forked from gpspelle/game-theory
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
123 lines (99 loc) · 3.51 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import os
import sys
import time
from argparse import ArgumentParser
import pandas as pd
def get_text(name, remove=False):
f = []
with open(name, 'r') as file:
for line in file.readlines()[1:]:
line = line.replace(";", "")
line = line.replace("\n", "")
line = line.split(" ")
if remove and len(line) == 3:
line = line[:-1]
f.append(line)
return f
parser = ArgumentParser()
parser.add_argument("--folder", help="test folder", nargs='+', required=True)
try:
args = parser.parse_args()
except:
parser.print_help(sys.stderr)
exit(1)
folder = args.folder[0]
tests = os.listdir(folder)
output_folder = "output/"
if not os.path.exists(output_folder):
os.makedirs(output_folder)
methods = ["op1_pawel", "op2_pawel", "op3_pawel", "op4_pawel"]
expected_outcomes = []
for test in tests:
os.system("pgsolver -global recursive --printsolonly " + folder + "/" + test + " > " + output_folder + test[:-3] + "_pg.gm")
expected_outcomes.append(get_text("output/" + test[:-3] + "_pg.gm", True))
failed = [[] for j in range(len(methods))]
times = [[] for j in range(len(methods))]
avg_times = []
total_times = []
j = 0
print("------------------------------------")
for method in methods:
print("METHOD: " + method)
i = 0
total_time = 0
for test in tests:
start_time = time.time()
os.system("python3 " + method + ".py" + " --input " + folder + "/" + test + " --output " + output_folder + test[:-3] + "_pp.gm")
elapsed_time = time.time() - start_time
times[j].append(elapsed_time)
actual_outcome = get_text("output/" + test[:-3] + "_pp.gm")
equal = (expected_outcomes[i] == actual_outcome)
result = "PASSED" if equal else "FAILED"
print("TEST #" + str(i).zfill(4) + " - " + result + " - Elapsed time in seconds: " + str(elapsed_time))
total_time += elapsed_time
if result == "FAILED":
failed[j].append(i)
i+=1
j+=1
#print("Total execution time: " + str(total_time))
#print("Average time: " + str(total_time/len(tests)))
total_times.append(total_time)
avg_times.append(total_time/len(tests))
print("------------------------------------")
j = 0
print("RESULTS:")
for method in methods:
print(method + ": Avg. Time: " + str(avg_times[j]) + " | Total time: " + str(total_times[j]))
j+=1
print("------------------------------------")
j = 0
print("FAILED: ")
for method in methods:
if len(failed[j]) == 0:
print(method + ": None")
else:
print(method + ": " + ''.join(failed[j]))
j+=1
print("------------------------------------")
# Find the best performing algorithm for each test
best_methods = []
print("BEST PERFORMANCE:")
for i in range(len(tests)):
j = 0
best_time = -1
for method in methods:
if best_time == -1 or times[j][i] < best_time:
best_time = times[j][i]
best_method = method
j+=1
print("TEST #" + str(i).zfill(4) + ": " + best_method + " with a time of " + str(best_time) + " seconds")
best_methods.append(best_method)
print("------------------------------------")
print("OVERALL BEST METHOD:")
number_method = {method: 0 for method in methods}
for i in best_methods:
number_method[i] += 1
best = max(number_method, key=lambda key: number_method[key])
print(best + ", best in " + str(100*number_method[best]/len(best_methods)) + "% of the tests")
print("NUMBER OF BEST PERFORMANCES FOR EACH METHOD:")
print(number_method)