om4O/NwmAldzxMp3o0MarqX+bhGBtsmxQspGet9reptE4KJqUQ7l
Xzs8xFgbRKC8Tfct5bap4mSdahFQiWANpjzla131tUgEOEp3GFFeF/eYvzJB
BNJ8u2t2ocNZandmxOHz2dZ/pcziSjeMihWBP6YmRZRH1R8EnI4WAUHBqHeU
izruLS0+FIH7a7ODKNtv9urdcUsE7BI3aVB+mWqfH2ojAsppj94ooIWF4hs8
rUSgVu7RM8rBPq3TlhYi8GH73TDK7kaWO7ccx/GdNPahrDV+7HWRgQjQw06b
Uu7epRM6vl8EYkV8GSlvKZA5dVRcBFi+q5nIU/Mb9tnBWhR99OlBynVOdk5n
hEXgkcPQPsp+gmEuXvwioMlycTPltgvTV15yiMA68el5OfQTiYKQyQVhOGK6
kEB51T3dnPBmYVjj9qp3J9rSuiM39o8wOLQ9a6KcruCVn9ggDIk3An9Qtv2b
UpT/SxjeiKt9oJy/l7eis1IYJJ+I3aV8aai+TaFQGLw2BkhQ/mtymu1XrDD4
buozlEX3r+1blfVUGOiy29Qpjw+eY3gcLQxrg2zkKDPedZ89GiEMMBLBT3nj
R9/u2hBheBGj/VuG2s8bEoprvfD6nWhLyoMTLddqzYWBTyDKbAd6Euw9M82E
Qf9y6UHKiyHdruGmwrBptHk3ZS6p4TNHTYTBp6GRn7KM5aJprY4w8Fycq9qO
disVk69VEoaKx0SD8ky42cBPQWFITqsV2UblD5P8mgJ+YRg/Ms1EOZlnXd4b
ujD0qq6c3ErFR3DPvetcwmCV0FlJucLXU3IDkzBM6mXdpJzgFm7nNiUEOwt8
26XR+kY/6nlqheBc076ILejNXApkrloI/CULb1JmrHjyurNKCA4vSJ2lnHPQ
xuPDNyHYPJSnSllCdZhuWyIEiocre6So8W7nMHiXLgTHGZ/IU05gP1R6+CHe
38qTK0mtnyLTQ4sHQtDgsDeB8uqTpVZOIULwL/VwEOXIPLUZvwAhcN6y04ry
fac90vm3hKDqZN/yJvTVT9Kh0m5CsC6IXZ2ykS+nJfMRIZBlu5y2gZrfd9+k
BIyFwIAx5Qnlb40BUxKGQqDx54s3ZW05pgcqekLQXpmjQ1n571KRh6YQqK2w
b5NAS6qObu6UFwK9bw0slBfnaiaAXwgyXyZorUOfW+2V+5IuBDG6nJKUG1U3
+dzjEYK7YaZMlD/4XWYz4hCCC7f8ytdS+41LfH3rCiH40K+jRXlw/WmDxXFB
cLa22LeG+v2hmcQ91YIwtzucWxytczbOZXWVIHxeFzwgRj0vREeBoVIQxuat
PlGOqIkhnz8Lwuuu+zcoG1uq1R0HQUgVWj8giv58IWCF5ztBWBpvzxdBZ0eI
WaeHCEKnTYa6EJVvNq9lzQsShE0DR8Uon8iRyCwKEIT2Fz8mBdEL9VvYqu8I
QjqL6RvKmiJK2SPeghDjG85G+UfMUa7tLoJwqqfwCz+1n+JCCt8YCIJpQ/YW
OnrfzodO7/QFYZTvyBIvlU+LwvlzdAWhOLC0hrJse4xzubYgaPhJXqd8ecN/
gl0qgqDA2P6FB73ydbmLhIwgRF/lteFGr01aXvOMWxAOrhR35EBrbOvISuUU
hIxQRkXKDinl+sAuCPte5zFRTn0Xcq2DWRDkcmNfsaNVMsXqttAE4UDIzr9s
aOsCxZDsUQFYXXPCkBUdW3VhvqpaABSLnJmY0MVGRx79rRIAaQ2pH6uofFi9
e8tEpQCcsUiLoryjdtFU8KsAuARv2ka58HdQumWxAAweCzVYiW7++8apL10A
OA01AhjR4pOt9YzhAsBd/KJ2aRLzzdlUx/6HAuAwqviI8qcOr5nqBwKw646/
IWW3nyJC8UEC8LzQ+Msi+nP6EVNVXwFocozMXUBfcv1Ue91NAMKNXgXPob8O
p1ZPGgmA7aYXc1PoOAdvuyYDASiRHUul7NGiN1aiLwAGoyP2lNd97+UJOyQA
U6pLXyap6ykSRjvVBMBr/mj4BHX9XMT38zICwBIWJzKGvtzn/a2bUwDeG+h1
DqBlq16rjbMLwAmO6jDKvZlVWYusAvBRikWTstnN9XH8TALQrhsQ149WEipz
11jihyz4frwPPXeAY03sMD80Na7P6UZ7xUVfPFbFD+vlM3f/RSv4l3TZVvJD
691vf9rQg2cHzc9944f3vIE3KVspqmj5fuIHBef5z61ole9/RdIIPzS+fHWs
Bb08L1XC8Z4f4n5/tfqDvn08R6A0lB/+SPyR/EU9T/6b76v7/KCqeDenFn2M
p3XMP5gfNrsXHKQs9YXpu849fvjgUe7wE12119S/yocfrFv2Pa9Gi6+Zmm50
4QdSrvevEp3dKfd7TB/HJ2puUE7NX5G29k9dflCSM6oqQwc8M8/MPMQPUW3E
kLKl6e3Qywf4Ifkrq2EpesXn6kOLyvywT1bpYDHaKOliLstWfuiRv7m6ED3g
mhq9lpUfvBhfWWVNUvkpYZKNmR+k649XZaLtOSIMplfyQ8y4pxrlxtfejJU0
fF70zLoMKj7+6Dtfm+WDozVjje/R/2kN7PnVwwfuLOpyyWhnEamGwHI+eK7Q
7pSAft0tJu9ZygeMP/s+xaPbM7hD7Ir5QMRBZxNlc4MZNaVCPviQwdnyHK3r
W57YlcUHZeVPDj5DSw+duqL2ig9i9QXnnqD7IF5o2pcP3s3m1QejWRZGTFfd
5oO7vr+2UpZUVIngv8kHrs06PkHoUymN/PJefLBwY//GQHRLFB/9ojsfTP9W
cbiLrnW7w9F/ig++j4p+vYWGjU4MLVp8wBUVx+GJbrXJURvS5AOm+AxdD/RS
9KqbC+p8cOMw+z13tDJvwpKoCh/kldyhXaLWb7Fx/vhuHI9BWO8FdHKd/nS1
JB+UD10Id0I/uSc7UMbMB7YBK0wt0WfynDYkreKDh7FZZyyo+B5MsAhdwYd1
5cI1c/RvQ4EK82U6/Pg6GW02SfVjc8kj03TYr7z9x1F09KsSF5FuOtTcPMt2
GP2s2HT8XCner5eYvQ/tMvlA2qSYDhqDaonKVHxLfrFXBDp8SSyM3EvNR4Dy
T4Z8OqS3nPJUQq8xXpcZkUGHyXrljQrU/m/t84AEOgz2cuhsRb9Y8PrHd4sO
YY3FqcJo06c8Qqt96ODtqPpAiFqPfS8VJL3pYHb/hYsg9f7r3y4oXaUD//k1
0vzovXMi3ZaudOAJgTBudM1Mds0rOzrAaIksE5o2MZqkqEGH2YuLAeMTeD57
5PdFTY0OKcf0tcbQDnLCPToqdLg2br08gq5wVZWw3EuHyAdfLwyhI0dDIm/K
4fd9iFLvRcsMS9/5IkHHPoQ5sRlt3XfK2mIFHcobzC9/Qhf7dLjvZaCDbB1z
fxl6s6B9kMgyL9SP8VqUokc1bD7Uz/HC9YzdSkXoW09P0I+O88J/So9a8tAv
DQ3K9f/yQrY2W2MKeiBLcYcK4YXkSkefR2gj/ewDqwt4QZAcygtFZ7YrWCzk
8QLjZ/2J+2gvbrl7edm8MGiXbROE5nLa1r47lRfS+RrW+6HlxNdHyDzjhdzG
OB0P9JXbbEvrrvNC1ci4sCn6HasTje0qL4Q+L1h9FN0d+olxwpMX1HZ7rzNB
H3nux1zmxgtbv9asNUDvyF/icXLmhW9TT1dpozunxjekneAF7b/VZ3ehDZ3+
6Kgr8YKm5qUwOtp/dI++9G5eKHFIMeFB51+ONOBT4IX3s4+5udDS/seOdMng
+1c53WZFr3xRZRmwmRd2RdTq0dB5TSUXqgV5wTI08ezQOO5Po+THdlM8IPF7
ubIMraZ12ttlggdask46l6BP7F1z+voYD0R1e68sQgdvDFV4PMQD/W8rduaj
x2cv/fzcxQP6W55cTEcXxivzytbxQK3MlFcs+tjE1+ClbB64vEWwyB3t0uvr
zp7FAwoTU9xu6HvN+yyFM3iABGtaXkDnfUrdKveOB84/XjPkhF739NHX0294
YI9R6Ig1evCAOUvlEx6YntzvcQjtF9HnG3OFB0KVtrqJoA1vh5y64ckDgyWe
UoJoUZedWnbuPMC90eoPHf1e6yrT5os88OPD4G4OdNMkS0C6Iw9ENmaXLo0x
g/wRqftfTHlg26U+xQ50O7dj5IwCD3TbJZ98i06ZZ7vaKMcDDD89Xr9CX+lJ
PVEgi/N3waErHs1FpkV9t/HAuYqU49HovS7+z7g28mD8neEMQj+seJWwiY8H
Fl+vzzuL9qF/OfGmnRsmg88ubEE3lpV1ZbZwg8PezJWS6N1Xi12LG7nB49xO
Vgn0YOvHgOYabog3/8gkijZPSc3lK+GGgJj/frKiFQ6Fi9x8wQ2juXVpvaPY
v3nbNJid4oZej7LTL9CmfVNmbN1cUDP2ppad8o30/K3tXLCFp62LiTLfhXWH
W7gg1cd3nIHy/t6eB3VcUCqwsDgzgn7Y6CnwiQtsitWbOyjvIeHrErlA4e2t
3DzKAfd+7HbmgpXO+76dorxGS8HMgQsuTpWo21DOYIi8as8FPBk7Mk5Qbr5m
k2/OBb5/Y/wNKO88P6yuxwXdfMdHFCk3GHMc3sYF0T+PlbJS3iJ26OQwJ/iV
dVu8HWaG3KSUZ7L9nKCwKz82AS2+Q21isYsTZp81Ncag2+VOx0Y2c4KVVpfK
fbTLvneTlRWcUKd6OssNfcdQM14piRPURAJN96IzPc7OcZ7hhAMK75VLh5iB
Xvwx+cNfDvh2pYdeNIjruW5FZWUzB/DpPWXORZ+8oTvU3sAB+lxzk+/RmXsb
tnPWcEB+3ZPcuEHqe6dT7Yo5wDj6XZ8POurlzjS2FxzgvKGpdR963d03WZan
OKDqYO7M+wFmONQ1/MvVlgN0Ys2n3qBdNXdP+1tyAEvJ7/5YdPFy6e60oxyw
tteoIBh98kp7ziotDtD+47HsiH7ttDovdRMHVOu8GxdHb9cPK6T1sAPD+rlT
N/vxvPHk/Y+idnaY13a64oE+0FHZfruFHfyttG85o82vsTCvqmOHQV7JS0fR
9xK9DVnL2OH3ea+6zeiOlWfaeF+ww8OSa2EVffg9BfsYN9iwg1z1yVec6FUy
3Vpa9Wzw8z8zrnM9GL+WJTKiP9mg/G30JWu0Q0CcyMh3NgivMaswQpd3mA9F
lrOBGm2D2S60f2RV+GAWG7i/ba1f7GYGJsbcjrBwNmAnnheCKf8KutVuzAYj
hY55z7vQ13cW+FSwAjkp9OhpB55vfEtcn35mBbdTj1KD0WPBxyRzS1lBupdW
6IVuir36YDyfFUrSnmRZotOLi+xOp7BCfX85kzjams2ESe8+K5QeYZSObMf+
IcrNUNCIFWhM3/b6/8Xxf8j4m/yTBesyY7FiK+a7VLF7HlUskMTqmSOBFnrl
u0PlGwvcEdodw4n+/PDI9apiFhC44r69owXz89kJ/vE0Fnhf0nQ9BD20Wv6Q
YigLHI9h+dDSjOdJ3/TUIn0WWGignb/UhP2tQdr1ujKsWw9W9ZxswPq/7vtg
dxEzOBkbtumhC8f7rWYKsI7cPvFZHj0XsVFNOBu9KfrUCrRb65OV5q+ZgefW
vsr438xgd/FGSLM/5iHjPPM/9ZjvH+k97zyI54SakoPqddhP/eoqHv/CBFvZ
VmfW12B/UU6fW/lzFQQxt5Pj37Ce8Hx8zfdpJXRLmD3hL2aGMt1omkDlCmDx
UzyV8gHPby2TVfRCRmhLlV+2TMX439jzcE0eI0yuZU5SRDs5NxyRzmaEm8IV
DnR06HRBvXoqIzAwBHB/TsH+h+tu68VYRuC+dFtGAX1VFcPlBiNc6e2a5U7G
/B23nytIlRHs7h/V/f2WGUq7ZX5EKDOCcnJkYha6fpvEowRFRhiPrJYIQy99
YBLMk2GEk9Gfzhmg9aurVvetZYTDcmftyxPxfMNgv/0gjRHYWsPk89/gefSk
v/6KIgage5Bbxa+w3wtU6pYoYABaUlnFS3Roer+PRi4D9umGanfRNEbDjFtp
DKChkpugj26LExKlJTDA46Rou4aXuF4tiT0LtxmgmfvhjvkXeH5isrgl7sMA
hu3pSm1onh2cYvuuM8C9TQVuZeib3q4G1y8xQNd7tyuhaDvxvVn/TjLAJ+XK
eim0hPm329MHGEAm9IfJyQSsF7e8xQXVGeDZ9dOP9dCP3spk79rPAKETSdwK
aMZ/YX3uu/B7IvRSVqE7nlgaTWxiAKXY39FJ8dgv/RpaPcrEAHY1Uu8Z0ZaL
z3O4VzCA/wvZ/4bjmIF/k4mxzDINyqMZOhvRfu7Zfi4zNMhn5BTJRJ/i8xkY
7KEB28iuJ07oTcY8uX2fabD5y/vjf59jfDlEHsgqpcGjK0J7fqAtr6/7cRNo
kKV1/AJBP3ol2yP0gQaft7I3x6KX/hkJaL+hwdL9zio7tAh3QxzvCxq0MWY6
H0ErbLTb1hxLg8KKVBsttLOBq6Z7BA0Um7+bS6PrEh66JtyhwQZ9g8TZWNz/
OSKL52/RIFSSa/MQmqMy/t4ebxqkjWuvakdrzKQ9/+FOg3pS3l6BtuLYu/Xp
RRr0V1l3FKOvrC/OdjxHg4VOXu1cdKpeTeXSSRqErTyj8Ab9xdb8xFcbGogm
nSiKRXd6tHc+tqDBKd8VGRHo5UDni3bHadDQz872AC0aNz6/7QjeXyv86S56
V9a1u7MGNNAsquq/iTb6yshXqkuDxoJfHtfQ/pN0aQsNGnx4Zlvqgo5njcmS
VKHBPPf2ACd0/poN6uN7aNCUUJ9zCl0vn1RRsIsG0pmMxrbo8UPyZgE7aaC6
yuiYJZrT+mPH0e008M+0LTNDS13SvLBuCw16d/+KP4bWvPdtbmAjDaqNDg+Y
oK2fHfHPWUeDTO4zCUboq+l/eH3FaRBeXPLJAB3+6eQzA2Ea3J1YtDiMftc0
ICXKTwMZ2wwbffTXsUuZXdw0+Dbu81MP3cW0oJrGjvOft5RDmSbu982LmQaC
XV84qfvFd3IcP7SCBu5Z135RdgmWKtu8tEwWvd9yU+97ma3UVDi1TPgih/IN
0Y1thyaODS0TdcvmZmM0D/sJtqHOZXJXlOvSUbT2Lqf1fk3LxI3O730c7WVz
VUmsdpn0O99eMEenBwQYpn9bJpLSA2PW6N6MKAedkmVybnur1Un0mpa33m15
yyRt3bDaGfRRlrzwy+nLZI3n65jz6EC5r0lc/y2TRKvHLpfQYNlY/Cp+mezL
1867ip7272/YF7VM9m/Q8qHWd1va3OjP0GVy45NIIbX+9n/YWM7eWyZmV/Qv
U/FRJbN1d9RlfD5Hp3kcOpT3VTu5sEy0azq7EtEmE2sedDsuEyNP9eY0dG02
vVfebJn8qU2ll6EfRwaHmxstk0e5wcZVaNNrTOq3Di2T8WLbpQb07/1zUd+V
lgn/5csvRtFRa921p2SXCUO719MFtDnD8LjYlmVytWNxJSvup6bSv3pOIjje
6t5NG9Btel8WV8wtkSA+vTRLdPx2zf+kx5dIRPRa2XNoe+4CU+P+JWLRp7De
C91Z8/5dbOMScbZ0sHiG7j0Rabfn4xKR2XNKqQv9VpnOZZuxRDaNfjGepfbz
6uA8/6Qlcm3+Wys75pPBNh++2pglsm35nbkCeszRsczFa4l8XP5VE4hO1/nr
+th9iWxJZ42MR7tvtViTf26J3Lb5+PMDenrY4DKr1RJpDrd714ue89i95eX+
JSK1Km/hMOa7j8ff//q6a4kwSgxdO4P22iN9e2w7vv/h5EVf9NLC6j8qa5bI
KdWl0jw0o9+qkIalRRLr0sotg/m05LTPHtrMIlmZmWh4GO138F+X5MgiWSpZ
Yj6HZmIfUnFvXSSjjtfa/0OzPaod5YJFwjEto7oD8zlf3IujB24tksj0bw/1
sF5EW37pLL6ySFiSk++6o9eJjLirX1wkLr/V2WLROx7tfaxis0gu2n/MHEfr
+lX/Utq/SN7MK0cmYP25fWbZdPu/BZLIr3ZEHOsZ66ZNPUmjC+TG59axw+jQ
v7qXpXsXSA28FbqJjjWPeLK5foFwqkZNd6Hz9Lf/Xp+1QF45x43lYH0ck7U4
Iei6QCpTc7Tc/8N8OHSzL/zMAhm5L8SWil56+/oqn+0CKZ3ar9uL5tgwHsVj
uECunxXfa52E+UUgoJFt+wKxNFfPN8T6bfsv22K5d55oiQyYHML6X1VEt+61
nSczSYFu/ulYL9U/PLtvNk/6OlgYK9AXi6yaFYzmibf65WbeDNzfRYmWt1Tn
ScXPlIuxaCNQsRBdM08UrhytyctkhppCZzP9P3PEO/l0xhL2QXUfi03eH5sj
8WUr7iR8xP5Y+cwj08NzJJwnRHsI7fmRs2bhwBypY3VmUsrH/u2jmbGOwhyR
/1flXok2yxs2bKfPkQHGugyqz2r8IHqY/8c/cvOZQa02MENzltvBK7r/iHLj
CsXsUmZQGrolnqrxj2RW7r46hQ7f+HCsY+8/optbaqKAfZxu2LsYw63/yGaN
mIL36OyLgyOSHP/I1hUCHC/LcX22OkT+qpwl86Ly6q6fmWHA3uM8e/ksaZW5
tjcRrR3tp6FeOEvqHLfdb0EvsrwYTE6dJb6e9xR0vuD+6W5V83swS7zNbrAK
fsX+Pv5En5zxLFkZNbg2EPu357/PFJ7RmSXlGlafM9Fz3FfCYtVniZR4k38L
Ou1GxH42uVky4r5SQaYC1zP7FV1NepaE/4kVMUWfGcrs8ZCYJZuvblnhhV5j
+fPhX/os0Zx5X1WKvhrW7iDEPkum/7v4tgdd+3VM+fCKWdJ3/bU7ayUzBO3h
6f4wMUM6jEmFDrr74tqPwwMzREVQ2egMWiNxR+jGzhkiXWidfgc9K3h4b2jt
DIm+Gr2cjz5iYMldXjFDytM3/a1Dp9452zlfOkOMnVXvj6DZCq7l7iyYIRIp
gozM35nh9GTAfccsfN+zOsXVaNgadfJZygxxjXstLYcWP5mo9PPVDHnq/98v
LXRNdXm7SsQMifKuUHNCb2ety3G/P0M2zq6fuYK+p9YV/J//DGkOFDW5i+64
PGnXdmOG/Bj9qh+OVnm3QlHw8gzh99Rqf46O6qZz6F+YIZe2RXP+h55cLfH3
luMM4Vpf/yUdbXRsZ3aOzQwJDGOh56GTgtWCho7PEKEde/4SdEXsvOZ1wxni
lkG7UYoefp+9wHJwhvRXWx35hOYucc2KUJkhh4b/mX9Gy/7a5rJx9wxpC/O+
T1037umRTN8+Q1JrQnuo37v9S2hV3TRDKp7/sQF0GLt1ZKX4DGlUZBrLRWeu
FjG24J8hJb654WnoXzK1rH3sOD8+zw+8QU+rPyj2XDFD5l+cnItGCx3Vvb5y
fpooGme8C0YrOaxSeDQ+TeT3q1h7oU9cgcG1/dPEqiN7mZrPa4HXX6X8nSZa
MzUhx9AxT3dbKzdME+kGPUZVdH7qmOCXH9NEk7PVVBLdDMlVpp+niUaWwR12
9FKN471OMk2OcdjfHcb1Xtsloe6WM02+dnWZVqHVZpr/LadOk8HtKUMpaDvW
qPSQ19Pk2vmHWoHo22JHz4rFTpNOw0tmp9Blql+bdodMk8P3GyJ4qXg0vvO4
1G+a5H8+mN2J8ctySs3AxGuaqN26dyULrXsvm5w/O02KJQorDdFno12vzNtP
k997Bo+KoIOTt+0MMJ8mMja2jm24n77/SEh4qTNNKo7wCDmiR9qtLOTU8f7W
nkRJNM+UMD8oTZPe/SrvOnC/mog8uPNn8zTZukZlhSn60lZdFae10yT+wZwW
Ozp8/6qZacFpkkq36inA/V5vd/0MnWmanHCekRVDz17avT5ucYo0uVd9L8P8
IOo/1rB9aooEejzIPo+2/M9RT6dzirAJdBlmfcJ6Pn5kx83iKbKD78GGDZh/
GFZx93DmTRH9z6UBOZifJIS+Po9JmyKQ68Gvgz6lrMabEzdFPjBd8j+J+a3X
d9vk0I0pInFH/7wHngdZI3qSr3tOkSkvwbvjeE6VTkw4zeoyRcw25rw+hz5X
IVy/0WqKXJEP7T+O+XOMf1WehfIUaQFRObZCrEctW1iuyk8Re2WBoKuYb3UT
DUwjtk6R52pJSt2YjxOUI8d/iE2R1+lcQTmYv03st27VXpgktlM/u/bkYj/w
zvipbMEkkeNRz8jH+mB91bP/cNYk+XU9qIGGZtOMUTqbMkkuy6TqamB9sa/r
rH31bJIMbEzlKXiP9XjxMqfYjUmy3VRb/xGeP911Y2+sUp0kvy+0bS3Ac/Q6
/pIKCcVJcoi5t6wO621Fc4+omswkoZ179H0I6/FG150519ZOkpE4p338WN9r
n5SOjCxPkOp2EQ5N7G92dfXbNsIEsZ6tO7X9Ce4nH0XNdxoTRJb7waGzd7Df
4WhSm9w7QQrdD1Zr+THD36ibKnvkJ4hUjEvPGl98X8aXPSUbJohkiNBYxU3s
v3osZOtXTpCCQg8GUS883xreXL1cPk7KZSQf3HHD+VrzZcZAb5ycXlFotcGG
GSKTzk+FaY6TiPiZxFErZghRok/8Vh4nqx72DRdaYn03sRi23zZOlA1m66zN
meGw/1CnJ+c42W9oJfXuGMbXEG9NbNUYSRfn5krWx3x0Lbuq49MY+bXKpChC
D/Mhs0WlFIyRnh8hln66GP/rX35Ofz9GHBwiGs4cYoYXx3aT8odj5Lup5JT5
ARxPe2M+e+AYOXzg/ICtJjPcv+CTZ3R7jCQbHZp21sDxBHzOanQbI2NZrgNB
asxgUGCePHxkjNxMVmxftZ/qb5JCgvTGyNnOlp1r9zFDafC8i5QmPv+ic4eK
MjMoWz7daS83Rkq3Tx19tAfnu2SQvrxljIg7RwaVK2G8bN0/GbN+jORJneVl
REvNN2f/4hkjLUtjDKG78Xvsd0S6sYwR4/PP+9t3YXx+vXGVmzZGGGlua1TQ
5nJV5skzo6RmKL8lXoEZBKLX7tMZGSVzF8vOc6F/MFxc3d09SvJkS7n85DE/
OMHS7ZZRQn/dvWoF+mA1T9vaulEydc0oMkgO+8s9dkX5laPkd6c4xxp0QVxa
womyUSL9zyYxbyfOBwuj33T+KGlc2Jxlh1a4aHI6LHOUdKfcuM6HHqlP0JZN
HiWyd521fsgyw3+qE5srX4wS76URq0i0wxtNVueYUaKVT+c9h17PHd7PFDZK
AivrkvTQTZ6d314EjpK9VepeiugnLQopardHiQafZbUM2kT7zv3mq6OkrnDn
vAKaK/XXhWuuo+RO+0/dg+gvApLGQk6jZCbwBN0R7eftKZdpO0qmv7a9DEer
dZXzGZuNktDCB6bU+Ob1haaGDEcJ8X/sJYrjz850rAs8iM/fv/X8JbSr+Iec
zaqjJKQz3OcPepsfS1Tp7lFy86AExxGcn94Bs2t2O0ZJeZPMuUb0iyNvLZY2
jRKG6M1zrji/1h//7YtZPUr4im/xiuJ6iG7QXaMkMEpcksq4fqJ/BUYv13KM
ElHvQMNnuJ6h4/1tritHSUznZbmruP4RmZ5+q2dHyLNibSFHRTw/+wkdPN4z
QlSqiqwdMV78jnxgfVg3QnJ3lTtfw/iakzhR8bVshGzcfCA2bi/2r+P/7q/M
GiEmp1StGjEeu4uijVVejpCXhVUcUhi/P22b6tJuj5BhSc96Gsa3rqx31IDr
CJmX2VgcrI79yvJqy012I8SfI3LfDtwfybE2fyNVR0iC0lhQhjbmZxfay5od
I6Q1cM2eSNxfUfvjHTjWjJANUgmS4bj//JvaB3wWhsnLLYo+Pw2YYSHJNzV3
YJjYZBz8JmSM9eX6RteJxmHCMJEs4nEE+3NRh2mH3GHiE+cW5GXGDHvN+mgG
nsNk5GZr/LeTzFAeYTX82mGYZMvf7E11wH7sV/WfZdNh4ij7fWuSE+Z3k7zs
NMVhUuCZqjx6AfeLftA5gX9DJGiBnpXjjfUgaPmES98QMZob4Ha5xQw5Xy4d
/NQwRHKM5F6oYf77oW0pcTVviKitt1m3LwTrkfr2303Xh0jcx082kXg+ve8T
X7br3BCJCO+134f5VbRQIOO+5RCRfsnGRcPzipzyUojafnxegsqG3jSsV7uq
NF8uDZIf/z51HcR6N3pJc+fi8CC5/KKUTGG99k7PWWPaOkjaeLs6ymtwvWXi
/mEWJtJftftrW5jh8xbXd2dvDRIT9QLFlFk8/5/pelrqOkjU3RJf3V7G/Pz6
ROBq+0FSMBEl68PEAnMbNE5XaQwS1hWL4SP8LLBtDZ+Y/MpBckyw1PejPAt8
sLzLEjw5QGZiS6BemQW0YuanOjsHyJlgDvG1B1jAWrjzR0TZAGlj01TeeYwF
QulZ/nP+A2Q1C2uC61UWEDfe4n7k8gBZuaRnMnWbBd4+eGaX7IjXB/wOJwaz
QDGH/z7rQwOEN8DkYGwcC0wyHR8vYh0g4ZE5Fg1fWeD4/KxVQHA/WXB5Esi0
hRWkrEK0eK73E/vi3rcqiqwwW7h++xOnfvLvmkhpvhYrRN7WXXip3U/ilt/Q
759khd+sT6OB1k/yZzlPxiSwQuJZ2dsHR/pIbXd4rEgGK1ypLHX63txH1qZN
7OksYQWRh0NKTXl9ZGND6Xe7blYwF1atn3HvIwWmtloCMmwgfe1n4Y2TfcRI
fIURpwYbzP1xfL3KpI9cqVbXMjvGBjHPQz34ZPrIuMzP/f1ebNAk2Y7sJSuk
qp8L/GAD6113jByseknNltN/D9xlhx1PRJSG9HpJ/8/1DlXP2WFpNmWt+95e
0jDnsiPvAzs8z68bviXUS94wZndmDLBDm6ZUyLPqHmIOxXaGphxgb/LtS61W
D7HvKBn8q8IJcpk2aRYKPST0xjPuX1acwCg4Gdku0UMq6sYrd3lzwosG8TOj
y92kvJ7dUbOAEzptXZg48roJl8j30VcaXJBZzDj8KLGbrGV4/lv8NBf4bXzy
S+RJN0nbP97KfI8LNvWSl5vdu8kOnje39ldxwbTO0eBU+24i5yGXGTDBBeVJ
vZd2GXeTYt+buw8Lc0MEp7dFvmo3uVBgW3NvPzc4XODV1NzRTba5JxrtP8kN
/wPmPGd8
"]]}, Annotation[#, "Charting`Private`Tag$2893#1"]& ],
TagBox[{
Directive[
Opacity[1.],
GrayLevel[0],
CapForm["Butt"],
AbsoluteThickness[1.6],
AbsoluteDashing[{6, 2}]],
LineBox[CompressedData["
1:eJwVV3c8Fe7359qbi8u9MkJm2UmUjGRmlgoJRVQfUZKGsjMLCRWSkG/JHiXu
OWRVZCsqZWSF7D1+fv88z+v9Oud11vO8zjnvnS6XrV0JNDQ0J7aP/79nBDni
Ip8LoWFD8bf/LU5Szfdq/U18JoRXXK2rFninqK+sPAxepAphE0fHEUflKapL
ZN3K+8dC2JjT9jb00hS1fc3fZTJOCHHCWFF5aIpa3DelahkkhN6XH97g7flH
vZbZ2s1/VgiPznOujE1MU9txU0ncWQjvZSZe8t2Ypir83B2lcEYIrZ11OHk5
Z6jD/BGHDO2F8GzpGSF/xRmq7T3dHD8bIawyOS5EujpD3Xeh6MZ3fSHsdLL4
4bExQ11RTNjxXFII98p/3mAXnaMy6r+5HCwuhNw8PTesVeeofLb1Na5iQjid
lHj1jeEcVen2srvcDiHMNhbTyvSao7o1OpQW8wphunFGWtKHOWq70y7zeoIQ
LuesSL36b56aG1d29+9vCkooGY5KdSxQKzJb2pv7KDh6L0jUZHyB2lA+uqvg
BwUHZpX7QmkXqQM/KU0+3yhY6qRnZ6i0SCXL3RXcbKHgckad/ML9RWpYjWEh
N1Cw7ObmPV6rJeqZuW8De1MpODe9939CY8tUSx8zoQNPKWju+933A+0KVWcB
bPQeU7CgvfB1MGWFKraUXWv+iIJsgkmvj5qtUAdWfbLPx1CQ8dHFPNbCFeo5
As+Fx/4UZLj3xFn77ir1Ao/xzPppCp78jRnaiutUu/hKWToHCr56Y7kpYbpO
NeVVcmGxo6BVMt+i5Pl16m5+gQ5+Wwrm3S6TvvlsnTop+KdEwZyCf62OJvnw
bFC9xAL9nLQpeMWxVKxmdYN6TfHd1gcRCgbtrroQMbhF1XjOLtm5g4Iie0sM
D9LSwCrRyWiIQsHz/us/arlpIGCRMY5egIJiYZ0mtEo0EFl1TNyAi4KiAu1f
lC7TQLrp9OH6LTKeFB0LvD5NA5/OS0c2/iZjf2zfMOcWLcT03Mz71kfG6dws
uVBuAliafmkf/UFGXpeFM+ziBOhSuCbE0kNGv9u0/UcNCPB7oSbXuI2MpQK7
OJ5FE2Ah2LHlUzUZ28pra8NF6EAs/RFfcwYZGU6ndMxa0EMCc6dycToZLZd8
R4650gOzN9HicRoZS7LX/Jtv0sO07oMI1ydkjFoaiSNk00P1YPjmRhwZ45mn
Zu9s0IOL9O1RhUAyusj79HYVMEBmnktl7Bky1sSdSXktywSCAs97fE9v2ws4
3s+hxwTRd38tOtiTUWUtsy3Cjgl8LB2UZU+QUWYhUqwligkMZo9nV5uTcf02
z9X4f0wwvNc4dvYgGT169aX5KplBtkrx3LEdZITV/XWfPVgh4GGjmyOFjIQj
3fzUYFbo9nD2cBcko5qu2+DHVFYIIT30vM1Hxvu92acU2lnh9+VFv0x2Mgbx
51/bc4ANksSrYubXBXH/FY6vFH52YAg3KU/4KYgk2StfL3znAAfHwXdp3wWR
Ze2cKixzQJHa7cqcHkH0imI9o0TiBKf+N9WVXYJ4OL8s0cOKEyo1eZqGmgVx
jEh8qfmRE65Ofv2tRhVE3n3rGV5ULui3dmXtShPEc88GTm7+4oZx0TGG0hRB
jM3JZ16c4YbZiUu0j54I4iXTjR4aeh4g3PNZPpYoiAze2SqWMjwg+T54uDNG
EI+0/Vz76s0DbhIZNZ23BdHi95pqGjMRJub6bnbaCaL1JTfuFANemEcX35KT
gtjYES24044XNmKGvRNsBdEz7evKe09e4JSZcj9mLYi+UQxZqsm8oOiwYdtp
LIi1r2QV90zwwpVaIdVODUGk6VabOZ3MB0sJJ/92kATR7kqipwuBBO3Wle1V
fIIoTqpfPUsmQS63WMVLoiAyZ2s+9FcigUv0SPgtTkHMEsg6uuJIgqZgXykJ
RkHUbIQ8/ioSZFxJcL6yIIDq5Wdzl/0FwMyy9St3pwC6GlTe28lLBmlONVht
E0Dx906nT+whA6EpKXuoRQBzxyuScwzJUG545trbzwLYF2BQnHqbDOKHpohO
HwSQkvs3vWuEDEt72M3ziwSw0zSWPfEDBTLYjGqPxgmg2m3/jd1xO8BpH2Oc
/QMBlH4TkMr4ZgcIn6097REjgKqvNM6tNe6A5AqdpZAIAbSaKG9RpxWG+x77
5SoDBXDXTDzr8hVhuNEgFyt3Zdve6dHq9/YiYBnM4cBkI4D5HLezQneKAWf+
Zxl+KwGEL3phh5TF4HNvxIK4hQBGdwy8Z9YVgyMqjA+0Tbf9TQY5f3QSA63+
zepr+gKocMb9AMNzMZA6NC09pCqAl77vjfeR3Akbq+1zyCeAe+cv/3m2Txwu
Cd9+l0kUwDOjO1oGTMSh99Cuu+HcAvhr1Zqk6SgOb0Ous1qyC6AfbSKvVKg4
+HDu2PmLTgDdby3LLnaIw8ROV/ONWRKyBd8nRV6TgF6jpZz9bSTsDk2zEvso
CcYX0z2FW0hoHnD2IuWXJLyNMVajbSbhcOT7avkFSUhsfwqNjSQ8c/5eWMLO
XWDloNN9Akn4tuW3VOCtXdB4OYLON5+Ev/I5m36oSkFZopBjUQxp+71Kgm3K
pYFZWpSlIoqEi7Gm195/kYZT5eIl1REk5BQKDtAclob1r7KsbaEk3M1LOXSH
Xwb0yRpl//xJ+KTh02+RazLQ+vQY5x5PEv5TThbr0ZCF8fQY6ktzEj5N4i3q
aZeDA8pxHvlmJLwXwFBrPSkHMdUJfOUmJNx37friHyZ5UBp4eqH+CAmLREiS
9gfl4brEK9IfbRKmCYTcDP6fPNBn13uKK5KQmGIlPxi2G0Rfb4mkcpHQgJRb
m2KrAHq7B0vzOEj4PNesdvGqAri9qTdDNhIy/Y6T/S9OAfLyY24OMpFQ0ZDx
YX6TAmiXCHXL0mzXN/3qWMxhRXCs2hdTNs2//T+bU4d2KEFay+W1ljZ+LPzk
9l+QsDLUWNrE97fwY3pG/n88Csow3KYuO9fMj3uPil4t0FYGhc4NW9InflQo
Cfos4qQM1G9RRQ41/Ojzi9Gd+kIZfva/9Bgr4kd+8h1FAQUV2DH/6yshgR9f
1XVIPbdQhdmLeefH4/jRhGPj3MhZVWgYvL3U9oAfozxOTuj5qcKVDrLA8yh+
bJ0QU9J8rgqNRTa2h4L50Y8+nG73vCpc9W7ovHWFHyfrTg8ppanBp6m8tnlL
fvQsdBk7R6cO6W7+zj/M+fEqad0zkKIO1/pMZz6Y8eMG1VyjTFkdxL6Mcj80
4sezp8TW3Z225W/ELZV1+HFY2kVwkbotv5T45T9FfsxpYL9dF7APro/5fx7m
4MdMWYbLCwL7QaklW2eWjR9F6IuLIpT2w2hJS+kGCz+6u5SwqBvvh5MBO9P5
GPnR+pqQ5deb+0FDoM5Hb5MPtUoDv2n/2g+rh9lF0qb4sKa2c74sVxNupz/x
Ot7Ch9fPjams2B0AtbAPf5ya+TC+X9ERfA/AxMUJu0uf+XD85WxVevwBOL1P
2yC4gQ/3yaWFln46ANpf+smFwIc+/6Sk5A4chK01mQ/sBXzopVV/74SkNgSd
KOevjeXD9P5fafoMOjCh+jk46z4fBu+abj1C0oHj3L9mwqL5UOrwCK+DtA7I
fGT8YhzOh1N6DuQqYx1o0bQNa7nLh+3GyTr2D3Rgh8jCYq8nHy5xSKqTRXSh
bEjl24wZHxp6VDXKmuiBWPWRIx0m2/7UfXofndaDiFS7khIjPmQLkY0meeuB
g21Q7PXDfLilry9tm6wHdI1tRhtafLhHfv/L1hE9sHzt9Y5Zng/P2HP51Efq
w1/vvCeiLHz4zSzq4on+w9v9KWOelYkPI9WuvxdaOgwu7Inmi/R8uCbhWrnI
bgC92f6EZho+DH+8oTijYQCfvptduLnMi/Z5j2+uxhnAK4O/+7tGeHHn3lsd
V42OwAWyTE9kPS+WsH+OLGgwhOxhIVXfWl7MZn1YefO3IQwUc8U41/DioU+S
9Y4rhmBnvqSjQeXd3ndDm3zkjcAkuD7nTykvzn2PfPY91gjkJs/56WTxoueL
jrBcJ2MYw+cCi8G8qHklOE2c3xSY1//ZMgTx4nDtiz2+iqYgtU87kS+AF+8F
Gh4bNDaFc296+VRv86KSQOln1rum0PeYl+jlw4uRG5U748ZNofNKKPv4OV6c
+lWTH1dvBijpQdtnwIv8ku3Z5Ifm8OtMuc6kPi8+/8h2oL3AHDafMASs6/Ki
dlly6csv5qDFk7FJ0ebFCoJ4/f9YLaBso3fthPp2fKWivhwhFpDbbbbYJsWL
D79LCKlrW0JSuNLfOiZeVG8+JyCvZwXuFR4Srxl4MbN+H4vjMSvQmMiwj6Xj
xegDtLsz3azgmwV/k90WETkkA49fiLLa3sdWc/8tEpH6W8bnd5cVPMn64Eke
JuK5i2uMYZ7WkFpjO3uploivKuJMzfJtwHP+gZx1DREvrFQf4Ky1AW2pjy77
kIj94jk8w99soC9Cq4O2koh3DjJ8+Eo4BiJWYiWJxUTU7XBprTtxDNJ/jV3D
DCJO8a8Y9zMchxfrt1d4A4nIumERh1dtwTaFW0D4LhFTgrsJPRG2wHwgU03K
n4ijOmKqTOm24Hnr82WNG0Q8mvJmV1aTLWiukocdvIm4bCCRPyZ1AtqXytqz
nIk4bnTSP+fXCaCZm369T4+I4Wa0XU9cTkFxfMhHHR0iGv3b2J946xS4qQiO
GGsTMc6Lae+rhFPQ5H1I3EGTiPkHJcx3NJyC5OmY5AAVIrq8niyX32MHilNy
oR/FiehkUsLHsWkHjmPnHO3piPhxZfxMdLED1Nwd9NGkJaJBt02nTLsDSJNc
oshbPFgQsjz1Z9oBpvXOvP26yoOm6eczahROQ2DKKeKxWR7k7N3dy5J7GjIt
zOvN+nnw1dWez1O5jvC3dJ+CNvDgQlK8ZeQ5J7A0KzssXMWDY2e9RRh9naBk
QM1+vYIHPw0pxifcc4LbXCrhFWU8+OjAbMXYKyfg9Ng9oJ7Hg8+EavSvzzqB
yo6diYqpPJidKsCmHOoMfkGsm2K3eFAwKhyL3rlAPosHDesNHnQrZNtr3uwC
w7ENhDlfHtQ9kae8+dsFbJ6FMNVd2Y4/6QI5hfksKFRucntc4MFII0dC+8mz
MLQwK1F4igf/lNsF7d84CxYe3411NXhwp/bI0URbVwib3m8mp86DYvcZlKcu
uULl9WRzXjUetNdruXE62BXkwo7b/FHkwdHUwLSgAlegf9HiECHNg8eWO0bH
2Nyg4seHy20kHvRPcb+p1+AGUpa5j5wXuLH1zpWeVkt30DFw9fec40aTE0oY
6+4OpzRFXG/NcKOURHHP+QB3iJaMVXs0yY3qNbVb9gXuMLt8taPxDzcqdIsm
O/J4APW5Fo9SNzfGbjTp93/1gONzn6I3y7jRVi05Lvj6RfAcDfZhK+XG9Ds0
V0/EX4TwnwccBIu5kc5vPdzgzUWoaMiTV8nnRvdIpXdegxdBLCX+k+tLbnwa
fX+DweoSTBy2Y25O4kYH8be0+sr/QUjiWPBTP+7teWLx+gPjZbAIijl3x5cb
G58bmadLXwaKp7KBsw836u86ic+MLkOBwQ1GaS9unIhwzWKKugw/5pkjis5v
59deUQPMXqBqI3P/oy03+rD+OZkc7wUDXOeTl9S4sc7csu9YiTe8WWO90avC
jZ5Rqs78Dd7gN5J3qkqJG/0zZarHeryBExYpwbu5sYU15tKXLW/Q9AxL5ZTk
RjVJhtoIsysQ15SVsYuXG02LXWy/j12Bu8SPp14OcOH3N1xdoWo+0FtX96ek
jwtNskbtA4x8QP1GjXdNLxdyyYRk3nfwgYlf7yN+tnNh2lHdj8MhPmD3Ju8d
7wcuZFNpDL/X7QNqRgnkgBdc2PtY2inF/xqM+5/pOXmOC12OK8W/+O4LR5Qd
XN2cuLCwNDv/4KwvPB86OXPVgQuL1/dITzFfh5Om1iwPjnEhdWnhdrz6dagT
NNhfd5gLHxwcVf0bfx3Si+UeK+/iwv/Y9qVMW/iB7djCSdZhTkwRTfWY+n4D
bO8UVcoPcOK5FoHIrfltzHtZ7GgfJw5M0i/LcN4E24OjIw+6OVHN4iGlTmcb
x/X68jdwYpkNN9+ul9t4PySI5XDib1/jmWS/W2AbEd6qfoETBdsq1zYU/MFW
xEDtpBsnjkltahmZbuNi2uQbLpxYvHNi7M35bfzz5plKO04s4rJc+Zy+jZX/
m9I15cRj7727jvPdAdseK/ajuzkxw2/L+i3NXbCVFTI6O8WBRSn7VajXA+Dd
6zepSuMcePF0mSd3RADsUNCZ2/jDgckdokM+TwJgQMU1LfknB6otB9X7VAWA
54H8+eYmDqz/dfeeNX0ghFroP9d4zYFB7V57kh4FQsm1i6sc7hw4prsx314f
BALLGxbfz3Kgu7Un68PeILh5MzYr5wwHnlQ4MnJ+Kgh07pZa6p/gwDPJleaW
pGBoCt/K9jvCgaFrHdoi54Nh8OlDm0FJDkxt5tetYQ8BYs373Lf97Gh5tull
k3soaIrRNTf/ZEebRqnFFv9QOHvHZHKghx3tXW/+GYkPhRLNnj0c7eyoLbJn
+XhV6Hb9FvOca9jR5Omm7B7eMHicqVzI+oIdk7FgsKcmDMTuvSx1OMeOJ0x+
E2tUwsHoz1SXtxM7jk3wWgSZhIO3vvpimAM7crDCj1Mu4VCzVateeIwdK2aV
jSziw+Gs30A5gwE7tnf7DR+fC4dsD+GKvF3seItf6MPwuwjYY/aQSjPChlLS
e3/DqSh4m1TQWj3AhtwlOZk9vlFweLB5IKiPDXdVMrgQE6LA7iYzE0M3Gw7N
PjDt/xIF4Tn+Fix1bHg8TObOskE0DNK7/+Z5wYZie1eWZTVj4HHVAYLEGTbc
m6ceGaP1ACRZ7PiG7NjQSfAv8aPDAyg4dl0qy5YNU212rknfeQD1fwtNpM3Z
8M/QTIBl9QOYJ0s/lD/Ihi2K9wxyJGPBwpdHUk2IDe1TnVQFCmKBQXHYwOAr
K3qXKogf6IoDdYcPipQOVgxbpvD+HIkDt4h08r8vrDix1XArbjUO6gftJpPr
WXE56S/DXrF4CEtuSZgoZcV7aRUHPC7FAyPh3eDDBFa8/KfCN5n5ITB2RQUO
WLFitrYE5FgmgDrB42L5UVZsHZGv63dNADfFI8ejjVnRJStpRelWAtRH0Miq
67Ki6HKgCTE7AcK0r7VGKLGi8H2HHYPrCcCY4yiqzMWK6gYKFu15j4DxlnLV
3SYW3O3IkRYvmQTrwR+8UxpZ0It4hCiqlQQz0cel3tWyoGhAQWC1VRL8SLvx
YLaSBY/OrL80upsERTXVzq5vWFDPQcfL5XsSOLJaM5reZ8GRB3USX5OSoezx
FQuSJQvav09VPSv+BHIz6OlVzVhw/FHUoV6tJ/D8deJbCyMW/NZ1XPTC8ScQ
XVWxM0KHBTnL7r3vDH8CLv2E+TUlFlS70kL8Nv0EOGUfJvfzsKDJss+/3Lqn
4Pa2uD+3gxmJrvQMesGpQM0TCr/WwoycVVluVzNSQSArWEH7MzPaHJmsq6tO
hcY4m1stNczoXH+c5QtNGshdnOObLWTGQmG6u14BaTAprGq0L5YZ7xi5++8I
ewY+wUV51WbMyJNVW8HSnQ5NNyjHI42Y0a7HJ65rJB12eQWtWR9mRnbb21ol
K+nQ7WBtNKTFjGVT/516JfwcNNRn+xnlmbGYFDN9y+05rI0q85uxMONHG06v
+rXnEGReeKu7jgkvXV53it77AtLFvkwMVzPhgclL/gFGL4A6O356qYoJJzQS
re7Zv4DVREkdwTIm1GPfd7E58AVc+ZVEb5fNhDSVpZ4HW16As9edmJ9hTCi5
KWhW9V8m6MSbPhsyZMK+EMWV2ndZ4HjOnXtBnwkF+17Y723JgtvqoYEMOkxo
V+D+t2IoC972Us9KaTBhwZ6WYQbubFCSUJFxl2HCyXvE1NTz2SBaIlj4l5kJ
T4UTmocpL2Gz60/N7EdGfP94tOdmfA5gRA2bQD0jWl8NzdB5lQPBB58d06ph
RDa6a97CNTnAnHVyOLiCESn5jbd2zOYA0eczC//rbX3DK+9UbP4H0sRCy33R
jNhxbrW3g/wKLM1v990yZ0RTe8HLMe9eA5FwSjrdhBH17OkIzp2voat0r1ft
EUbERLt483+vwU74Hy3HIUbMND3D7bcrF1wnnHelKTKi2vssE6aHuXAz0vAS
cjMi9d5Vqz1X38CLeuIqfQcDEibESq2M8qHxfJ1a1xcG9KxQfrPbIx+mmP0u
Z31iwMqDxapykfmgafpzyKCGAW+yrPnHNOVDa8vLlrBCBtyw/hV2W7YA1r8d
yGKOZcApWxE3veICOPbXzZL9KAMqqVywoHYWws1octQPIwZkTxIJuTFSCM/2
NNXlHmbAvI/mnkarhTB+WVnr6AEGfMvvXbZTrAgC5td23ZdnwOSmKufaS0WQ
uxG7xsXKgA2Z5l9+sBQDPff7bN4GemTQDWGdtymBf9HiufIf6DHDWYqm/3wJ
9LJEFuoDPe4+yHav/1YJFNCdqrxaTo96Yt2PhDNLwGFpsa3jJT2e2lT9FrxQ
AiV9KhsPw+lx4D2nOiWldJuvvbLhM6FHeAqp68tlYCFHPLX7CD1+tp5ICuIq
B82XNxwP69HjppFUsYhUOXA/N/Lw0aTHjSe7Mx/blENlwvCdTjl6tHqo0pOS
Xw58t8VfJbDR457XgsITF99CnckTGv5mOjzfoC1msfgOiKVfl7410uGuhnC9
cZ4KcBLl/5dSS4fRTFptGXsqYH3uwU/JSjp8SqAvuuRaAWqpoRVqr+mwOKtr
za27AjL/efkci6BDdu2SJR7qewhJMBx9aECH3d+TBOWzqqB9M+TXCV06JNTl
+BfXVoGYR0230EE6TGc/HXJ6qAoqDx6se6FGh/tjBZkEJKkwP6ySUSyxrb9i
8VMiiwpn94s4dNDS4RMaOvm6NwB6ffMtRCoBOaJ1WgUnEWwlR+JEKgioe3Mr
fWwDweNCj41cGQH3/S1Q/cxZDbGLVV918wgo9E1lAJWqoY/z3i+vNAJeD3HT
9rtWDTcObY+LOwQMuyJIkCLUQEH6Qc6oQwRsWFRvW5H5ALXDiq2JWgT8lE76
QH/gA3zdLR6fsY+Aan9Zi8UtPsDmW0ZShSIBixbiepKufQCzthbhMVECDh8g
OHh8+ACjtC57DGkIyP8rzLzCpRZEz4aZ0VXTYoqeTkd6QR18i9QYFq+iRd3J
1di6ujqILRq/q/eOFlvb2Wi2euuAhmBRHFhIi7sO/9UvYKiH3+kCFJoMWuQI
13rB6VAP6X05I+tBtNhkocXSzN4A4nafgxYP02LB73ChkTuN0Bvov4OkS4tk
ap/M58RGiP+fYtneg7R4KJQxrT6vEQgrD8d89tLijiLPHfS/GmEwycFybhct
Wj5XWXqq8xEyuyaFpxlpMdi0ts+G+RPssuJ+N9ZIg8e+rOk9ePUZdNySD5fW
0uCvA04Peho+g8MtsdYApMEWznhG/T+fIT5LaUTgLQ22F4asXRVrgs0VS/4j
L2nwqn5jkVVyE3RnxHlnhNLgVPmbC5T7zRA2T5Sz16PB2ZW44J74FnjO8rRU
SpsGN7NYZ81KWqBSREJ3dj8NLh79yjDU1QKzRqonI5RpUGQ16zuVvRUcU23C
ysVokJnMhMpWreAZLVMnvbkFZTL0j2J+tkKLorz64+tbYM0jTMilb4dYnqwB
uLwFQbbfhANI7WA9J/Jg+PwWZD7NXHOVaYfOMuKo6skt8JhXNThv1g7fDq4+
/qKxBewJKax6j9rht+nHDbrVTeg7yunlLtcBM+fP13ne3oTqZp7dGy6dUGTc
7/3IZxOe+HaX7bneCT7y9iKVlzYh7UON25WoTlicMr/OcnoTQnnr7mmUdMLq
NXXZzIOb4PyFhquCsQsIIQwxPZsb0Dz9zz8zvwt4018cOxy4AbKcXJ/f8HyF
Jw4fh2r8NrZ5pTv9dbmvIEb+56PrtQHZFx+Q7fW/gkK85iPtMxvQsdx21Ofa
VzAJaevSOLgB+y+flpjq/QpB7lu2e1bWYSxdQJjy+hvMKNmfInmvw9rL4rOK
zr3gNxkwluC+DrMgT4r174XN/2Xf4HVaB1GKUQrXk15gl5h9zG2xDl9SZHIv
dvSCDH9EL+uedShZN0x/avgdnFbK7LdG16As60bUyt4f0FJNdBx1WoNx9Ubv
1/J9kK77NvX+yTXI0XPqe2jaB17Vp3+qWa4B+SX7xbSLfcBdneMQeGgNOHV5
b1Jy+8ASte0pImugGWVyv0jhF7RTL5w0+74K/0trZdcT/g3d72usC46vgpG5
smi/ej9ka7nH2x5dhVSmM7LCxv3g+56jff3wKviuMdVesu8HgfcnrYzVVqH8
LQOtYUA/nKyYshggrsJbKVwd+9QPvW8pR/laV6BtkN144+wA/Cy9YuhnsgLs
u188WMkaBI3JwB15eitQsR4nfOndICRIxs0Maq6AmSez2mzTIJg8zH9qIb8C
+Wv/me6fH4Qyr4l/Uuwr8OeR+JlS/SGIlXdL7mpehiohywPXh4fg8PNTYypW
y/DkXFR6udYwPPvmTnU3XobMG5s7aq2GYZXL72Ga7jJQdDW6hs8PQ+GdxIOs
KsuwPvPx+OWEYdjulnH9xGWwp3ko9WBqGJZJRzVjO5egr127W+TlCLyO1oma
PLEEz5LZfOXkxqApbU3/lsUSsLUv6poYjMFUQdk6s+ESVJHLe+45jYFS125P
SfVt+VDzvEPSGJQIk63s+ZZA85nQ0yuM41CZN0P62LoIFY0cehfGx+FLa0ZG
pvEi/B57/SX80wT8Gzhtr6K7CBmXPqm8HJsA7gVBPtRYhLpE86UR5kmwJj8I
/S69CEclzXXaDCfhq/MtdyLjIhiL3lYzbJiE37M2CgE1C+D0IsFxqGkKZvgY
Kuy1FsA1Yl6C8eY0pPXJMt9QXYAn1yjniyOnwSTH3DZRfgEc3puteD+dhgyt
5NlWoQWY3HHJVqJqGqxd5OWPrM+Du3YmyynaGSjKt0pRqpoHy2GK5c6YGfAx
SbvDcGgeDnuISxQVzYIY34cm8X3zEJEnmp5fNwtNP0coOorzcKnafBG/zYKk
t3L5TdF5uNawK0x0axY6k2r//duag8HFnvQvZnOw98+4Uy/OwXjpp1DmiTlY
vLtPP19vDlyeydI90FyACfYfOvOac6BK90u8wWIB+h8HaO9XnYN7Yd57+F0X
oKn44/4PEnNgf//b2bkHC/B8xF7pK/0c2FWO0bwfXgAziwDhrfpZ4HbXr4hO
3q6zyMclc9NtrIpPpziWIfn1fwsP9WdhyS9LnV9qGWI0iHPftGYhc1Zi85j2
MvhZ20+57N7WH1kOFru8DEfDJod8OWbh4k3DyPG2ZVie5GlPa5mB+4aD82dT
VsC8yi53ymYGNEauVIHBGrDseh0TZToDquQ689Sza1AbveYpoz8Dkwp89KmB
a6DlkKLsojID/4lHh9BR10Bm7WdZF/cM5MSHPPDWWAfCfufqyuZpiDW9pbSs
ugFlJee7Iw2ngVJdKzV9ZAu8d7wtlz40Db2XmQ95eGzB7hDmx7Xq08BaoWfI
Gr0FL2z+Z7+5axqGDz6Zq23bgtjZ8d/e9NMg43dcKU6RBjucfnQXBv2Dt26b
vV3bc0nz5BiNue8UuBe4GFXN0WJ94umpbLcp0Fxo2H2CkYA2XW3ft2ynIG0z
3Z+BTMBL1hVlhfumYM9J+o/PtAmYZhZ1iX9lEtCUs7k5koC0unu+/bg1CYnJ
SlpS0nTYKOudfzFwAgZMIt3DvOjxmPuflFrvCRgr9TjRH0qP/dmnIoVdJuBQ
fOjOY0/pcVVCz7VFbwJik9IxsH57bxThFVKln4B+DZZQGhEGjCWWhq2G/YVN
hdynL9sY8MTa8umI6HEoei8lF2TGhDKnYwy4b43DGWpzzPx5Jlym7tyT5DEO
MhO/BiKCmTA5yGQ988g40LzzVBR5z4TfWFKeIM04sLScZp3b5kl2goe+LvmM
QUeS3JfbfCzouDfU0u30KPRfs3FOI7ChQhJZY9J0FAq/DDn2irPh5vIbUR/N
UYh+JRiuo8+Gzyq7pwIFRiGWw/FsdAgb/taXiUltG4F+Wc4QWRZ2dLH+/LHT
YATSRajnSikcqFJyptBebQSGFeJGiw9yIIE0nzwgPgKkN6enfjtx4IueHe7T
W8MwdNXrfw0vOXDIyZORvWJ4m8dWirfu48SSGsJUfM4wDNpfXTJx4MQQyaQu
ctIwvM/xKFwM4MRdo5Ap7TMMU61DxIFPnLhofCw6z2UYNg+t24lPc2L969Gr
e7f7KOHo7Y8J/FyYyOFvX3loGA6VOxfs1+JCt8s8+voKw6DLaO/C48yF/wdG
4i7E
"]]}, Annotation[#, "Charting`Private`Tag$2893#2"]& ],
TagBox[{
Directive[
Opacity[1.],
GrayLevel[0],
CapForm["Butt"],
AbsoluteThickness[1.6],
AbsoluteDashing[{2, 2}]],
LineBox[CompressedData["
1:eJwV2Hk4lF0UAHDb2Jcxm5lRkqQiIkIqIQpJRCpb9mghpQWVEFlSRJIihPQl
lZBE91iSZMsaRbbsZN+yfHf+mXl+z33ee+du5z1n1jt4HHHmYGNj24E/WN8T
dKGosGRxkCAUPVSe4QHjHbuGY5+KQ2ONawTL/5m66T1LEAdVP/5Alh3CPi98
fCQOmWe3ubNc/++6w2iUOGg6ruxj+V3HmLJJgDhEDjwf3Y59KbWumeooDrwR
neos18OKopS9OLgY7ZBnWaF9a7jCSTz+sxvrWe6jhu49YCUOQ4NjfCxb3NbO
uGomDuPJum1K2Gqns71/7hMHB1RwleWFbTFrkqXxeFf9MhWxufe98giUEgc9
dZVElikW5SXOkuLwta71HsuK1+ZdZdeIQ+3BuQssu1RY574jiwNHqrc6y/V2
G43LOcSB6BUB27Azo/L8hjuZ8PG5T5kCdkFqbX11BxP6BWVzWP7yfmDjm19M
cJKpeMZydzuzyusHE/jl6wJYZsj60VdqmVAQIKTFcnDJgbdExIQT7Vvfy2Of
nPrRvSOBCWwPLj/cim3iZSS++zETOlfJwSxrzSAznUdMGN6R5MWy5Fx6mfED
JlijW6Ysdy96pZ+KYMK4yzV+lp04RE8/us6ExxU0bzns06IGE0s2TBDW9NGX
xba8X7iF05oJXMU1KiwfJCs68FkywahKZD3LW6liDVQLJmQrHFvYgj1K/5Oj
YMyESo6FDJbPS/pftdNkAvH5FS6WL237sFoqwQTxL/UvN2GrJwtKN65hAlxj
j2V5kWSn38tkgiqP+E2Wb85yR3GJMeGevrA5y2FF5lJ6IkzIVZ9alMFOOjiu
W77KgOtnU3VZrjy1KayikwHxdYJfpLEjWn2yfnQwQKPybBbLJgdr6gd+McDn
d84DlpsULonztTKgdHXJkeXOmZJMg+8MYIaeXt2APRNoW1tZzACD1TQlliWT
HlCqUxhAfjMVsB47hrdR6V0SA9w2VDmxzOtJOvwokQGdP27tZ3lc+16oczwD
FG7F8rFc3BOyshzFgKdb1e5Ksu7HpmsDCv4MGKk+HLUOOzXLoTDyJAPaKP3X
12LTxZJbL9vg+ZnesmL5jt/vWWsrBpCsl9VZ9jKxVtpyjAEBOgFTa7D1Jo+m
FxszgFOywYXlvh0GkZN7GHBi0n2/OPaWom1O5msYUMN7aYDOWt/oChdbJgOU
NDtKWW52s3dzpTNALnDDU5Zv0aLdr1EYkJilfZTlTo/Zq6mCDDifXoHEsB9K
FUVML9FB368rgoZNCDF8H9NOh//iNYQo2Na2PR8Sf9KB/VVHDxk7W+VaYUYr
HZLWWRawbNf1qriwiQ7jQc0uLBdqiFb1VtOBMt5ZRMK+ONrSqfKJDn7+dCdR
7K4jzvxNiXSAiyP3hLGH1g0Scp/QIVtCy4blyZGz7A/i6SDTYiPLMsdtr3nz
WDp4hc2WCmFLfwzsa4ygQ9+z2GlB1n3ekFLSeI0OFWttDwpgj0x1+DRa0uHA
tF01D/Y0OFzOOU4Hlf0B0SwvR/R5xljQ4fKS8wmWhTePuZofwf3fu9jLjb3N
etmi0YAORaJJcwTsC2Xiyo3qdLB7x0niwp6LOT7cQKPDzUYRKhsrfhwprC+i
0MHFVqFxdRrHD6JkwXMSHTwZfNEsO9zpD/EVpgOZZ1KE5arAyzIbuPF4Y6Hc
K9gpF2LsL8yIgZvT/b5/2EYmdS3ERjGYqlrwmMPeJKyCFr+LQdkZERmWOaoe
pvfWisGPypafs9jvD5y8lP9NDB4H++1nWWrvGMmuVAxOCkjRZ7Dn5AWNX2eL
gerg6cxJ1ngC+mWHosRAtjcvdhTbTo07yuqeGLTKyeuzvNaxzMYtQgxC+ywW
RrDjCrTmboWKwUJoqSXLd912yhb6i0GG8QJjGNv7i2yk7AUxOMwTEzqAbRIo
ZM1jJgY6XnZyPdjCr79tppqKge5gVn039re20Bmpw2KQN5zuzfL+7dz3NA+K
QfOB++Vd2Lu6Voov7RODRNFD1p3YMnvHN/Uqi4FXAM+VduzlxfopoIjBjPCG
Uy3YZ9de+5BKEsPrFLDYjN22d6NfCFEMNDTcI1jOv3WF30RQDGjKI2+bsL2E
16z/zSkGTTqeMw3YI+udjZcnaaDIpexSx3pefy5j53ca+I+ThiuwDc4kua+t
pcGui1IeLOdHGKiwV9OAayZr8gt2bP1jVFFBg9vfds+XY5taazUfAxrIXluz
XIZd4RHKefk1DUpKPEYBOy9W3DY7ggYkU2enfGzeTev4CsJpMEs91fke+8R7
qZziUBo0JfdZsbzUsoX/exANDAVtTPOw9zHU8/5ep4EnG0M1B7vusbmwvDv+
Pc6Wfa+xh5IiPj03pgGfqElHOvZupSi310Y0+MnJa8ByRHEM5b0hDf682fou
DVux+/Hp8v00GJz6EJSKfWXDf7Q/mjTYQG/ckILNlV7uLrWNBmZVt/YlYK97
uSqRIEKD2IkMwWhsna09uVlCNLjpt+nUfWyXV+VGIECD6VVCcRR21usInx4e
Goif67wQia2ZI968hY0Gl/sXaiKwbYvUIvLGqZDTo+Iagp1Y6/Gv9jsVOCyO
Ma9jl5iY3e+qpUJm45OT17D7vqtumaqmwtkS+VRfbIXGZQtaJRWOK26T88H+
9CM827qECnnUBMUr2O1dz90Gs6mwpiGE7om9Zvp3C0cMFdzD4485YU+eyTo1
FEWFGxVLFxyxv/Rcm/t+jwp4uyMcsC80MMSSw6kQt+cmsmPtZ7aZxd5AKiQe
VKfbYF/0/NLoe4EKqfISj49iV45lfZ82oYJ+m+9vPewkl+v2v4yp0Jv/p00X
+1LHwYlSIyq0yms27cOWrBkgRutTYdw2r1yb1f5KykRJiwqn1VOf7GG1n42t
ObeNCsnZXuQdrP0ZvP6tT4gKIc1PpTew9q82XWtSgApwOVBECnsgpzZ3mY8K
jJ/HFiSxj99cn0ThpgJXZc1XCWx1sc9eOisUyFhqsWFiL+oKSiSOUUBd5bSp
KPa1pPjzR2sp0PR4yHZligdUgkv/2FVTwCG2buMy9siZEcuz3yggLnVr+B+2
jZqmXuAXCujsOXxxAVuzpovxFlEg+aK51zT26r/NpYJvKOAeL7xrCDvg2Htq
WSQFOlSS6xtZ/Sl/C0y7S4Hdm5lmDdhHib8ngu9QIHvH0vfv2Ju/ctcYhFBg
+vd0ZQ12rYZFcK0fBdoaQ15UYK+RmJltc6fADad8sULsvN7tPyaMcPvdopfJ
2JLF+/c3GOLnwyZnnmKHJljm5OhTgF3imGYitrVFQOQVXQp4Wzz/Go/NWfFd
f3kXXp9C+cpobJOX5z/wylFgYpLuGYQ97JkVv46PAl8MFPRPTbHiU8o0Pw8F
3q97YuOM7SAYazzLRQH9rQKejtht6dc5qtkoYB/fG3USu/Kn0WmfeTLkbzb8
eAz7P73hnU39ZCip43x5APs0Y3NrWDkZxm63jm3ETu8TV75cRoZ6Pk3YgN39
TiTCvoQMVZw299ZjWxrPaal/IsPJYZBZi20YWJ7xJ5cMtJr2nRRs2VGnq1pp
ZHD8fegvO/YgJIvNBpLhKjEq6Ockjj9Lfy0IAWQweHFBpRVbRk0zlnKTDAtx
lK5mbKdXbRTla2R4WRqpXI/d8YhMOu9FBpmirUUV2I0XggSHnMjwdHrVLhcb
pN3YO/TIMCTH/fMO9u+T77VG95FBv/PenjDslXjCzSVtMoxP3Uu4jb1LNGWF
qUmGePvBowHYectt/46pkiFs5OPzK9iZzUaz32XIcDA0s9oe+2GI4vBnHjJU
PEkiqmC7FrhteEkgQ9yV6V+K2OojKVaRnGSQyB5Mk8f+cZhaZblKgpfM/+Q3
TbLyscXMv7MkkMyToDCx49NK3Rl9JHBJ/m/n6gQPJJRYTJ4tI0Fcq0R1Obb7
9D3ZIyUk4DD3linF1pT56qAGJCi7uOSLsDtCdzWwF5JA4MZZ8XxsCVPJnNh3
+Plv/nIvsJN+D16CFBJUvOi5E4b9bOnaAtmfBDFv3qgaYls8IYqt9SNBpuA6
8/3YvLtTVWSuk8BUtuicDmt8328e6t4kcHjv/UADW2OR0WftSYLnGWF5stj1
c3n1afYkyNHL2cWPzTY1/lJNhwQ1dSmq5eO4Prt/66uWFgnGqUH1xdgu2+n9
BpokCDOlny7CrvLcK2WtQQLFb1p3crDjxiPibm4nAfmj1JMU7G1jskFfpUiQ
cMWp7zq27aCTrRUnCZx/1RCUsEv8erw02EmQd3A0VQ57E80hnLEqCl9I5poy
2OM6J/NbFkUh2KX7pDi2/5MTJPNJURCesrAhYKceNi436hKFkG+Ku3/8xfcr
V01BE4kC4UWDtTe2iVGe7toiUSiSKla/iJ3TrWK1VCAK/Ls3C5/DviayPaQg
TxROph1Is8MWdtvarZolCls38N46gL19zfrYbQmiUEexXSZjXw3gX5H0FYVX
1TqZz8d44DWfGxu/tyg8s1asTMLui/zCMXVZFF5Ujnc+wjZ7eovn8wVRCPKo
mg/HVihcIbqdFoWdtmu+e2D3zkxueHtCFOIMPdeqYh92+2mgrS4Kl77+Hi0c
xfXf+E4jWVVRsN+4XiwXu/BKnDFZRRR+31JTf4UtG3zU7M82UZBxLrZPwOZ6
VmsdukkU1O0tTa9jF/wq9fhOEwXVWb7Hu7BlTDIf2M8Q4Zbv10dvR3C9qOd8
3X2KCOUvlPe/wD6hIeHsO0GEOu/bQ0nYd6QjVR6MEiE/v4oZiT05f7Gh4g8R
jq+foLtjf0reJarYTISY3am3NmMfnaq8s5JHhNOlSp2xw/j8DQR6CeQSgaLM
8InADmnfbU1/R4Rnh7r4b2EXfMmS2/6aCIYG40RPbMkn9yudnxMhdoSYZYg9
omvJW/2QCGPB16WXhnA9EjsY+PgqEeKctIqPYR8OiHC6cZkIZUqOWkbYTHcl
PXsvIvAIn3unhf1Gz5t703kieJzkvLQF+9c0b2j2KSIoXm9yWhzkAWWzzXe/
WhAhna1o+BF2t8ipuDkVInzauWdn7QAPvPrH7922nQi7dn4WL8G+2p91okgR
r09b0HgOtjCaZQZuJcJA0JXz8dga7sEJwtJEYH4LrnDCjqpKS9lIJkLqpctV
s/084Ef6euJ5twhIEPw/iGC3ff78J6dDBCj7g8vYsVW9SzxL2kTAQfZ38VQf
nv/vj6Ht9SKw+MEiugXb8lXWB3KpCFxQ67uXiK2iH8O4+UwEpNLTe7ZgD10/
2XrcSQSKbJaid/zB+bGStbOLnQj0Z5fWbMRO7j0+cdFaBFbur1mkYh8/eITv
nrkIeEgekJrt5YHPdL2dn3VFgHGnNS8XO+md7COljSKw2epBjxK2xeDMcf4+
YdDecLF9bQ/2jexCuW5sLnEXQZbJHpKHOoRhx3WejsVu7D0D/feahUGiyv1x
C8tRbZepX3B7wXvDSJZ3ohjJDGHw5uI7t9KFHRpSp3paGB6HaxpVd2JL6Kkc
dxEGq9m0hA8sv2OP83YQhpXCnb/SWG73OVloKQw+O59K3mBZ6dyY9kFh4LU6
WybPcqup4KGtwtBhttU19Df2FnF9xzEh6AvPSVDq4IEPL18lKA4JQcuNQ3cZ
2GsUtKaW/wiB9I15Z3bs7u3OiXHtQuBUIlFZ147P8+7X09VVQjCL2h3csYMO
70tWfykE7hnWKPUXji+XziwKuQoBh9pH1+U2HhCbXz7801EIuNce5e3G9vGJ
TMs4KQTbjZPCy7G1/HJN9h0Tgnd2LbvvYVeFrKZf3S8E+h8e71+H3fM42qxH
Wgjsfxe072zlAVLJx8z8LkE4lbl3//EWfN4kOaur2wXhkHS62i5sxxuGo92t
gjAQTRGSwM7RaJUXqheEpy+eOvY0s9ZvNsu+RBDePw4qPIv9KFXpLf8zQfjv
wjzBpwnfv9vPc62dBCHoVPqOGw08oP9nrMnTThBswgQu2mB77lOdDbYWhGXO
pcjd2CWrZapvzQVBNo/XfbEej3+1+z1BTxDOO9x74YWd7ra2IGujIBQojAg4
fucBeaPoT2z9AtA2zEiTqcX10MM3dcXdAqCfWJa4UsMDuj3V3QEdAlBxrNe9
GdvSh5eH0CwAi/5tUUHYIRnXD/N9FoDDeivtXdV4fbhcO0WfCYBVpb/b/So8
n6LdHBtOCkBQfKtY/Vdc7/NZUnotBcCYFBaeiv3G/IpMmoUA5AmsrbuMXT78
1nCTsQCUdW/9xsSeZmyKltsjAHX9BYF2FTi+XBaVVhEXgIwQpcbuch4gbOvT
02vhB9dDlNjiUnxfrUu3MRv4oemi14e72C6hSYy/NfwQo2P/wgq7vMdyNK6c
H4hbxMamS3A8j6uNGcnlhx0qLoSN2NwcH3qiY/hB2yBU0xewm8L9u035wfPq
oOtKIe6fw+3M+0P8sE0nN78M22Xb/qN3DPhBqtW5Jgy7PJRti6o2P3inRxvS
sIM1L9WFKvKDmNKQn+xH3F+G7TolEX64/kci88AHbF+lIr8qPuA0+HnWLBfX
h4Glnk8q+ODQj3PnadgTd47KfCjjg823lzVac3C8TPS+N1nIB93vD0jbYmeX
FNs7v+KDdaf7tJ3f4fc5/xHug3f5ILWiwNf1Lc6/Hl04TDPhg7BKRy/tVzj/
SuHiUjbigxCK48RSJo4/L2PzD+vzQduNFwr52HeKCtaHavEBm9eWQXlshy6O
6X+KfLB/Z+Ex2kscX7dEx3WJ8uG6oXKgLQPPP/9dV2YDL5jpz+9RSsXvnyzx
kEu1vLD9U0Zd+zN839ICFTS/8cL87v9EwrArosx8a0t44XaVfVRXCn5fnpmi
TL7lhctFHfF3knlgdK2yvlokL3yuFPKrT8T1fWB2VrERL7h+oe4Xf4Tvozfz
aJg+LwSM3y8tjOOBjecD/h3R5QXLn4PdNtjN1kf0e3fxQnxyKeHpQ5w/qk52
ccvxgljNufo1sTzwb0CJasTHCxLNverc0bh+MX7r2/yZB+4n+OdG3MHxVbJm
pK8Y51kJJzq2YH+aHLKZK+KBg1vILz+H4/oqVlqLnof3SX9UYSkM15O/H3JZ
puN7+p9/i1MoD9ifvxHRHozzrtFQZ2n8rXX/4NPeA3gdKb+VLf1wvtz0p2Ty
KzeUnsqtiDiP8+vQEgGxcm4YyEypImEH7nlqvquEGyLvKzk+9MD5Y9rxvsAC
bji5rnb/U3ccb7y+8VFfcsP2I+odL87i/Iz01kTtDjcQxa6svHDF+ZXxtQ5f
Y26wQ93XzexwflpOWuRqIMDPQCFvVWO8/qc+qzTVEGC9ce+2yEM8MMZ71SOt
kgBbbTwMBo1w/DrY3qtXQoDmx2Epjw7yQF3t89rgtwTIM1nTMamP5/1jdxpv
JAFKpj9y3t7HA+bDLiaChwgwL9+huV0d5zvEj+nkL1zwi41rzmsdD/y9I5Up
V8oFPsrejLcS+P3KF/Z2H+KCC1GXokfW4vvPeaLw4nsuMDlOuGO/Btdvc7Pf
G55zwd1kX/99DBwvO7YvR4dwQc37Z4L9JFb98p8ZxZALn4trAi8I+P1oGM9G
reaEqogdw4sD3EDKbZn7UcEJnKMTHtP9eB3WUf8+KeMEh2UH7tE+bliautcu