-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathga.py
190 lines (149 loc) · 7.33 KB
/
ga.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import sys, random
import numpy as np
import pickle
import torch
import time
import math
import multiprocessing
import gc
import copy
import json
import os
from datetime import datetime
from es import CMAES
from client import Client, ClientType
def set_controller_weights(controller, weights):
params = controller.state_dict()
shape_weights = params['fc.weight'].shape
num_bias_weights = len(params['fc.bias'])
new_params = torch.tensor(weights[:-num_bias_weights], dtype=torch.float32).cuda()
new_params_bias = torch.tensor(weights[-num_bias_weights:], dtype=torch.float32).cuda()
controller.state_dict()['fc.weight'].data.copy_(new_params.view(shape_weights))
controller.state_dict()['fc.bias'].data.copy_(new_params_bias)
return
class GA:
def __init__(self, timelimit, pop_size, device):
self.pop_size = pop_size
self.truncation_threshold = int(pop_size/2) # Should be dividable by two
self.P = []
# unique GA id
self.init_time = datetime.now().strftime("%Y%m%d_%H%M%S")
# load configuration params
with open('config/creature.json') as f:
config = json.load(f)
model_fromdisk = config.get('vae.model.fromdisk')
model_path = config.get('vae.model.path')
latent_size = config.get('vae.latent.size')
obs_size = config.get('vae.obs.size')
num_effectors = config.get('joints.size') + config.get('brushes.size')
input_size = latent_size + num_effectors
output_size = num_effectors
cpg_enabled = config.get('cpg.enabled')
if cpg_enabled:
input_size += 1
output_size += 1
# load vision module
from models.vae import VAE
vae = VAE(latent_size).cuda()
if model_fromdisk:
vae.load_state_dict(torch.load(model_path))
vae.eval() # inference mode
print(f'Loaded VAE model {model_path} from disk')
print(f'Generating initial population of {pop_size} candidates...')
# initialize population
from train import GAIndividual
for _ in range(pop_size):
self.P.append(GAIndividual(
self.init_time, input_size, output_size, obs_size,
compressor=vae, cpg_enabled=cpg_enabled, device=device, time_limit=timelimit))
# report controller parameters
self.num_controller_params = input_size * output_size + output_size
print(f'Number of controller parameters: {self.num_controller_params}')
def run(self, max_generations, folder, ga_id='', init_solution_id=''):
if (ga_id == ''):
ga_id = self.init_time
# disk
results_dir = os.path.join(folder, ga_id)
if not os.path.exists(results_dir):
os.makedirs(results_dir)
fitness_path = os.path.join(results_dir, 'fitness.txt') # most important fitness results per run (for plotting)
ind_fitness_path = os.path.join(results_dir, 'ind_fitness.txt') # more detailed fitness results per individual
solver_path = os.path.join(results_dir, "solver.pkl") # contains the current population
best_solver_path = os.path.join(results_dir, "best_solver.pkl") # contains the current population
init_solution_path = os.path.join(os.path.join(folder, init_solution_id), "solver.pkl") # path to initial solution solver
current_generation = 0
P = self.P
best_f = -sys.maxsize
# initialize controller instance to be saved
from models.controller import Controller
best_controller = Controller(P[0].input_size, P[0].output_size)
# initialize cma es (start from scratch or load previously saved solver/population)
resume = False
if os.path.exists(solver_path):
resume = True
self.solver = pickle.load(open(solver_path, 'rb'))
new_results = self.solver.result()
best_f = new_results[1]
if os.path.exists(fitness_path):
with open(fitness_path, 'r') as f:
lines = f.read().splitlines()
last_line = lines[-1]
current_generation = int(last_line.split('/')[0])
# start from scratch but with an initial solution param
elif os.path.exists(init_solution_path):
tmp_solver = pickle.load(open(init_solution_path, 'rb'))
self.solver = CMAES(num_params=self.num_controller_params, solution_init=tmp_solver.best_param(), sigma_init=0.1, popsize=self.pop_size)
# completely start from scratch
else:
self.solver = CMAES(num_params=self.num_controller_params, sigma_init=0.1, popsize=self.pop_size)
if not resume:
with open(fitness_path, 'a') as file:
file.write('gen/avg/cur/best\n')
with open(ind_fitness_path, 'a') as file:
file.write('gen/id/fitness/coverage/coverageReward/IC/PC/PCt0/PCt1\n')
while current_generation < max_generations:
fitness = np.zeros(self.pop_size)
results_full = np.zeros(self.pop_size)
print(f'Generation {current_generation}')
print(f'Evaluating individuals: {len(P)}')
# ask the ES to give us a set of candidate solutions
solutions = self.solver.ask()
# evaluate all candidates
for i, s in enumerate(P):
set_controller_weights(s.controller, solutions[i])
s.run_solution(generation=current_generation, local_id=i)
# request fitness from simulator
results_full = Client(ClientType.REQUEST).start()
fitness = results_full[:,0]
for i, s in enumerate(P):
s.fitness = fitness[i]
current_f = np.max(fitness)
average_f = np.mean(fitness)
print(f'Current best: {current_f}\nCurrent average: {average_f}\nAll-time best: {best_f}')
# return rewards to ES for param update
self.solver.tell(fitness)
max_index = np.argmax(fitness)
new_results = self.solver.result()
# process results
pickle.dump(self.solver, open(solver_path, 'wb'))
if current_f > best_f:
set_controller_weights(best_controller, solutions[max_index])
torch.save(best_controller, os.path.join(results_dir, 'best_controller.pth'))
# Save solver and change level to a random one
pickle.dump(self.solver, open(best_solver_path, 'wb'))
best_f = current_f
for i, s in enumerate(P):
# fitness/coverage/coverageReward/IC/PC/PCt0/PCt1
res = results_full[i,:]
res_str = ('/'.join(['%.6f']*len(res))) % tuple(res)
with open(ind_fitness_path, 'a') as file:
file.write('%d/%d/%s\n' % (current_generation, i, res_str))
res_str = '%d/%f/%f/%f' % (current_generation, average_f, current_f, best_f)
print(f'gen/avg/cur/best : {res_str}')
with open(fitness_path, 'a') as file:
file.write(f'{res_str}\n')
if (i > max_generations):
break
gc.collect()
current_generation += 1
print('Finished')