-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmap_WQX3.0_csv_profiles.R
461 lines (367 loc) · 22.3 KB
/
map_WQX3.0_csv_profiles.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
##
## Script name: map_WQX3.0_csv_profiles
##
## Purpose of script: create a master table mapping WQX 3.0 profiles to .csv field names and order. Note: this script works for
## most profiles, except for the Site and Organization profiles, which pull location metadata from a different source and therefore
## require a different mapping.
##
## Author: Lee F. Stanish
##
## Date Created: 2022-04-27
##
## Copyright (c) Lee Stanish, 2022
## Email: [email protected]
##
## ---------------------------
##
#### SET-UP: RUN FOR ALL SECTIONS ####
options(stringsAsFactors = FALSE)
library(readxl)
library(plyr)
library(dplyr)
library(tidyr)
library(stringr)
#### END SET-UP ####
#### SECTION 1: Results and Activity Level Profiles ####
#dir <- '/Users/lstanish/OneDrive - DOI/Documents/WQX/New_WQX3.0_WQP_Profiles_All/' # old directory to final profiles
dir <- '/Users/lstanish/Documents/GitHub/WQP_Profiles/'
fileList <- list.files(paste0(dir, "/WQX3.0_WQP_Profiles_All"), pattern="Final", full.names = T)
# remove Site and Org profiles
fileList <- fileList[-grep("(?i)site|(?i)organization", fileList)]
#fileListAbbr <- list.files(paste0(dir,'/WQX3.0_WQP_Profiles_All'), pattern="Final", full.names = F)
det3 <- read.csv(paste0(dir,'/WQX_DET_v3.0.csv')) # det3.0 file
csvMapping <- read.csv(paste0(dir,'/WQX3.0_csv_fieldNames_andOrder_ResultsAndActivityProfiles.csv')) # manually-curated list of EPA-submitted field names for csv and order of fields for most 3.0 profiles (excluding Org and Site)
det3Mapping <- read.csv(paste0(dir,'/WQX3.0_mapping_final_20220404.csv')) # det3.0 file with EPA dump file mappings
# pull out profile name from file name
fileName <- gsub(".*/([a-zA-Z]+)_([a-zA-Z]+)_.*$", "\\2", fileList)
# remove extraneous fields from det3
det3 <- det3[, -grep("(?i)biodata", names(det3))]
for(i in 1:length(fileList)) {
tmp <- read_excel(fileList[i])
tmp$FileName <- fileName[i]
#print(fileList[i])
#test <- grepl("GroupSummaryWeightMeasureUnitCode", tmp)
#print(test)
if(i==1) {
joined <- tmp
} else {
joined <- full_join(joined, tmp, by=c("ProfileFieldName", "FileName") )
}
}
# widen the profiles table
joinedWide <- pivot_wider(data = joined, names_from = FileName, values_from = FileName)
# add leading zeroes to csvMapping and det3 Index fields (for some reason they won't stick)
csvMapping$Sort.Within.Category.Schema.Location[grep("^4.01", csvMapping$Sort.Within.Category.Schema.Location)] <- "04.01"
csvMapping$Sort.Within.Category.Schema.Location[grep("^4.03", csvMapping$Sort.Within.Category.Schema.Location)] <- "04.03"
csvMapping$Sort.Within.Category.Schema.Location[grep("^4.04", csvMapping$Sort.Within.Category.Schema.Location)] <- "04.04"
csvMapping$Sort.Within.Category.Schema.Location[grep("^4.05", csvMapping$Sort.Within.Category.Schema.Location)] <- "04.05"
csvMapping$Sort.Within.Category.Schema.Location[grep("^4.06", csvMapping$Sort.Within.Category.Schema.Location)] <- "04.06"
det3Mapping$Sort.Within.Category.Schema.Location[grep("^4.01", det3Mapping$Sort.Within.Category.Schema.Location)] <- "04.01"
# merge the det3.0 file with the csvMapping file and pray it works!
names(det3)
names(csvMapping)
schemaJoined <- full_join(det3, csvMapping, by=c('Sort.Within.Category.Schema.Location',
"Data.Element.XML.Tag"))
# merge the schema joined with the det mapping file and hope it works!
names(schemaJoined)
names(det3Mapping)
schemaMappedJoined <- full_join(schemaJoined, det3Mapping)
# merge the joined det table with the profile table and hope it works!
names(joinedWide)
names(schemaMappedJoined)
joinedCsvAndDet3 <- full_join(schemaMappedJoined, joinedWide, by=c("csvFieldName"="ProfileFieldName"))
# counts check to make sure all fields for each profile got mapped #
for(i in 1:length(fileList)) {
tmp <- read_excel(fileList[i])
if(i==1) {
nFields <- nrow(tmp)
} else {
nFields <- c(nFields, nrow(tmp) )
}
}
profileColInd <- which(names(joinedCsvAndDet3)=="ActivityMetric")
profileColEnd <- ncol(joinedCsvAndDet3)
for(a in profileColInd:profileColEnd) {
tmp <- sum(!is.na(joinedCsvAndDet3[,a]))
if(a==profileColInd) {
nMappedFields <- tmp
} else {
nMappedFields <- c(nMappedFields, tmp)
}
}
nFields-nMappedFields
# [1] 0 0 0 0 0 0 0 0 0, looks good, same number of fields in as out
# export mapping file #
write.csv(joinedCsvAndDet3, '/Users/lstanish/OneDrive - DOI/Documents/WQX/WQX3.0_csv_mapping_template_ResultsAndActivityProfiles.csv',
row.names = FALSE, na = "")
# create standardized field names
finalMapping <- joinedCsvAndDet3
# re-order object by schema order, rownumber and fieldorder
finalMapping <- finalMapping[order(finalMapping$Sort.Within.Category.Schema.Location, finalMapping$RowOrder), ]
# add a field for storing the standardized csv field name
finalMapping$FinalCsvFieldNameStandardized <- ""
rowsToCheck <- which(!is.na(finalMapping$RowOrder)==TRUE)
hierarchInd <- which(str_count(finalMapping$Sort.Within.Category.Schema.Location, "\\.") >= 2)
for(b in rowsToCheck) {
if(finalMapping$HeaderOrField[b]=="header") {
header <- finalMapping$Data.Element.XML.Tag[b]
#print(header)
}
if(b %in% hierarchInd) {
finalMapping$FinalCsvFieldNameStandardized[b] <- paste(header, finalMapping$Data.Element.XML.Tag[b], sep="/")
} else {
finalMapping$FinalCsvFieldNameStandardized[b] <- finalMapping$csvFieldName[b]
}
}
### Manual clean-up ###
# append _1, _2, _3 to FrequencyClassDescriptorCode and UnitCode
freqCode <- grep("FrequencyClassDescriptorCode", finalMapping$FinalCsvFieldNameStandardized)
finalMapping$FinalCsvFieldNameStandardized[freqCode] <- paste(finalMapping$FinalCsvFieldNameStandardized[freqCode], 1:3, sep="_")
freqUnit <- grep("FrequencyClassDescriptorUnitCode", finalMapping$FinalCsvFieldNameStandardized)
finalMapping$FinalCsvFieldNameStandardized[freqUnit] <- paste(finalMapping$FinalCsvFieldNameStandardized[freqUnit], 1:3, sep="_")
freqLBound <- grep("LowerClassBoundValue", finalMapping$FinalCsvFieldNameStandardized)
finalMapping$FinalCsvFieldNameStandardized[freqLBound] <- paste(finalMapping$FinalCsvFieldNameStandardized[freqLBound], 1:3, sep="_")
freqUBound <- grep("UpperClassBoundValue", finalMapping$FinalCsvFieldNameStandardized)
finalMapping$FinalCsvFieldNameStandardized[freqUBound] <- paste(finalMapping$FinalCsvFieldNameStandardized[freqUBound], 1:3, sep="_")
# remove unallowable characters (only know of spaces and #)
finalMapping$FinalCsvFieldNameStandardized <- gsub(" ", "", finalMapping$FinalCsvFieldNameStandardized)
finalMapping$FinalCsvFieldNameStandardized <- gsub("#", "_", finalMapping$FinalCsvFieldNameStandardized)
# fix wonky header name for HabitatSelectionMethod and ToxicityTestType
finalMapping$FinalCsvFieldNameStandardized <- gsub('CurrentSpeedMeasure/HabitatSelectionMethod',
"BiologicalActivityDescription/HabitatSelectionMethod", finalMapping$FinalCsvFieldNameStandardized)
finalMapping$FinalCsvFieldNameStandardized <- gsub('CurrentSpeedMeasure/ToxicityTestType',
"BiologicalActivityDescription/ToxicityTestType", finalMapping$FinalCsvFieldNameStandardized)
# map field name ActivityLocation/HorizontalCoordinateReferenceSystemDatumName, to the schema mapping in 05.01.06
# necessary so that this field appears in the right order, grouped with the lat/lon values
indToMap <- which(finalMapping$Sort.Within.Category.Schema.Location=="05.01.02outbound")
finalMapping$Data.Type[indToMap] <- "From domain values string min 1 string max 6"
finalMapping$Schema.3.0.File.Name[indToMap] <- "WQX_ActivityLocation_v3.0.xsd"
finalMapping$Tables.and.Columns.Foreign.KEYS[indToMap] <- "WQX.HORIZONTAL_REFERENCE_DATUM (WQX.ACTIVITY.HRDAT_UID)"
finalMapping$WQX.Table.Name[indToMap] <- "HORIZONTAL_REFERENCE_DATUM"
finalMapping$WQX.Field.Name[indToMap] <- "HRDAT_NAME"
# map CASnumber, which doesn't exist in the WQX 3.0 schema
indCAS <- which(finalMapping$Data.Element.XML.Tag=="CASNumber")
finalMapping$WQX.Table.Name[indCAS] <- 'CHARACTERISTIC'
finalMapping$WQX.Field.Name[indCAS] <- 'CHR_CAS_NUMBER'
# fix name of AlternateMonitoringLocation counts field
finalMapping$FinalCsvFieldNameStandardized[grep("AlternateMonitoringLocationIdentity/MonitoringLocationIdentifier",
finalMapping$FinalCsvFieldNameStandardized)] <-
"AlternateMonitoringLocationIdentity/MonitoringLocationIdentifierCount"
### End Manual Clean-up ###
# check for duplicate final field names
finalFieldNames <- finalMapping$FinalCsvFieldNameStandardized[-which(finalMapping$FinalCsvFieldNameStandardized=="")]
any(duplicated(finalFieldNames) ) # FALSE, all good
finalFieldNames[which(duplicated(finalFieldNames))]
# re-order object by rownumber and delivery order
finalMapping <- finalMapping[order(finalMapping$RowOrder, finalMapping$DeliveryOrder), ]
# compare lengths of epa and usgs field names
min(nchar(finalMapping$csvFieldName), na.rm = T)
max(nchar(finalMapping$csvFieldName), na.rm = T) #61
min(nchar(finalMapping$FinalCsvFieldNameStandardized), na.rm = T)
max(nchar(finalMapping$FinalCsvFieldNameStandardized), na.rm = T) #77
# export mapping file #
finalMapping %>% rename('EpaSuppliedCsvFieldName'='csvFieldName') %>%
select(c('Sub.Category', 'Sort.Within.Category.Schema.Location', 'Data.Element.XML.Tag', 'Lookup.Table.Needed',
'Schema.3.0.File.Name', 'DeliveryOrder', 'Tables.and.Columns.Foreign.KEYS',
'WQX.Table.Name', 'WQX.Field.Name', 'WQX.Mapping.Comments', 'ActivityMetric',
'BasicBiological', 'BasicPhysicalChemical', 'BiologicalHabitatIndex', 'FullBiological',
'FullPhysicalChemical', 'ResultDetectionQuantitationLimit', 'SamplingActivity',
'FinalCsvFieldNameStandardized', 'EpaSuppliedCsvFieldName')) %>%
filter(!is.na(DeliveryOrder)) %>%
write.csv(paste0(dir,'WQX3.0_csv_final_mapping_template_ResultsAndActivityProfiles.csv'),
row.names = FALSE, na = "")
#### END SECTION 1: Results and Activity Level Profiles ####
#### SECTION 2: Site Profile ####
dir <- '/Users/lstanish/OneDrive - DOI/Documents/WQX/New_WQX3.0_WQP_Profiles_All/' # directory to final profiles
fileList <- list.files(dir, pattern="Final", full.names = T)
# keep Site profile only
fileList <- fileList[grep("(?i)site", fileList)]
det3 <- read.csv('/Users/lstanish/OneDrive - DOI/Documents/WQX/WQX_DET_v3.0.csv') # det3.0 file
csvMapping <- read.csv('/Users/lstanish/OneDrive - DOI/Documents/WQX/WQX3.0_csv_fieldNames_andOrder_SiteProfile.csv') # manually-curated list of EPA-submitted field names for csv and order of fields for Site 3.0 profile
det3Mapping <- read.csv('/Users/lstanish/OneDrive - DOI/Documents/WQX/WQX3.0_mapping_final_20220404.csv') # det3.0 file with EPA dump file mappings
# pull out profile name from file name
fileName <- "Site"
# remove extraneous fields from det3
det3 <- det3[, -grep("(?i)biodata", names(det3))]
joined <- read_excel(fileList[1])
joined$FileName <- fileName[1]
print(fileList[1])
# for consistency with Section 1, re-name object to match previous Section
joinedWide <- joined %>% dplyr::rename(Site=FileName)
# merge the det3.0 file with the csvMapping file and pray it works!
names(det3)
names(csvMapping)
schemaJoined <- full_join(det3, csvMapping, by=c('Sort.Within.Category.Schema.Location',
"Data.Element.XML.Tag"))
# merge the schema joined with the det mapping file and hope it works!
names(schemaJoined)
names(det3Mapping)
schemaMappedJoined <- full_join(schemaJoined, det3Mapping)
# merge the joined det table with the profile table and hope it works!
names(joinedWide)
names(schemaMappedJoined)
joinedCsvAndDet3 <- full_join(schemaMappedJoined, joinedWide, by=c("csvFieldName"="ProfileFieldName"))
# counts check to make sure all fields for each profile got mapped #
nFields <- nrow(joined)
nMappedFields <- sum(!is.na(joinedCsvAndDet3$Site))
nFields-nMappedFields
# [1] 0, looks good, same number of fields in as out
# export mapping file #
write.csv(joinedCsvAndDet3, '/Users/lstanish/OneDrive - DOI/Documents/WQX/WQX3.0_csv_profiles_mapping_template_site.csv',
row.names = FALSE, na = "")
# create standardized field names
finalMapping <- joinedCsvAndDet3
# re-order object by schema order, rownumber and fieldorder
finalMapping <- finalMapping[order(finalMapping$Sort.Within.Category.Schema.Location, finalMapping$RowOrder), ]
# add a field for storing the standardized csv field name
finalMapping$FinalCsvFieldNameStandardized <- ""
rowsToCheck <- which(!is.na(finalMapping$RowOrder)==TRUE)
hierarchInd <- which(str_count(finalMapping$Sort.Within.Category.Schema.Location, "\\.") >= 2)
for(b in rowsToCheck) {
if(finalMapping$HeaderOrField[b]=="header") {
header <- finalMapping$Data.Element.XML.Tag[b]
#print(header)
}
if(b %in% hierarchInd) {
finalMapping$FinalCsvFieldNameStandardized[b] <- paste(header, finalMapping$Data.Element.XML.Tag[b], sep="/")
} else {
finalMapping$FinalCsvFieldNameStandardized[b] <- finalMapping$csvFieldName[b]
}
}
### Manual clean-up ###
# append _1, _2, _3 to AlternateMonitoringLocationIdentity/MonitoringLocationIdentifier and Context fields
idCode <- grep("AlternateMonitoringLocationIdentity/MonitoringLocationIdentifier$", finalMapping$FinalCsvFieldNameStandardized)
finalMapping$FinalCsvFieldNameStandardized[idCode] <- paste(finalMapping$FinalCsvFieldNameStandardized[idCode], 1:3, sep="_")
idContext <- grep("AlternateMonitoringLocationIdentity/MonitoringLocationIdentifierContext", finalMapping$FinalCsvFieldNameStandardized)
finalMapping$FinalCsvFieldNameStandardized[idContext] <- paste(finalMapping$FinalCsvFieldNameStandardized[idContext], 1:3, sep="_")
# remove unallowable characters (only know of spaces and #)
finalMapping$FinalCsvFieldNameStandardized <- gsub(" ", "", finalMapping$FinalCsvFieldNameStandardized)
finalMapping$FinalCsvFieldNameStandardized <- gsub("#", "_", finalMapping$FinalCsvFieldNameStandardized)
# fix wonky header name for HabitatSelectionMethod and ToxicityTestType
finalMapping$FinalCsvFieldNameStandardized <- gsub('CurrentSpeedMeasure/HabitatSelectionMethod',
"BiologicalActivityDescription/HabitatSelectionMethod", finalMapping$FinalCsvFieldNameStandardized)
finalMapping$FinalCsvFieldNameStandardized <- gsub('CurrentSpeedMeasure/ToxicityTestType',
"BiologicalActivityDescription/ToxicityTestType", finalMapping$FinalCsvFieldNameStandardized)
### End Manual Clean-up ###
# check for duplicate final field names
finalFieldNames <- finalMapping$FinalCsvFieldNameStandardized[-which(finalMapping$FinalCsvFieldNameStandardized=="")]
any(duplicated(finalFieldNames) ) # FALSE, all good
finalFieldNames[which(duplicated(finalFieldNames))]
# re-order object by rownumber and delivery order
finalMapping <- finalMapping[order(finalMapping$RowOrder, finalMapping$DeliveryOrder), ]
# compare lengths of epa and usgs field names
min(nchar(finalMapping$csvFieldName), na.rm = T)
max(nchar(finalMapping$csvFieldName), na.rm = T) #61
min(nchar(finalMapping$FinalCsvFieldNameStandardized), na.rm = T)
max(nchar(finalMapping$FinalCsvFieldNameStandardized), na.rm = T) #77
# export mapping file #
finalMapping %>% rename('EpaSuppliedCsvFieldName'='csvFieldName') %>%
select(c('Sub.Category', 'Sort.Within.Category.Schema.Location', 'Data.Element.XML.Tag', 'Lookup.Table.Needed',
'Schema.3.0.File.Name', 'DeliveryOrder', 'Tables.and.Columns.Foreign.KEYS',
'WQX.Table.Name', 'WQX.Field.Name', 'WQX.Mapping.Comments', 'Site',
'FinalCsvFieldNameStandardized', 'EpaSuppliedCsvFieldName')) %>%
filter(!is.na(DeliveryOrder)) %>%
write.csv('/Users/lstanish/OneDrive - DOI/Documents/WQX/WQX3.0_csv_final_mapping_template_SiteProfile.csv',
row.names = FALSE, na = "")
#### END SECTION 2: Site Level Profile ####
#### INCOMPLETE SECTION 3: Organization Profile ####
dir <- '/Users/lstanish/OneDrive - DOI/Documents/WQX/New_WQX3.0_WQP_Profiles_All/' # directory to final profiles
fileList <- list.files(dir, pattern="Final", full.names = T)
# keep Organization profile only
fileList <- fileList[grep("(?i)organization", fileList)]
det3 <- read.csv('/Users/lstanish/OneDrive - DOI/Documents/WQX/WQX_DET_v3.0.csv') # det3.0 file
csvMapping <- read.csv('/Users/lstanish/OneDrive - DOI/Documents/WQX/WQX3.0_csv_fieldNames_andOrder_OrganizationProfile.csv') # manually-curated list of EPA-submitted field names for csv and order of fields for Org 3.0 profile
det3Mapping <- read.csv('/Users/lstanish/OneDrive - DOI/Documents/WQX/WQX3.0_mapping_final_20220404.csv') # det3.0 file with EPA dump file mappings
# pull out profile name from file name
fileName <- "Organization"
# remove extraneous fields from det3
det3 <- det3[, -grep("(?i)biodata", names(det3))]
joined <- read_excel(fileList[1])
joined$FileName <- fileName[1]
print(fileList[1])
# for consistency with Section 1, re-name object to match previous Section
joinedWide <- joined %>% dplyr::rename(Organization=FileName)
# merge the det3.0 file with the csvMapping file and pray it works!
names(det3)
names(csvMapping)
schemaJoined <- full_join(det3, csvMapping, by=c('Sort.Within.Category.Schema.Location',
"Data.Element.XML.Tag"))
# merge the schema joined with the det mapping file and hope it works!
names(schemaJoined)
names(det3Mapping)
schemaMappedJoined <- full_join(schemaJoined, det3Mapping)
# merge the joined det table with the profile table and hope it works!
names(joinedWide)
names(schemaMappedJoined)
joinedCsvAndDet3 <- full_join(schemaMappedJoined, joinedWide, by=c("csvFieldName"="ProfileFieldName"))
# counts check to make sure all fields for each profile got mapped #
nFields <- nrow(joined)
nMappedFields <- sum(!is.na(joinedCsvAndDet3$Organization))
nFields-nMappedFields
# [1] 0, looks good, same number of fields in as out
# export mapping file #
write.csv(joinedCsvAndDet3, '/Users/lstanish/OneDrive - DOI/Documents/WQX/WQX3.0_csv_profiles_mapping_template_organization.csv',
row.names = FALSE, na = "")
# create standardized field names
finalMapping <- joinedCsvAndDet3
# re-order object by schema order, rownumber and fieldorder
finalMapping <- finalMapping[order(finalMapping$Sort.Within.Category.Schema.Location, finalMapping$RowOrder), ]
# add a field for storing the standardized csv field name
finalMapping$FinalCsvFieldNameStandardized <- ""
rowsToCheck <- which(!is.na(finalMapping$RowOrder)==TRUE)
hierarchInd <- which(str_count(finalMapping$Sort.Within.Category.Schema.Location, "\\.") >= 2)
for(b in rowsToCheck) {
if(finalMapping$HeaderOrField[b]=="header") {
header <- finalMapping$Data.Element.XML.Tag[b]
#print(header)
}
if(b %in% hierarchInd) {
finalMapping$FinalCsvFieldNameStandardized[b] <- paste(header, finalMapping$Data.Element.XML.Tag[b], sep="/")
} else {
finalMapping$FinalCsvFieldNameStandardized[b] <- finalMapping$csvFieldName[b]
}
}
### Manual clean-up ###
# append _1, _2, _3 to AddressTypeName, AddressText, SupplementalAddressText, LocalityName, StateCode, PostalCode, CountryCode,
# CountyCode fields
addType <- grep("/AddressTypeName$", finalMapping$FinalCsvFieldNameStandardized)
finalMapping$FinalCsvFieldNameStandardized[addType] <- paste(finalMapping$FinalCsvFieldNameStandardized[addType], 1:3, sep="_")
addText <- grep("/AddressText$", finalMapping$FinalCsvFieldNameStandardized)
finalMapping$FinalCsvFieldNameStandardized[addText] <- paste(finalMapping$FinalCsvFieldNameStandardized[addText], 1:3, sep="_")
addSupp <- grep("/SupplementalAddressText$", finalMapping$FinalCsvFieldNameStandardized)
finalMapping$FinalCsvFieldNameStandardized[addSupp] <- paste(finalMapping$FinalCsvFieldNameStandardized[addSupp], 1:3, sep="_")
localNm <- grep("/LocalityName$", finalMapping$FinalCsvFieldNameStandardized)
finalMapping$FinalCsvFieldNameStandardized[localNm] <- paste(finalMapping$FinalCsvFieldNameStandardized[localNm], 1:3, sep="_")
stateCd <- grep("/StateCode$", finalMapping$FinalCsvFieldNameStandardized)
finalMapping$FinalCsvFieldNameStandardized[stateCd] <- paste(finalMapping$FinalCsvFieldNameStandardized[stateCd], 1:3, sep="_")
postCd <- grep("/PostalCode$", finalMapping$FinalCsvFieldNameStandardized)
finalMapping$FinalCsvFieldNameStandardized[postCd] <- paste(finalMapping$FinalCsvFieldNameStandardized[postCd], 1:3, sep="_")
countryCd <- grep("/CountryCode$", finalMapping$FinalCsvFieldNameStandardized)
finalMapping$FinalCsvFieldNameStandardized[countryCd] <- paste(finalMapping$FinalCsvFieldNameStandardized[countryCd], 1:3, sep="_")
countyCd <- grep("/CountyCode$", finalMapping$FinalCsvFieldNameStandardized)
finalMapping$FinalCsvFieldNameStandardized[countyCd] <- paste(finalMapping$FinalCsvFieldNameStandardized[countyCd], 1:3, sep="_")
# remove unallowable characters (only know of spaces and #)
finalMapping$FinalCsvFieldNameStandardized <- gsub(" ", "", finalMapping$FinalCsvFieldNameStandardized)
finalMapping$FinalCsvFieldNameStandardized <- gsub("#", "_", finalMapping$FinalCsvFieldNameStandardized)
### End Manual Clean-up ###
# check for duplicate final field names
finalFieldNames <- finalMapping$FinalCsvFieldNameStandardized[-which(finalMapping$FinalCsvFieldNameStandardized=="")]
any(duplicated(finalFieldNames) ) # should be FALSE if all good
finalFieldNames[which(duplicated(finalFieldNames))]
# re-order object by rownumber and delivery order
finalMapping <- finalMapping[order(finalMapping$RowOrder, finalMapping$DeliveryOrder), ]
# compare lengths of epa and usgs field names
min(nchar(finalMapping$csvFieldName), na.rm = T)
max(nchar(finalMapping$csvFieldName), na.rm = T) #61
min(nchar(finalMapping$FinalCsvFieldNameStandardized), na.rm = T)
max(nchar(finalMapping$FinalCsvFieldNameStandardized), na.rm = T) #77
# export mapping file #
finalMapping %>% rename('EpaSuppliedCsvFieldName'='csvFieldName') %>%
select(c('Sub.Category', 'Sort.Within.Category.Schema.Location', 'Data.Element.XML.Tag', 'Lookup.Table.Needed',
'Schema.3.0.File.Name', 'DeliveryOrder', 'Tables.and.Columns.Foreign.KEYS',
'WQX.Table.Name', 'WQX.Field.Name', 'WQX.Mapping.Comments', 'Organization',
'FinalCsvFieldNameStandardized', 'EpaSuppliedCsvFieldName')) %>%
filter(!is.na(DeliveryOrder)) %>%
write.csv('/Users/lstanish/OneDrive - DOI/Documents/WQX/WQX3.0_csv_final_mapping_template_OrganizationProfile.csv',
row.names = FALSE, na = "")
#### END SECTION 3 ####