-
Notifications
You must be signed in to change notification settings - Fork 0
/
ch5-delta-sigma.nb
559 lines (541 loc) · 21.5 KB
/
ch5-delta-sigma.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.2' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 21908, 551]
NotebookOptionsPosition[ 20698, 521]
NotebookOutlinePosition[ 21059, 537]
CellTagsIndexPosition[ 21016, 534]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"ntf", "[", "z_", "]"}], ":=",
RowBox[{"1", "-",
SuperscriptBox["z",
RowBox[{"-", "1"}]]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{"FullSimplify", "[",
RowBox[{"ComplexExpand", "[",
RowBox[{"Abs", "[",
RowBox[{"ntf", "[",
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[CapitalOmega]"}]], "]"}], "]"}], "]"}],
"]"}]}], "Input",
CellChangeTimes->{{3.763811753678162*^9, 3.7638117724604883`*^9}, {
3.7638118054978848`*^9, 3.763811809055004*^9}, {3.7638126871121397`*^9,
3.7638127422481747`*^9}},ExpressionUUID->"ba026b09-4388-4ba4-be80-\
4a262248cca2"],
Cell[BoxData[
SqrtBox[
RowBox[{"2", "-",
RowBox[{"2", " ",
RowBox[{"Cos", "[", "\[CapitalOmega]", "]"}]}]}]]], "Output",
CellChangeTimes->{{3.763812740728279*^9,
3.763812742701972*^9}},ExpressionUUID->"b54d770a-3a82-4de2-8b09-\
5dfc16742824"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"An", "[", "\[CapitalOmega]_", "]"}], ":=",
SqrtBox[
RowBox[{"2", "-",
RowBox[{"2", " ",
RowBox[{"Cos", "[", "\[CapitalOmega]", "]"}]}]}]]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\[Rho]n", "[", "\[CapitalOmega]_", "]"}], ":=",
RowBox[{
SuperscriptBox[
RowBox[{"An", "[", "\[CapitalOmega]", "]"}], "2"], " ",
FractionBox[
SuperscriptBox["\[Sigma]", "2"], "\[Pi]"]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"TrigFactor", "[",
RowBox[{"FullSimplify", "[",
RowBox[{
RowBox[{"\[Rho]n", "[", "\[CapitalOmega]", "]"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{
RowBox[{"\[CapitalOmega]", "\[GreaterEqual]", "0"}], "&&",
RowBox[{"\[CapitalOmega]", "<", "\[Pi]"}]}]}]}], "]"}],
"]"}], "\[IndentingNewLine]",
RowBox[{
SubsuperscriptBox["\[Integral]", "0",
FractionBox["\[Pi]", "R"]],
RowBox[{
RowBox[{"\[Rho]n", "[", "\[CapitalOmega]", "]"}],
RowBox[{"\[DifferentialD]", "\[CapitalOmega]"}]}]}]}], "Input",
CellChangeTimes->{{3.763812766616523*^9, 3.7638129474866037`*^9}, {
3.763813012108797*^9, 3.763813028816036*^9}, {3.763813063331794*^9,
3.7638130746423893`*^9}, {3.7638132289254923`*^9, 3.763813268127249*^9}, {
3.763813302989893*^9, 3.7638133650977507`*^9}, {3.763813416204055*^9,
3.763813418185869*^9}, {3.76381363637467*^9, 3.763813636622324*^9}, {
3.763813709357101*^9, 3.763813716797261*^9}, {3.763815319429083*^9,
3.7638153585768633`*^9}},ExpressionUUID->"d4b3f92d-c509-4c08-98b8-\
0d0006303c8b"],
Cell[BoxData[
FractionBox[
RowBox[{"4", " ",
SuperscriptBox["\[Sigma]", "2"], " ",
SuperscriptBox[
RowBox[{"Sin", "[",
FractionBox["\[CapitalOmega]", "2"], "]"}], "2"]}], "\[Pi]"]], "Output",
CellChangeTimes->{{3.763812898302814*^9, 3.763812917484065*^9},
3.7638129479434*^9, {3.763813064523367*^9, 3.763813074972405*^9}, {
3.763813224532035*^9, 3.763813268362009*^9}, 3.763813305053953*^9,
3.7638133681167793`*^9, {3.763813400116233*^9, 3.763813418456209*^9},
3.763813639706634*^9, 3.763813674828877*^9, 3.7638137175503597`*^9, {
3.763815321318963*^9,
3.763815358883553*^9}},ExpressionUUID->"fe5a8720-9793-451e-b96c-\
9ef285a78e03"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"An", "[", "\[CapitalOmega]", "]"}], ",",
RowBox[{"{",
RowBox[{"\[CapitalOmega]", ",", "0", ",", "\[Pi]"}], "}"}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Monochrome\>\""}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"Style", "[",
RowBox[{
"\"\<\!\(\*StyleBox[\"\[CapitalOmega]\",FontSlant->\"Italic\"]\)\>\"",
",",
RowBox[{"FontFamily", "\[Rule]", "\"\<Times\>\""}], ",",
RowBox[{"FontSize", "\[Rule]", "12"}]}], "]"}], ",",
RowBox[{"Style", "[",
RowBox[{
"\"\<\!\(\*StyleBox[\"Gain\",FontSlant->\"Italic\"]\)\>\"", ",",
RowBox[{"FontFamily", "\[Rule]", "\"\<Times\>\""}], ",",
RowBox[{"FontSize", "\[Rule]", "12"}]}], "]"}]}], "}"}]}]}],
"]"}]], "Input",
CellChangeTimes->{{3.763816584616859*^9, 3.763816601188374*^9}, {
3.763816756469524*^9, 3.763816764708626*^9}, {3.7638168544258547`*^9,
3.763816917546034*^9}},ExpressionUUID->"e03fa5fa-c01a-42fe-ae8f-\
5bbafb1d97c0"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{GrayLevel[0], AbsoluteThickness[1.6], Opacity[1.], Dashing[{}], CapForm[
"Butt"], LineBox[CompressedData["
1:eJwt1HlUzssfB/A2z3ceXfdmaREtiuqoRHTpV3w+aEEuFYm00H5DJRXSYi1b
Vz3okpTQQklJhZIuopJOVKSFSgtp1/L0tMxv7u/85pw57/P6Y+bMzOdzZp6z
j7WbhJiY2HU2/03JZ1MrvhrsXyXx/1zwvdBI+eJmyApAzX9TlKnn+kngBCfG
ls/4N9tmeQpzBT5g6xeZmcOyzuzk8yRBGEz9Q+3WDZY1TgLN64ILIFiufPc0
S+u9s+uuCBLAQCe21Yxl9IB9dozgPnz5cqNpU/R9MCreMHXNgSK4n1qyxt63
CHyDNu3O9i2BOrt19ks9SmDfI7e/JNQrIVEtMXSmQiVUf1vPT3GuhgrZ4b/j
N1bDWb1hsdwdtXBF70GJ7rJa2K9dcrkoqQG2WR01zvBsAJHLnoxG7yaY5TO1
sgybwPnpNsso9xbI1tRQ7F3QAi791UVFp1vhy8PToTy9Vji/OM8nObwdVssE
7rCWaQeJorzlJ4O+wZ6b3UUfWzpg+kKLii9XOiF4tn9R9IfvsC5hza0+QReI
qei+2HrzB8j3lpuF5fVA1/oU998iuyH29RNxyT/74Gtyr4zAvReMlVZTVdd+
kFaY4617vg+0m2RaQ/wHYDI97tt3v364lzrDM8fvJ6zVefWpynQAgj87VGmH
D4Jd78wfZgt+wn7jFRbxl4Zgg8fuVyZjP0GUYOL8I2oYbDcEHmp+OgiVvrG7
Dt4cAfGbx8z1zg2BobnaZGOiEDrHvUqtTYeh1NQwFeNGQUlcoXTf8DAkZV01
bEkTQdl4bu32zBGQVdfxcrwzBsfW2X2tsRXCe3FyfHbBOCgEh8fH80YhhxxI
riydgL26NZHL0kZBR1bGy7l4EmKKzPX+WCWC3r+GZy39QOGRtUlzygcRqEdE
6Pl4ieHgMfU+MccxaLGrr1vTIYYe/kqhSg1jsK6tajTHWxwLLaa5BjqMwyE/
N0+5bnE8Y9stHK8Yh0251zbIBUrgVEVyQWXNBPSMewVLDkugxvslK2ckT0Di
x2MPvQ9I4nztrPQvYpMg8ly56/CYJKorCBUMd06C0kT0zv1BUji3K/t+Zcok
tJufKyNSU3CskmvZODAJLzTKQfncFCSNy87k61PwIslS8/g8bPRJ/0XCg8Ib
idORa6V5eEo/k1Qz60z8Kec+jYe7xKMCkjwp9PbraqVN56FyQ3WimRcF//oc
CwNFHr57Jm1yfB+FkIxiwXptHq72FqZ9PkAhamubqt8fPLR5c7tP+yiFvBvz
V76I5uE6e/fz8n9TmE9NjvxzkYeZGTkKT5ijHNweP7vMQ+2yE5r2Vyh4KiYb
FFzloeJmQXn8VQqKlzQX5SSy8yXqL1OOoxAcsVAlJYuHmta2B6ckUljjvVj8
3Dsehp3aVBBwl0JGuSWcqeLhbdenF0kahTna+0MianjoYefYHcs82JE1euIT
DxcF6moWplNI2r10ILiZh63W/zyczKBAbH7/6t3PQ7uFbw08sylUGBkXW0/n
8D9664oa8imcfRQwZjaTw5cumuYOBRTMDe4vMZLlcLttw9ZG5qJFavHqszms
+vRMquEphex55OCgKoeVJityq55RuMJVa8Us5jDKfaNj+gsKLlV7zn/azOEe
9025Em8oqFomPX9rxWGQqc0sf+aG8s/Cf7ZwmGEuFLYyb3tl5XbXlsPlY9Lb
issprHu8fNURJw599xo5Ha2gsChBsm+uD4cLajakf3lHQeh1bcuuvzjsezVN
Y20thQtBt7iwKA6lm4eS7jFrnE3Lvy5g+9cWxsh/omBzJ1+9PobD5IEfZd+Z
H3TU/7RJ4DDcPiwkop7CXte5lywyOey9McJP/UyhyeF69e/vOSzIkHsY0krh
4L6k0zbVHCblZm78wPxryD1j/w8cBo4M2ixqo7Ay7untrDoOc0cCnjQwx9Y1
+ut85dDAQu+NfgeFrbbKsmqDHEqZ6E99+Z1CiWWCzTQ5gl01lweDelj/vmwr
5BQI6o5v6yxgnrZCR0tCkaDnfHWXSWZrlceiYSWCPUdqG8N6KdR3v09oWkDw
++NrI8F9FHrO8jqzDQiOWGTkOw2w/pvcuCVjOcHLKWnNV5mX+l0sSDUkuKzj
9tkq5kM7VC9cX0mwMTLCzfQnBQmt/yyLMCV4fO3QKvVBCrLF+0LtbAjyfuSG
vR5i/8KKhx1bbQlq9f9SM8psly6y3LyDYHiy1T3tYQrxFyPUTRwIZs663R7J
rOWcWKLrRrB43vbgjSMUjGn1DPEAgjYO9ksfCCl89psTPBZIcEDeLK+B+Vj7
7rahQwR9f59ZyBul8OptT15nMEG132y27mDeHEccqk8SnJnmdkvI7GxonJJy
ieDRrGVvVMYo/Nn9dqghhqD8peYQM2bfRCeTGVfZ+0peu7SXOYx/ojn4OkGH
lMU9ucxxn0rnWCcTnPCosjIZp3ArcqdXRCpB16nv5rsz313d/ajgLkHHZzU7
I5gf35HZpnmfoGpD/9Br5g+HbaPG8wjKtrnUrZ6g0Kj7/fOSJ2y99Jm3jsyt
zUG6HgUECyMy5x9h/rk+vuxdEbO9FM1illFsk0opJXhPNstFYZKCfEXgloY3
rD4BdYGLmZWPk5vTKwh66Ej0mDPrdmpD8HuCCvUbSADzhid+h63qWb19c7pe
M1t5S5WENxJ0zyxWqWferhYjV/CFoCX3Lreb2ePs42yNVoLjFz/KTKcUvFdZ
SNi3E9yu9L5qHnPgQINl9DeC+9xeiZYwn7QT6xnrIpg6GutvyXzuV4Hxkl6C
+llBrx2ZBc/Vz7n3EzSetA7dy5y40Fzr3RDB9ZZd8uHMqZ9rA3lCgoG16aJo
5kyBV7GRiODhcdfV15kLRZHOyZMEpSBflMVcnKGSVS/GxzDh9n35zOXOWVRG
ko8PTnSvfclcLbd2k9kUPp7MORRazlxfVh13hONjrZtobjVzS6j7j0w+H4/7
+KnUM3fqCw3bpflok9l0qpm5v/3M6Tm/8lGFb2rZwSyMnfPRUoaPNxwSQruY
6aZ7C8Jn8DHmUq9MPzNPEvzzZ/Ex528Dboh5Wl7l8z45PqZt2b9byDxrj/N0
jdl8VH10k7Uf+49VBp12zuHjw7xS1g4U1KpOZUQp8ZGat7PyUFgYIT9RrMLH
i7uF7LoUlhjdsRibx8dx+r8B/wV2G+Mq
"]]},
Annotation[#, "Charting`Private`Tag$163166#1"]& ]}, {}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{
FormBox[
StyleBox[
"\"\\!\\(\\*StyleBox[\\\"\[CapitalOmega]\\\",FontSlant->\\\"Italic\\\"]\\\
)\"", FontFamily -> "Times", FontSize -> 12, StripOnInput -> False],
TraditionalForm],
FormBox[
StyleBox[
"\"\\!\\(\\*StyleBox[\\\"Gain\\\",FontSlant->\\\"Italic\\\"]\\)\"",
FontFamily -> "Times", FontSize -> 12, StripOnInput -> False],
TraditionalForm]},
AxesOrigin->{0, 0},
AxesStyle->GrayLevel[0],
BaseStyle->GrayLevel[0],
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameStyle->GrayLevel[0],
FrameTicks->{{Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}},
FrameTicksStyle->GrayLevel[0],
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0],
AbsoluteThickness[1],
AbsoluteDashing[{1, 2}]],
ImagePadding->All,
LabelStyle->{FontFamily -> "Helvetica",
GrayLevel[0]},
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->
NCache[{{0, Pi}, {0., 1.9999999999999991`}}, {{0, 3.141592653589793}, {0.,
1.9999999999999991`}}],
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic},
TicksStyle->GrayLevel[0]]], "Output",
CellChangeTimes->{{3.763812898302814*^9, 3.763812917484065*^9},
3.7638129479434*^9, {3.763813064523367*^9, 3.763813074972405*^9}, {
3.763813224532035*^9, 3.763813268362009*^9}, 3.763813305053953*^9,
3.7638133681167793`*^9, {3.763813400116233*^9, 3.763813418456209*^9},
3.763813639706634*^9, 3.763813674828877*^9, 3.7638137175503597`*^9, {
3.763815321318963*^9, 3.763815359847332*^9}, 3.763816603055278*^9,
3.763816761383849*^9, {3.763816895186521*^9,
3.763816922536252*^9}},ExpressionUUID->"fcf36d87-41e8-40cd-a392-\
530aed5fdbcc"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"\[Sigma]", "=",
SqrtBox[
RowBox[{"1", "/", "12"}]]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"P", "[", "R_", "]"}], ":=",
FractionBox[
RowBox[{"2", " ",
SuperscriptBox["\[Sigma]", "2"], " ",
RowBox[{"(",
RowBox[{"\[Pi]", "-",
RowBox[{"R", " ",
RowBox[{"Sin", "[",
FractionBox["\[Pi]", "R"], "]"}]}]}], ")"}]}],
RowBox[{"\[Pi]", " ", "R"}]]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"SNR", "[", "R_", "]"}], ":=",
RowBox[{"10", "*",
RowBox[{"Log10", "[",
FractionBox["0.5",
RowBox[{"P", "[", "R", "]"}]], "]"}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"N", "[",
RowBox[{"SNR", "[", "1000", "]"}], "]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"xticks", "=",
RowBox[{"{",
RowBox[{
"1", ",", "2", ",", "5", ",", "10", ",", "100", ",", "1000", ",", "10000",
",", "100000"}], "}"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"xgrids", "=",
RowBox[{"{",
RowBox[{
"1", ",", "2", ",", "5", ",", "10", ",", "20", ",", "50", ",", "100", ",",
"200", ",", "500", ",", "1000", ",", "2000", ",", "5000", ",", "10000",
",", "20000", ",", "50000", ",", "100000", ",", "200000"}], "}"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"ygrids", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{
RowBox[{"-", "20"}], "+",
RowBox[{"10", "*", "k"}]}], ",",
RowBox[{"{",
RowBox[{"k", ",", "0", ",", "18"}], "}"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"yticks", "=",
RowBox[{"{",
RowBox[{
RowBox[{"-", "20"}], ",", "0", ",", "20", ",", "40", ",", "60", ",",
"80", ",", "100", ",", "120", ",", "140", ",", "160"}], "}"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"LogLinearPlot", "[",
RowBox[{
RowBox[{"SNR", "[", "R", "]"}], ",",
RowBox[{"{",
RowBox[{"R", ",", "1", ",", "200000"}], "}"}], ",",
RowBox[{"PlotTheme", "->", "\"\<Monochrome\>\""}], ",",
RowBox[{"GridLines", "\[Rule]",
RowBox[{"{",
RowBox[{"xgrids", ",", "ygrids"}], "}"}]}], ",",
RowBox[{"Ticks", "->",
RowBox[{"{",
RowBox[{"xticks", ",", " ", "yticks"}], "}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"1", ",", "200001"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",", "160"}], "}"}]}], "}"}]}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"Style", "[",
RowBox[{"\"\<\!\(\*StyleBox[\"R\",FontSlant->\"Italic\"]\)\>\"", ",",
RowBox[{"FontFamily", "\[Rule]", "\"\<Times\>\""}], ",",
RowBox[{"FontSize", "\[Rule]", "12"}]}], "]"}], ",",
RowBox[{"Style", "[",
RowBox[{
"\"\<\!\(\*StyleBox[\"SNR\",FontSlant->\"Italic\"]\)(dB)\>\"", ",",
RowBox[{"FontFamily", "\[Rule]", "\"\<Times\>\""}], ",",
RowBox[{"FontSize", "\[Rule]", "12"}]}], "]"}]}], "}"}]}]}],
"]"}]}], "Input",
CellChangeTimes->{{3.76381536175247*^9, 3.763815413512062*^9}, {
3.7638155400749817`*^9, 3.763816250278159*^9}, {3.763816769776761*^9,
3.763816842695716*^9}, {3.763817296883831*^9, 3.763817297859309*^9}, {
3.763817355741679*^9, 3.763817409240745*^9}, {3.763817750023926*^9,
3.763817750525879*^9}},ExpressionUUID->"cfc55875-2725-4f79-9f34-\
b16ea3f87058"],
Cell[BoxData["92.60972974062045`"], "Output",
CellChangeTimes->{{3.763815575460352*^9, 3.763815718985735*^9}, {
3.763815795484568*^9, 3.763815911837874*^9}, 3.76381602784968*^9,
3.7638160647406883`*^9, {3.763816132655259*^9, 3.763816174081702*^9}, {
3.763816212769074*^9, 3.763816250802528*^9}, {3.763816780747064*^9,
3.763816790429029*^9}, {3.763816825749893*^9, 3.763816842927332*^9},
3.763817298231152*^9, {3.763817360693942*^9, 3.763817409621428*^9},
3.7638177508501673`*^9},ExpressionUUID->"e01bf409-a6fe-4f9f-8c48-\
0852899029f7"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{GrayLevel[0], AbsoluteThickness[1.6], Opacity[1.], Dashing[{}], CapForm[
"Butt"], LineBox[CompressedData["
1:eJwdxQ041AcAx/Gj4ayneTkSdyPXuTvvzEtpnv4/kaUrWsN57/hXmJ7yUhqG
kJsnKmo9MXvk4WE5URaO7eHGsMKaI28z3ekIOW8ZKqm9fJ/n83xNI84eO6lK
oVCIf/33r1Q6JvLF+ft8W8x8mvVpKBy60BhSfYZIrXS01N9NQ46P44hhdRph
tezWkB9AAyVPN/qV6CoxVWU9O1VMg6soo25aVEIwuE6pqiw9BLk0+8lEtcSt
5zWz/S76mKUMcsZErYTnUvuWgGQD3J98pj0qekysTPdXHPJgILPYM1JjVUa4
0YaGpvt2wVdQUubTMk2oL8WnnBWao3l6JZEZuEh0hj8s2gy0RfcMPU399xXi
CN3eWv3FJxAzhJSNynVifi1bsGfDCfKMyOCUgQ2iYT9VVufngjjTNW668j3x
OLs83bjCFZSLbHqGTAWF8bR8nVYCz7/ZdpX6cgtun1973nnFDbx7I6U+E2rI
zqJYhex0x1TCm9MjXRrQ6xBV8Ko9wJDyzX4Y1MSdu8KSt3xPDBwpSnVq2woP
yodGhjOfgUtub9cc2gZni7wOWZEX6vRfSEwmtPDmRl5XuzsP4yt9tcmT2uhx
c3B41XcYdlXdCdR5HTTOJRT2pntj/5lG6ppCF4mB0Tnr1KMofy+5IVykgbqq
6zX87ChKZOc2dq/p4e7x7lVJ0+cI/IPu4DWnD2b6Ypn3xWMgc+WCzb+3I+w7
jbDqgC9gzb8VpjNvgIKvl+ZqmL4oiHu9x1O+A35Pn2w0zfjCIyBJ03jGEC1S
H8p1iR/E3nNVfk+NUMg70K6d448knRTYzdLRp3fwXGg4H4PMxgeWiwwcZZ/9
/kfnACy7K9aEio/x06e2qTWbAQi2t7HLVhpDZNfPSxwMRLZNjItCYYK0Uuf+
yZIgmLVUadnH7ESxSWdv8Ilg2D66u9m2sBPsOHF96d4QGI7fGciMNsWfrQ6+
uaqhsBh+wLq5YApq8LjcfSwU9FFx6PCXTDCTpayyijAEZuqoiSaZuPIk6y/q
6eOQ6CRzHkftAj9C8UuJqQBqVWP2zMldsHwnWdgqFCCefVj8WzQLBV6+evKX
AljxdKs3lSzk8pjxTaHh6LogFZKRZlhMjash28KRc/n2uJHSDBr8a+PnrSNg
XnGKoRrFRu61qKmg6xHYEZn1KGmCjRdKFyeP1QjYaN1b3n+Sg19XY6O+FZBg
SQZUXOUcyOobLok7SOw7pE8Pf8aBV3llbWIXCf6gv6NwkoPeA3VSp4ckLs+N
nuqb4UBaGqVb30NiyUDec2KZA/cMRcH9fhItscqbV1S5OFhdWFklJ+HPVLOQ
sbj4OeajxuK3JGJrPN0/4HCxl3y9HvSOhIapc6ymOReU/zuBfwD5gs1S
"]]},
Annotation[#, "Charting`Private`Tag$166951#1"]& ]}, {}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{
FormBox[
StyleBox[
"\"\\!\\(\\*StyleBox[\\\"R\\\",FontSlant->\\\"Italic\\\"]\\)\"",
FontFamily -> "Times", FontSize -> 12, StripOnInput -> False],
TraditionalForm],
FormBox[
StyleBox[
"\"\\!\\(\\*StyleBox[\\\"SNR\\\",FontSlant->\\\"Italic\\\"]\\)(dB)\"",
FontFamily -> "Times", FontSize -> 12, StripOnInput -> False],
TraditionalForm]},
AxesOrigin->{0, 0},
AxesStyle->GrayLevel[0],
BaseStyle->GrayLevel[0],
CoordinatesToolOptions:>{"DisplayFunction" -> ({
Exp[
Part[#, 1]],
Part[#, 2]}& ), "CopiedValueFunction" -> ({
Exp[
Part[#, 1]],
Part[#, 2]}& )},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameStyle->GrayLevel[0],
FrameTicks->{{Automatic, Automatic}, {
Charting`ScaledTicks[{Log, Exp}],
Charting`ScaledFrameTicks[{Log, Exp}]}},
FrameTicksStyle->GrayLevel[0],
GridLines->NCache[{{0,
Log[2],
Log[5],
Log[10],
Log[20],
Log[50],
Log[100],
Log[200],
Log[500],
Log[1000],
Log[2000],
Log[5000],
Log[10000],
Log[20000],
Log[50000],
Log[100000],
Log[200000]}, {-20, -10, 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100,
110, 120, 130, 140, 150, 160}}, {{
0, 0.6931471805599453, 1.6094379124341003`, 2.302585092994046,
2.995732273553991, 3.912023005428146, 4.605170185988092,
5.298317366548036, 6.214608098422191, 6.907755278982137,
7.600902459542082, 8.517193191416238, 9.210340371976184,
9.903487552536127, 10.819778284410283`, 11.512925464970229`,
12.206072645530174`}, {-20, -10, 0, 10, 20, 30, 40, 50, 60, 70, 80, 90,
100, 110, 120, 130, 140, 150, 160}}],
GridLinesStyle->Directive[
GrayLevel[0],
AbsoluteThickness[1],
AbsoluteDashing[{1, 2}]],
ImagePadding->All,
LabelStyle->{FontFamily -> "Helvetica",
GrayLevel[0]},
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None},
PlotRange->NCache[{{0,
Log[200001]}, {0, 160}}, {{0, 12.206077645517674`}, {0, 160}}],
PlotRangeClipping->True,
PlotRangePadding->{{0, 0}, {0, 0}},
Ticks->{{{0,
FormBox["1", TraditionalForm]}, {
NCache[
Log[2], 0.6931471805599453],
FormBox["2", TraditionalForm]}, {
NCache[
Log[5], 1.6094379124341003`],
FormBox["5", TraditionalForm]}, {
NCache[
Log[10], 2.302585092994046],
FormBox["10", TraditionalForm]}, {
NCache[
Log[100], 4.605170185988092],
FormBox["100", TraditionalForm]}, {
NCache[
Log[1000], 6.907755278982137],
FormBox["1000", TraditionalForm]}, {
NCache[
Log[10000], 9.210340371976184],
FormBox["10000", TraditionalForm]}, {
NCache[
Log[100000], 11.512925464970229`],
FormBox["100000", TraditionalForm]}}, {{-20,
FormBox[
RowBox[{"-", "20"}], TraditionalForm]}, {0,
FormBox["0", TraditionalForm]}, {20,
FormBox["20", TraditionalForm]}, {40,
FormBox["40", TraditionalForm]}, {60,
FormBox["60", TraditionalForm]}, {80,
FormBox["80", TraditionalForm]}, {100,
FormBox["100", TraditionalForm]}, {120,
FormBox["120", TraditionalForm]}, {140,
FormBox["140", TraditionalForm]}, {160,
FormBox["160", TraditionalForm]}}},
TicksStyle->GrayLevel[0]]], "Output",
CellChangeTimes->{{3.763815575460352*^9, 3.763815718985735*^9}, {
3.763815795484568*^9, 3.763815911837874*^9}, 3.76381602784968*^9,
3.7638160647406883`*^9, {3.763816132655259*^9, 3.763816174081702*^9}, {
3.763816212769074*^9, 3.763816250802528*^9}, {3.763816780747064*^9,
3.763816790429029*^9}, {3.763816825749893*^9, 3.763816842927332*^9},
3.763817298231152*^9, {3.763817360693942*^9, 3.763817409621428*^9},
3.763817750906221*^9},ExpressionUUID->"01cdb66c-e0a8-4188-8072-\
33bc213cec01"]
}, Open ]]
},
WindowSize->{808, 755},
WindowMargins->{{313, Automatic}, {-26, Automatic}},
FrontEndVersion->"11.2 for Mac OS X x86 (32-bit, 64-bit Kernel) (September \
10, 2017)",
StyleDefinitions->"Default.nb"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
Cell[580, 22, 668, 17, 54, "Input",ExpressionUUID->"ba026b09-4388-4ba4-be80-4a262248cca2"],
Cell[1251, 41, 258, 7, 36, "Output",ExpressionUUID->"b54d770a-3a82-4de2-8b09-5dfc16742824"]
}, Open ]],
Cell[CellGroupData[{
Cell[1546, 53, 1603, 40, 138, "Input",ExpressionUUID->"d4b3f92d-c509-4c08-98b8-0d0006303c8b"],
Cell[3152, 95, 677, 14, 58, "Output",ExpressionUUID->"fe5a8720-9793-451e-b96c-9ef285a78e03"]
}, Open ]],
Cell[CellGroupData[{
Cell[3866, 114, 1083, 25, 73, "Input",ExpressionUUID->"e03fa5fa-c01a-42fe-ae8f-5bbafb1d97c0"],
Cell[4952, 141, 5872, 123, 243, "Output",ExpressionUUID->"fcf36d87-41e8-40cd-a392-530aed5fdbcc"]
}, Open ]],
Cell[CellGroupData[{
Cell[10861, 269, 3463, 95, 356, "Input",ExpressionUUID->"cfc55875-2725-4f79-9f34-b16ea3f87058"],
Cell[14327, 366, 559, 8, 34, "Output",ExpressionUUID->"e01bf409-a6fe-4f9f-8c48-0852899029f7"],
Cell[14889, 376, 5793, 142, 248, "Output",ExpressionUUID->"01cdb66c-e0a8-4188-8072-33bc213cec01"]
}, Open ]]
}
]
*)