-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlogratio_transformations.py
203 lines (157 loc) · 7.96 KB
/
logratio_transformations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import numpy as np
# numpy functions
# additive log-ratio cl_transform
def additive_log_ratio_transform(compositional):
"""Applies the additive log-ratio transform to compositional data."""
compositional = compositional[:] + np.finfo(compositional.dtype).eps
continuous = np.log(compositional[..., :-1] / compositional[..., -1, np.newaxis])
return continuous
# inverse additive log-ratio cl_transform
def inverse_additive_log_ratio_transform(continuous):
"""Inverts the additive log-ratio transform, producing compositional data."""
n = continuous.shape[0]
compositional = np.hstack((np.exp(continuous), np.ones((n, 1))))
compositional /= compositional.sum(axis=-1, keepdims=1)
return compositional
# centered log-ratio cl_transform
def centered_log_ratio_transform(compositional):
"""Applies the centered log-ratio transform to compositional data."""
continuous = np.log(compositional + np.finfo(compositional.dtype).eps)
continuous -= continuous.mean(-1, keepdims=True)
return continuous
# inverse centered log-ratio cl_transform
def inverse_centered_log_ratio_transform(continuous):
"""Inverts the centered log-ratio transform, producing compositional data."""
compositional = np.exp(continuous)
compositional /= compositional.sum(axis=-1, keepdims=1)
return compositional
# isometric log-ratio cl_transform
def isometric_log_ratio_transform(compositional, projection_matrix):
"""Applies the isometric log-ratio transform to compositional data."""
continuous = centered_log_ratio_transform(compositional)
continuous = np.dot(continuous, projection_matrix)
return continuous
# inverse isometric log-ratio cl_transform
def inverse_isometric_log_ratio_transform(continuous, projection_matrix):
"""Inverts the isometric log-ratio transform, producing compositional data."""
continuous = np.dot(continuous, projection_matrix.T)
compositional = inverse_centered_log_ratio_transform(continuous)
return compositional
# isometric log-ratio cl_transform
def easy_isometric_log_ratio_transform(compositional):
"""Applies the isometric log-ratio transform to compositional data."""
continuous = centered_log_ratio_transform(compositional)
projection_matrix = make_projection_matrix(continuous.shape[1])
continuous = np.dot(continuous, projection_matrix)
return continuous
# inverse isometric log-ratio cl_transform
def easy_inverse_isometric_log_ratio_transform(continuous):
"""Inverts the isometric log-ratio transform, producing compositional data."""
projection_matrix = make_projection_matrix(continuous.shape[1] + 1)
continuous = np.dot(continuous, projection_matrix.T)
compositional = inverse_centered_log_ratio_transform(continuous)
return compositional
# projection matrix for isometric log-ratio cl_transform
def make_projection_matrix(dimension):
"""Creates the projection matrix for the the isometric log-ratio transform."""
projection_matrix = np.zeros((dimension, dimension - 1), dtype=np.float32)
for it in range(dimension - 1):
i = it + 1
projection_matrix[:i, it] = 1. / i
projection_matrix[i, it] = -1
projection_matrix[i + 1:, it] = 0
projection_matrix[:, it] *= np.sqrt(i / (i + 1.))
return projection_matrix
# theano functions
eps = np.finfo(np.float32).eps
# additive log-ratio cl_transform
def theano_additive_log_ratio_transform(compositional):
"""Applies the additive log-ratio transform to compositional data."""
from theano import tensor as T
compositional = compositional[:] + eps
continuous = T.log(compositional[..., :-1] /
compositional[..., -1].reshape(compositional.shape[:-1] + (1,)))
return continuous
# inverse additive log-ratio cl_transform
def theano_inverse_additive_log_ratio_transform(continuous):
"""Inverts the additive log-ratio transform, producing compositional data."""
from theano import tensor as T
compositional = T.stack((T.exp(continuous), T.ones((continuous.shape[0], 1))), axis=continuous.ndim - 1)
compositional /= compositional.sum(axis=-1, keepdims=1)
return compositional
# centered log-ratio cl_transform
def theano_centered_log_ratio_transform(compositional):
"""Applies the centered log-ratio transform to compositional data."""
from theano import tensor as T
compositional = compositional[:] + eps
continuous = T.log(compositional)
continuous -= continuous.mean(-1, keepdims=True)
return continuous
# inverse centered log-ratio cl_transform
def theano_inverse_centered_log_ratio_transform(continuous):
"""Inverts the centered log-ratio transform, producing compositional data."""
from theano import tensor as T
compositional = T.exp(continuous)
compositional /= compositional.sum(axis=-1, keepdims=1)
return compositional
# isometric log-ratio cl_transform
def theano_isometric_log_ratio_transform(compositional, projection_matrix):
"""Applies the isometric log-ratio transform to compositional data."""
from theano import tensor as T
continuous = theano_centered_log_ratio_transform(compositional)
continuous = T.dot(continuous, projection_matrix)
return continuous
# inverse isometric log-ratio cl_transform
def theano_inverse_isometric_log_ratio_transform(continuous, projection_matrix):
"""Inverts the isometric log-ratio transform, producing compositional data."""
from theano import tensor as T
continuous = T.dot(continuous, projection_matrix.T)
compositional = theano_inverse_centered_log_ratio_transform(continuous)
return compositional
# tensorflow functions
# additive log-ratio cl_transform
def tf_additive_log_ratio_transform(compositional, name='alrt'):
"""Applies the additive log-ratio transform to compositional data."""
import tensorflow as tf
compositional = compositional + eps
continuous = tf.log(compositional[..., :-1] / compositional[..., -1:], name=name)
return continuous
# inverse additive log-ratio cl_transform
def tf_inverse_additive_log_ratio_transform(continuous, name='ialrt'):
"""Inverts the additive log-ratio transform, producing compositional data."""
import tensorflow as tf
compositional = tf.concat((tf.exp(continuous), tf.ones((tf.shape(continuous)[0], 1))), axis=-1)
compositional /= tf.reduce_sum(compositional, axis=-1, keep_dims=True, name=name)
return compositional
# centered log-ratio cl_transform
def tf_centered_log_ratio_transform(compositional, name='clrt'):
"""Applies the centered log-ratio transform to compositional data."""
import tensorflow as tf
compositional = compositional[:] + eps
continuous = tf.log(compositional)
continuous -= tf.reduce_mean(continuous, axis=-1, keep_dims=True)
if name:
continuous = tf.identity(continuous, name=name)
return continuous
# inverse centered log-ratio cl_transform
def tf_inverse_centered_log_ratio_transform(continuous, name='iclrt'):
"""Inverts the centered log-ratio transform, producing compositional data."""
import tensorflow as tf
compositional = tf.nn.softmax(continuous)
if name:
compositional = tf.identity(compositional, name=name)
return compositional
# isometric log-ratio cl_transform
def tf_isometric_log_ratio_transform(compositional, projection_matrix, name='ilrt'):
"""Applies the isometric log-ratio transform to compositional data."""
import tensorflow as tf
continuous = tf_centered_log_ratio_transform(compositional, name=None)
continuous = tf.matmul(continuous, projection_matrix, name=name)
return continuous
# inverse isometric log-ratio cl_transform
def tf_inverse_isometric_log_ratio_transform(continuous, projection_matrix, name='iilrt'):
"""Inverts the isometric log-ratio transform, producing compositional data."""
import tensorflow as tf
continuous = tf.matmul(continuous, projection_matrix, transpose_b=True)
compositional = tf_inverse_centered_log_ratio_transform(continuous, name=None)
return tf.identity(compositional, name=name)