-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathga.py.orig
202 lines (161 loc) · 6.98 KB
/
ga.py.orig
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import sys, random
import numpy as np
import pickle
import torch
import time
import math
import multiprocessing
import gc
import copy
import json
import os
from datetime import datetime
from es import CMAES
from client import Client
from utils import compute_centered_ranks
def set_controller_weights(controller, weights):
new_params = torch.tensor(weights, dtype=torch.float32).cuda()
params = controller.state_dict()
shape = params['fc.weight'].shape
controller.state_dict()['fc.weight'].data.copy_(new_params.view(shape))
return
class GA:
def __init__(self, timelimit, pop_size, device):
self.pop_size = pop_size
self.truncation_threshold = int(pop_size/2) # Should be dividable by two
self.P = []
# unique GA id
self.init_time = datetime.now().strftime("%Y%m%d_%H%M%S")
# load configuration params
with open('config/creature.json') as f:
config = json.load(f)
model_fromdisk = config.get('vae.model.fromdisk')
model_path = config.get('vae.model.path')
latent_size = config.get('vae.latent.size')
obs_size = config.get('vae.obs.size')
num_effectors = config.get('joints.size') + config.get('brushes.size')
input_size = latent_size + num_effectors
output_size = num_effectors
cpg_enabled = config.get('cpg.enabled')
if cpg_enabled:
input_size += 1
output_size += 1
num_controller_params = input_size * output_size # assuming a single layer
print(f'Number of controller parameters: {num_controller_params}')
# load vision module
from models.vae import VAE
vae = VAE(latent_size).cuda()
if model_fromdisk:
vae.load_state_dict(torch.load(model_path))
vae.eval() # inference mode
print(f'Loaded VAE model {model_path} from disk')
print(f'Generating initial population of {pop_size} candidates...')
# initialize population
from train import GAIndividual
for _ in range(pop_size):
self.P.append(GAIndividual(
self.init_time, input_size, output_size, obs_size,
compressor=vae, cpg_enabled=cpg_enabled, device=device, time_limit=timelimit))
# initialize cma es
sigma_init = 4.0
self.solver = CMAES(num_params=num_controller_params, sigma_init=sigma_init, popsize=pop_size)
def run(self, max_generations, folder, ga_id=''):
if (ga_id == ''):
ga_id = self.init_time
# disk
results_dir = os.path.join(folder, ga_id)
if not os.path.exists(results_dir):
os.makedirs(results_dir)
fitness_path = os.path.join(results_dir, 'fitness.txt')
ind_fitness_path = os.path.join(results_dir, 'ind_fitness.txt')
solver_path = os.path.join(results_dir, "solver.pkl")
with open(fitness_path, 'a') as file:
file.write('gen/avg/cur/best\n')
g = 0
P = self.P
pop_name = os.path.join(results_dir, 'population.p')
best_f = -sys.maxsize
# initialize controller instance to be saved
from models.controller import Controller
best_controller = Controller(P[0].input_size, P[0].output_size)
# instantiate a separate client to request fitness from simulator
from client import Client, ClientType
self.request_client = Client(ClientType.REQUEST)
# Load previously saved population
if os.path.exists(pop_name):
pop_tmp = torch.load(pop_name)
print(f"Loading existing population {pop_name}, {len(pop_tmp)} individuals")
idx = 0
for s in pop_tmp:
P[idx].rollout_gen.controller.load_state_dict(s['controller'].copy())
g = s['generation'] + 1
idx+=1
while g < max_generations:
<<<<<<< HEAD
start_time = time.time()
=======
>>>>>>> 8eb9676d7419416c4f083c0ba1874987a63ab513
fitness = np.zeros(self.pop_size)
results_full = np.zeros(self.pop_size)
print(f'Generation {g}')
print(f'Evaluating individuals: {len(P)}')
# ask the ES to give us a set of candidate solutions
solutions = self.solver.ask()
# evaluate all candidates
for i, s in enumerate(P):
s.set_controller_weights(solutions[i])
s.run_solution(generation=g, local_id=i)
# request fitness from simulator
<<<<<<< HEAD
results_full = self.request_client.start()
fitness = results_full[:,0]
=======
fitness = np.array(Client(ClientType.REQUEST).start())
>>>>>>> 8eb9676d7419416c4f083c0ba1874987a63ab513
current_f = np.max(fitness)
average_f = np.mean(fitness)
print(f'Current best: {current_f}\nCurrent average: {average_f}\n All-time best: {best_f}')
# return rewards to ES for param update
centered_ranks = compute_centered_ranks(fitness)
self.solver.tell(centered_ranks)
max_index = np.argmax(fitness)
new_results = self.solver.result()
current_best = new_results[1]
# process results
if current_f > best_f:
set_controller_weights(best_controller, solutions[max_index])
torch.save(best_controller, os.path.join(results_dir, 'best_controller.pth'))
# Save solver and change level to a random one
pickle.dump(self.solver, open(solver_path, 'wb'))
best_f = current_f
print("Saving population")
save_pop = []
for i, s in enumerate(P):
# /fitness /coverage /coverageReward /IC /PCt0 /PCt1
res = results_full[i,:]
res_str = (', '.join(['%f']*len(res))) % tuple(res)
with open(ind_fitness_path, 'a') as file:
<<<<<<< HEAD
file.write('Gen\t%d\tId\t%d\tFitness\t%f\tResults%s\n' % (g, i, s.fitness, res_str))
=======
file.write('Gen\t%d\tId\t%d\tFitness\t%f\n' % (g, i, fitness[i]))
>>>>>>> 8eb9676d7419416c4f083c0ba1874987a63ab513
save_pop += [{
'controller': s.rollout_gen.controller.state_dict(),
'fitness':fitness,
'generation':g
}]
torch.save(save_pop, os.path.join(results_dir, 'population.p'))
result_text = '%d/%f/%f/%f' % (g, average_f, current_f, best_f)
print(f'gen/avg/cur/best : {result_text}')
with open(fitness_path, 'a') as file:
<<<<<<< HEAD
file.write(f'{res}\n')
=======
file.write(result_text + '\n')
>>>>>>> 8eb9676d7419416c4f083c0ba1874987a63ab513
if (i > max_generations):
break
gc.collect()
g += 1
print('Finished')