-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_lenet_gpu.py
198 lines (157 loc) · 6.11 KB
/
train_lenet_gpu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
# -*- coding: utf-8 -*-
'''
@Time : 2020/6/11 23:54
@Author : HHNa
@FileName: train_lenet_gpu.py
@Software: PyCharm
'''
# -*- coding: utf-8 -*-
"""
# @file name : train_lenet.py
# @author : tingsongyu
# @date : 2019-09-07 10:08:00
# @brief : 人民币分类模型训练
"""
"""
# @file name : train_lenet_gpu.py
# @modified by: greebear
# @date : 2019-10-26 13:25:00
# @brief : 猫狗分类模型训练
"""
import os
import random
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
import torchvision.transforms as transforms
import torch.optim as optim
from matplotlib import pyplot as plt
from model.lenet_week import LeNet, MyNet
from tools.DogCat_dataset import DogCatDataset
from tools.common_tools import transform_invert
def set_seed(seed=1):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
set_seed() # 设置随机种子
# 参数设置
MAX_EPOCH = 40
BATCH_SIZE = 222#512 224内存满
LR = 0.001
log_interval = 10
val_interval = 1
# import torch
# a = torch.cuda.is_available()
# print(a)
# ngpu= 1
# # Decide which device we want to run on
# device = torch.device("cuda:0" if (torch.cuda.is_available() and ngpu > 0) else "cpu")
# print(device)
# print(torch.cuda.get_device_name(0))
# print(torch.rand(3,3).cuda())
if __name__ == '__main__':
# ============================ step 1/5 数据 ============================
split_dir = os.path.join(".", "data", "cad_split")
train_dir = os.path.join(split_dir, "train")
valid_dir = os.path.join(split_dir, "valid")
norm_mean = [0.485, 0.456, 0.406]
norm_std = [0.229, 0.224, 0.225]
train_transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.RandomCrop(224, padding=4),
transforms.ToTensor(),
transforms.Normalize(norm_mean, norm_std),
])
valid_transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(norm_mean, norm_std),
])
# 构建MyDataset实例
train_data = DogCatDataset(data_dir=train_dir, transform=train_transform)
valid_data = DogCatDataset(data_dir=valid_dir, transform=valid_transform)
# 构建DataLoder
train_loader = DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True, num_workers=16)
valid_loader = DataLoader(dataset=valid_data, batch_size=BATCH_SIZE, num_workers=16)
# ============================ step 2/5 模型 ============================
net = MyNet(classes=2)
net.initialize_weights()
print(net.to("cuda"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
net = net.to(device)
# ============================ step 3/5 损失函数 ============================
criterion = nn.CrossEntropyLoss()
# ============================ step 4/5 优化器 ============================
optimizer = optim.Adam(net.parameters(), lr=LR, betas=(0.9, 0.999), eps=1e-08, weight_decay=1e-1) # 选择优化器
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1) #设置学习率下降策略
from torchsummary import summary
summary(net, input_size=(3, 112, 112))
valid_acc = list()
# ============================ step 5/5 训练 ============================
train_curve = list()
valid_curve = list()
for epoch in range(MAX_EPOCH):
loss_mean = 0.
correct = 0.
total = 0.
net.train()
for i, data in enumerate(train_loader):
# forward
inputs, labels = data
inputs = inputs.to("cuda")
labels = labels.to("cuda")
outputs = net(inputs)
# backward
optimizer.zero_grad()
loss = criterion(outputs, labels)
loss.backward()
# update weights
optimizer.step()
# 统计分类情况
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).squeeze().sum().cpu().numpy()
# 打印训练信息
loss_mean += loss.item()
train_curve.append(loss.item())
if (i + 1) % log_interval == 0:
loss_mean = loss_mean / log_interval
print("Training:Epoch[{:0>3}/{:0>3}] Iteration[{:0>3}/{:0>3}] Loss: {:.4f} Acc:{:.2%}".format(
epoch, MAX_EPOCH, i + 1, len(train_loader), loss_mean, correct / total))
loss_mean = 0.
scheduler.step() # 更新学习率
# validate the model
if (epoch + 1) % val_interval == 0:
correct_val = 0.
total_val = 0.
loss_val = 0.
net.eval()
with torch.no_grad():
for j, data in enumerate(valid_loader):
inputs, labels = data
inputs = inputs.to("cuda")
labels = labels.to("cuda")
outputs = net(inputs)
loss = criterion(outputs, labels)
_, predicted = torch.max(outputs.data, 1)
total_val += labels.size(0)
correct_val += (predicted == labels).squeeze().sum().cpu().numpy()
loss_val += loss.item()
valid_curve.append(loss.item())
valid_acc.append(correct_val / total_val)
print("Valid:\t Epoch[{:0>3}/{:0>3}] Iteration[{:0>3}/{:0>3}] Loss: {:.4f} 【Acc:{:.2%}】".format(
epoch, MAX_EPOCH, j + 1, len(valid_loader), loss_val, correct_val / total_val))
train_x = range(len(train_curve))
train_y = train_curve
train_iters = len(train_loader)
valid_x = np.arange(1, len(valid_curve)+1) * train_iters*val_interval # 由于valid中记录的是epochloss,需要对记录点进行转换到iterations
valid_y = valid_curve
plt.plot(train_x, train_y, label='Train')
plt.plot(valid_x, valid_y, label='Valid')
plt.legend(loc='upper right')
plt.ylabel('loss value')
plt.xlabel('Iteration')
plt.show()
torch.save(net, "./1")