diff --git a/setup.py b/setup.py
index 6052d4c..5607589 100644
--- a/setup.py
+++ b/setup.py
@@ -3,7 +3,7 @@
 setup(
   name = 'vit-pytorch',
   packages = find_packages(exclude=['examples']),
-  version = '0.11.1',
+  version = '0.12.0',
   license='MIT',
   description = 'Vision Transformer (ViT) - Pytorch',
   author = 'Phil Wang',
diff --git a/vit_pytorch/pit.py b/vit_pytorch/pit.py
new file mode 100644
index 0000000..0758dfb
--- /dev/null
+++ b/vit_pytorch/pit.py
@@ -0,0 +1,180 @@
+from math import sqrt
+
+import torch
+from torch import nn, einsum
+import torch.nn.functional as F
+
+from einops import rearrange, repeat
+from einops.layers.torch import Rearrange
+
+# helpers
+
+def cast_tuple(val, num):
+    return val if isinstance(val, tuple) else (val,) * num
+
+def conv_output_size(image_size, kernel_size, stride, padding = 0):
+    return int(((image_size - kernel_size + (2 * padding)) / stride) + 1)
+
+# classes
+
+class PreNorm(nn.Module):
+    def __init__(self, dim, fn):
+        super().__init__()
+        self.norm = nn.LayerNorm(dim)
+        self.fn = fn
+    def forward(self, x, **kwargs):
+        return self.fn(self.norm(x), **kwargs)
+
+class FeedForward(nn.Module):
+    def __init__(self, dim, hidden_dim, dropout = 0.):
+        super().__init__()
+        self.net = nn.Sequential(
+            nn.Linear(dim, hidden_dim),
+            nn.GELU(),
+            nn.Dropout(dropout),
+            nn.Linear(hidden_dim, dim),
+            nn.Dropout(dropout)
+        )
+    def forward(self, x):
+        return self.net(x)
+
+class Attention(nn.Module):
+    def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
+        super().__init__()
+        inner_dim = dim_head *  heads
+        project_out = not (heads == 1 and dim_head == dim)
+
+        self.heads = heads
+        self.scale = dim_head ** -0.5
+
+        self.attend = nn.Softmax(dim = -1)
+        self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
+
+        self.to_out = nn.Sequential(
+            nn.Linear(inner_dim, dim),
+            nn.Dropout(dropout)
+        ) if project_out else nn.Identity()
+
+    def forward(self, x):
+        b, n, _, h = *x.shape, self.heads
+        qkv = self.to_qkv(x).chunk(3, dim = -1)
+        q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv)
+
+        dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
+
+        attn = self.attend(dots)
+
+        out = einsum('b h i j, b h j d -> b h i d', attn, v)
+        out = rearrange(out, 'b h n d -> b n (h d)')
+        return self.to_out(out)
+
+class Transformer(nn.Module):
+    def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.):
+        super().__init__()
+        self.layers = nn.ModuleList([])
+        for _ in range(depth):
+            self.layers.append(nn.ModuleList([
+                PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout)),
+                PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout))
+            ]))
+    def forward(self, x):
+        for attn, ff in self.layers:
+            x = attn(x) + x
+            x = ff(x) + x
+        return x
+
+# depthwise convolution, for pooling
+
+class DepthWiseConv2d(nn.Module):
+    def __init__(self, dim_in, dim_out, kernel_size, padding, stride, bias = True):
+        super().__init__()
+        self.net = nn.Sequential(
+            nn.Conv2d(dim_in, dim_in, kernel_size = kernel_size, padding = padding, groups = dim_in, stride = stride, bias = bias),
+            nn.Conv2d(dim_in, dim_out, kernel_size = 1, bias = bias)
+        )
+    def forward(self, x):
+        return self.net(x)
+
+# pooling layer
+
+class Pool(nn.Module):
+    def __init__(self, dim):
+        super().__init__()
+        self.downsample = DepthWiseConv2d(dim, dim * 2, kernel_size = 3, stride = 2, padding = 1)
+        self.cls_ff = nn.Linear(dim, dim * 2)
+
+    def forward(self, x):
+        cls_token, tokens = x[:, :1], x[:, 1:]
+
+        cls_token = self.cls_ff(cls_token)
+
+        tokens = rearrange(tokens, 'b (h w) c -> b c h w', h = int(sqrt(tokens.shape[1])))
+        tokens = self.downsample(tokens)
+        tokens = rearrange(tokens, 'b c h w -> b (h w) c')
+
+        return torch.cat((cls_token, tokens), dim = 1)
+
+# main class
+
+class PiT(nn.Module):
+    def __init__(
+        self,
+        *,
+        image_size,
+        patch_size,
+        num_classes,
+        dim,
+        depth,
+        heads,
+        mlp_dim,
+        dim_head = 64,
+        dropout = 0.,
+        emb_dropout = 0.
+    ):
+        super().__init__()
+        assert image_size % patch_size == 0, 'Image dimensions must be divisible by the patch size.'
+        assert isinstance(depth, tuple), 'depth must be a tuple of integers, specifying the number of blocks before each downsizing'
+        heads = cast_tuple(heads, len(depth))
+
+        patch_dim = 3 * patch_size ** 2
+
+        self.to_patch_embedding = nn.Sequential(
+            nn.Unfold(kernel_size = patch_size, stride = patch_size // 2),
+            Rearrange('b c n -> b n c'),
+            nn.Linear(patch_dim, dim)
+        )
+
+        output_size = conv_output_size(image_size, patch_size, patch_size // 2)
+        num_patches = output_size ** 2
+
+        self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
+        self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
+        self.dropout = nn.Dropout(emb_dropout)
+
+        layers = []
+
+        for ind, (layer_depth, layer_heads) in enumerate(zip(depth, heads)):
+            not_last = ind < (len(depth) - 1)
+            
+            layers.append(Transformer(dim, layer_depth, layer_heads, dim_head, mlp_dim, dropout))
+
+            if not_last:
+                layers.append(Pool(dim))
+                dim *= 2
+
+        self.layers = nn.Sequential(
+            *layers,
+            nn.LayerNorm(dim),
+            nn.Linear(dim, num_classes)
+        )
+
+    def forward(self, img):
+        x = self.to_patch_embedding(img)
+        b, n, _ = x.shape
+
+        cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b)
+        x = torch.cat((cls_tokens, x), dim=1)
+        x += self.pos_embedding
+        x = self.dropout(x)
+
+        return self.layers(x)