diff --git a/src/adler/adler.py b/src/adler/adler.py index 9369f2f..f928067 100644 --- a/src/adler/adler.py +++ b/src/adler/adler.py @@ -94,10 +94,6 @@ def runAdler(cli_args): df_obs["outlier"] = [False] * len(df_obs) logger.info("{} observations retrieved".format(len(df_obs))) - if filt == "g": - logger.info(print(df_obs[obs_cols])) - logger.info(df_obs[obs_cols]) - # load and merge the previous obs # TODO: replace this part with classifications loaded from adlerData save_file = "{}/df_outlier_{}_{}.csv".format(cli_args.outpath, cli_args.ssObjectId, filt) @@ -108,9 +104,6 @@ def runAdler(cli_args): df_obs.loc[ pd.isnull(df_obs["outlier_y"]), "outlier_y" ] = False # ensure that classifications exist (nan entries can only be false?). Weird behaviour here for g filter, is it to do with when new g obs appear relative to r/i etc? - if filt == "g": - logger.info(print(df_obs)) - logger.info(df_obs) df_obs = df_obs.rename({"outlier_y": "outlier"}, axis=1) df_obs = df_obs.drop("outlier_x", axis=1) else: @@ -145,8 +138,6 @@ def runAdler(cli_args): df_save.to_csv(save_file) print("insufficient data, use default SSObject phase model and continue") logger.info("insufficient data, use default SSObject phase model and continue") - if filt == "g": - logger.info(print(df_save)) # use the default SSObject phase parameter if there is no better information pc_dict = {