-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathopt_lambada.py
54 lines (45 loc) · 1.88 KB
/
opt_lambada.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import torch
new_alloc = torch.cuda.memory.CUDAPluggableAllocator('/users/lfusco/code/gh_benchmark/alloc.so', 'my_malloc', 'my_free')
torch.cuda.memory.change_current_allocator(new_alloc)
from transformers.models.opt.modeling_opt import OPTAttention, OPTDecoderLayer, OPTForCausalLM
from transformers import GPT2Tokenizer
from datasets import load_dataset
opt_families = [
'facebook/opt-125m',
'facebook/opt-13b',
'facebook/opt-30b',
'facebook/opt-66b',
]
llama = 'meta-llama/Llama-2-70b-chat-hf'
class Evaluator:
def __init__(self, dataset, tokenizer, device):
self.dataset = dataset
self.tokenizer = tokenizer
self.device = device
# tokenize the dataset
def tokenize_function(examples):
example = self.tokenizer(examples['text'])
return example
self.dataset = self.dataset.map(tokenize_function, batched=True)
self.dataset.set_format(type='torch', columns=['input_ids'])
@torch.no_grad()
def evaluate(self, model):
model.eval()
# The task is to predict the last word of the input.
total, hit = 0, 0
for batch in self.dataset:
input_ids = batch['input_ids'].to(self.device).unsqueeze(0)
label = input_ids[:, -1]
outputs = model(input_ids)
last_token_logits = outputs.logits[:, -2, :]
pred = last_token_logits.argmax(dim=-1)
total += label.size(0)
hit += (pred == label).sum().item()
acc = hit / total
return acc
tokenizer = GPT2Tokenizer.from_pretrained(opt_families[-2])
dataset = load_dataset('lambada', split='validation[:1000]')
evaluator = Evaluator(dataset, tokenizer, 'cuda')
model_fp16 = OPTForCausalLM.from_pretrained(opt_families[-2], torch_dtype=torch.float16).cuda()
acc_fp16 = evaluator.evaluate(model_fp16)
print(f'Original model (fp16) accuracy: {acc_fp16}')