-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlib.py
1302 lines (1050 loc) · 67.4 KB
/
lib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import os
import pathlib
import subprocess
import time
import tempfile
from collections import defaultdict
import numpy as np
from PIL import Image
import grf
from grf import ZOOM_NORMAL, ZOOM_2X, ZOOM_4X, TEMPERATE, ARCTIC, TROPICAL, TOYLAND, ALL_CLIMATES
# VALUE_TO_BRIGHTNESS = np.array([0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 91, 91, 92, 93, 94, 95, 95, 96, 97, 98, 99, 100, 100, 101, 102, 103, 104, 105, 105, 106, 107, 108, 109, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 118, 119, 120, 121, 122, 123, 123, 124, 125, 126, 127, 127, 128, 129, 130, 131, 107, 108, 109, 109, 110, 111, 111, 112, 113, 113, 114, 115, 115, 116, 117, 117, 118, 119, 119, 120, 121, 121, 122, 123, 123, 124, 125, 125, 126, 127, 127, 128, 129, 130, 130, 131, 132, 132, 133, 134, 134, 135, 136, 136, 137, 138, 138, 139, 140, 140, 120, 120, 121, 121, 122, 122, 123, 124, 124, 125, 125, 126, 126, 127, 127, 128, 129, 129, 130, 130, 131, 131, 132, 133, 133, 134, 134, 135, 135, 136, 137, 137, 138, 138, 139, 139, 140, 141, 141, 142, 142, 143, 143, 144, 145, 146, 146, 147, 147, 148, 127, 128, 128, 128, 128, 130, 130, 131, 131, 132, 132, 133, 133, 134, 134, 135, 135, 136, 136, 137, 137, 138, 138, 139, 139, 140, 140, 141, 141, 142, 143, 143, 144, 144, 144, 145, 145, 146, 146, 147, 147, 148, 148, 149, 149, 150, 150, 151, 151, 152, 130, 131, 131, 132, 132, 133, 133, 134, 134, 135, 135, 136, 136, 137, 137, 138, 138, 139, 140, 140, 141, 141, 142, 142, 143, 143, 144, 144, 145, 145, 146, 146, 147, 147, 148, 148, 149, 150, 150, 151, 151, 152, 152, 153, 153, 154, 155, 155, 156, 156, 130, 130, 131, 131, 132, 132, 132, 133, 134, 134, 135, 135, 136, 136, 137, 137, 138, 139, 139, 140, 140, 141, 141, 142, 142, 143, 144, 144, 145, 145, 146, 146, 147, 147, 148, 149, 149, 150, 150, 151, 151, 152, 152, 153, 154, 154, 155, 156, 156, 157, 131, 132, 132, 133, 133, 134, 134, 135, 135, 136, 136, 137, 138, 138, 139, 139, 140, 140, 141, 141, 142, 143, 143, 144, 144, 145, 145, 146, 147, 147, 148, 149, 149, 150, 151, 151, 152, 152, 153, 154, 154, 155, 156, 156, 157, 157, 158, 159, 160, 160, 161, 162, 162, 163, 164, 165, 166, 166, 167, 168, 168, 169, 170, 171, 172, 173, 174, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 191, 192, 193, 194, 195, 197, 198, 199, 201, 203, 204, 206, 208, 210, 211, 214, 216, 218, 218])
# VALUE_TO_INDEX = np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7])
# VALUE_TO_BRIGHTNESS = np.array([0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 55, 57, 58, 59, 59, 61, 61, 63, 64, 64, 65, 67, 68, 69, 69, 70, 72, 72, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 96, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 125, 125, 126, 127, 128, 128, 130, 131, 132, 133, 134, 134, 136, 136, 136, 138, 138, 141, 117, 117, 119, 119, 119, 119, 122, 122, 123, 123, 124, 125, 125, 127, 127, 128, 128, 129, 130, 131, 131, 132, 133, 134, 134, 134, 136, 136, 137, 138, 138, 140, 117, 118, 118, 119, 119, 120, 121, 121, 122, 122, 123, 123, 124, 125, 125, 126, 127, 127, 128, 128, 129, 130, 130, 131, 131, 132, 132, 134, 134, 134, 135, 136, 136, 136, 137, 119, 119, 120, 120, 121, 122, 122, 123, 123, 124, 124, 125, 126, 126, 126, 127, 127, 128, 128, 129, 130, 130, 130, 131, 132, 132, 132, 133, 134, 134, 134, 136, 136, 136, 136, 137, 138, 121, 121, 121, 122, 122, 123, 123, 123, 123, 125, 125, 125, 125, 126, 126, 127, 127, 127, 128, 128, 128, 129, 130, 130, 131, 131, 131, 132, 132, 133, 133, 133, 134, 135, 135, 135, 135, 136, 136, 137, 138, 120, 120, 120, 121, 122, 122, 123, 123, 123, 123, 124, 124, 125, 125, 125, 126, 126, 127, 127, 127, 127, 128, 128, 128, 129, 129, 130, 130, 131, 131, 132, 132, 132, 133, 134, 134, 134, 134, 135, 135, 136, 136, 137, 138, 138, 138, 138, 139, 139, 121, 121, 121, 122, 122, 122, 122, 123, 123, 124, 124, 124, 124, 125, 125, 125, 126, 126, 126, 127, 127, 127, 127, 128, 128, 129, 129, 129, 130, 130, 131, 131, 131, 132, 132, 133, 133, 134, 134, 134, 135, 135, 135, 136, 137, 137, 137, 137, 137, 139, 139, 122, 123, 123, 123, 123, 124, 124, 124, 125, 125, 125, 126, 126, 126, 126, 127, 127, 127, 127, 128, 128, 128, 129, 129, 129, 130, 130, 131, 131, 131, 132, 132, 133, 133, 133, 133, 134, 135, 135, 135, 136, 137, 137, 137, 137, 138, 138, 139, 139, 141, 141, 141, 141, 141, 141, 141, 142, 143, 144, 144, 144, 145, 145, 149, 151, 152, 153, 153, 153, 155, 155, 155, 156, 158, 158, 159, 159, 159, 163, 163, 164, 164, 164, 166, 168, 168, 168, 168, 236, 236, 236, 245, 245, 249, 250, 252, 253, 254, 254, 215, 219, 238, 238, 242, 245, 248, 248, 248, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255])
# VALUE_TO_INDEX = np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7])
# TODO VTB can't be 0
CC_VALUE_TO_BRIGHTNESS = np.array([0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 55, 57, 58, 59, 59, 61, 61, 63, 64, 64, 65, 67, 68, 69, 69, 70, 72, 72, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 96, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 125, 125, 126, 127, 128, 128, 130, 131, 132, 133, 134, 134, 136, 136, 136, 138, 138, 141, 117, 117, 119, 119, 119, 119, 122, 122, 123, 123, 124, 125, 125, 127, 127, 128, 128, 129, 130, 131, 131, 132, 133, 134, 134, 134, 136, 136, 137, 138, 138, 140, 117, 118, 118, 119, 119, 120, 121, 121, 122, 122, 123, 123, 124, 125, 125, 126, 127, 127, 128, 128, 129, 130, 130, 131, 131, 132, 132, 134, 134, 134, 135, 136, 136, 136, 137, 119, 119, 120, 120, 121, 122, 122, 123, 123, 124, 124, 125, 126, 126, 126, 127, 127, 128, 128, 129, 130, 130, 130, 131, 132, 132, 132, 133, 134, 134, 134, 136, 136, 136, 136, 137, 138, 121, 121, 121, 122, 122, 123, 123, 123, 123, 125, 125, 125, 125, 126, 126, 127, 127, 127, 128, 128, 128, 129, 130, 130, 131, 131, 131, 132, 132, 133, 133, 133, 134, 135, 135, 135, 135, 136, 136, 137, 138, 120, 120, 120, 121, 122, 122, 123, 123, 123, 123, 124, 124, 125, 125, 125, 126, 126, 127, 127, 127, 127, 128, 128, 128, 129, 129, 130, 130, 131, 131, 132, 132, 132, 133, 134, 134, 134, 134, 135, 135, 136, 136, 137, 138, 138, 138, 138, 139, 139, 121, 121, 121, 122, 122, 122, 122, 123, 123, 124, 124, 124, 124, 125, 125, 125, 126, 126, 126, 127, 127, 127, 127, 128, 128, 129, 129, 129, 130, 130, 131, 131, 131, 132, 132, 133, 133, 134, 134, 134, 135, 135, 135, 136, 137, 137, 137, 137, 137, 139, 139, 122, 123, 123, 123, 123, 124, 124, 124, 125, 125, 125, 126, 126, 126, 126, 127, 127, 127, 127, 128, 128, 129, 129, 130, 130, 130, 130, 131, 131, 132, 132, 132, 132, 133, 133, 133, 133, 134, 134, 135, 135, 135, 135, 136, 136, 137, 137, 137, 137, 138, 138, 139, 139, 139, 139, 140, 140, 141, 141, 141, 141, 142, 142, 142, 142, 143, 143, 144, 144, 144, 144, 145, 145, 146, 146, 147, 147, 148, 148, 149, 149, 149, 149, 151, 151, 151, 151, 152, 152, 153, 153, 153, 153, 153, 153, 155, 155, 155, 155, 156, 156, 157, 157, 158, 158, 159, 159, 159, 159, 160, 160, 160, 160, 162, 162, 163, 163, 163, 163, 164, 164, 166, 166, 166, 166, 166])
CC_VALUE_TO_INDEX = np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7])
STRUCT_VALUE_TO_BRIGHTNESS = np.array([0, 0, 0, 0, 0, 2, 2, 3, 3, 3, 5, 6, 10, 11, 15, 15, 19, 19, 23, 25, 31, 31, 35, 37, 42, 47, 47, 51, 57, 63, 63, 63, 69, 74, 79, 83, 87, 89, 95, 99, 105, 107, 111, 115, 120, 125, 128, 128, 128, 132, 132, 132, 132, 136, 136, 136, 136, 136, 136, 136, 140, 140, 140, 93, 95, 95, 98, 101, 101, 101, 106, 106, 108, 108, 108, 113, 115, 115, 117, 119, 120, 121, 124, 125, 127, 128, 128, 131, 132, 135, 136, 137, 137, 139, 142, 142, 144, 144, 147, 110, 111, 111, 113, 115, 115, 116, 118, 119, 121, 121, 123, 124, 124, 126, 127, 128, 128, 130, 130, 132, 133, 134, 136, 136, 136, 138, 140, 141, 141, 144, 144, 144, 110, 111, 112, 112, 113, 115, 115, 116, 118, 118, 119, 119, 120, 121, 122, 123, 124, 124, 125, 126, 127, 127, 128, 129, 130, 131, 131, 132, 133, 134, 134, 134, 136, 137, 137, 139, 139, 140, 117, 117, 119, 119, 119, 120, 121, 122, 122, 123, 123, 124, 124, 125, 126, 127, 127, 128, 128, 129, 130, 130, 131, 131, 132, 132, 133, 134, 134, 135, 135, 136, 137, 113, 113, 113, 115, 115, 115, 115, 117, 118, 118, 118, 118, 118, 120, 120, 120, 121, 122, 123, 123, 123, 123, 124, 125, 125, 126, 127, 127, 127, 128, 128, 129, 129, 130, 131, 131, 132, 132, 133, 134, 134, 134, 135, 135, 135, 137, 137, 120, 121, 122, 122, 122, 123, 123, 124, 124, 125, 125, 126, 126, 127, 127, 127, 128, 128, 129, 130, 130, 130, 131, 132, 132, 132, 132, 134, 134, 134, 134, 135, 136, 136, 121, 121, 121, 122, 122, 123, 123, 123, 124, 124, 125, 125, 126, 126, 126, 127, 127, 127, 128, 128, 129, 129, 129, 130, 130, 131, 132, 133, 133, 133, 134, 134, 134, 134, 135, 136, 136, 136, 136, 119, 119, 119, 119, 120, 120, 121, 121, 121, 121, 122, 122, 122, 123, 123, 123, 123, 124, 124, 124, 124, 124, 125, 125, 126, 126, 126, 126, 127, 127, 127, 127, 128, 128, 128, 129, 129, 129, 129, 130, 131, 131, 131, 132, 132, 132, 133, 134, 134, 134, 135, 135, 136, 136, 137, 137, 137, 139, 139, 139, 139, 123, 123, 123, 124, 124, 124, 125, 125, 125, 125, 126, 126, 126, 126, 127, 127, 127, 127, 128, 128, 128, 128, 129, 129, 129, 130, 130, 131, 131, 131, 132, 132, 133, 133, 134, 134, 134, 135, 135, 135, 135, 135, 136, 136, 136, 137, 137, 137, 139, 139, 139, 139, 144, 144, 144, 144, 146, 146, 146, 147, 149, 149, 152, 152, 152, 152, 152, 156, 158, 158, 159, 159, 160, 162, 162, 163, 163, 163, 169, 171, 181, 181, 183, 185, 185, 185, 187, 187, 189, 190, 191, 191, 191, 194, 196, 196, 198, 198, 198, 198, 201, 202, 204, 204, 205, 207, 210, 210, 210, 210, 212, 214, 216, 217, 217, 234, 236, 240, 240, 243, 243, 248, 248, 251, 253, 255, 255])
STRUCT_VALUE_TO_INDEX = np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9])
MAGENTA_TO_CC = (0, 0xC6, CC_VALUE_TO_BRIGHTNESS, CC_VALUE_TO_INDEX)
MAGENTA_TO_STRUCT = (1, 0x46, STRUCT_VALUE_TO_BRIGHTNESS, STRUCT_VALUE_TO_INDEX)
MAGENTA_TO_HOUSE_CC = (
2, 0xC6,
np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 4, 5, 5, 5, 7, 7, 7, 7, 9, 9, 11, 11, 12, 13, 14, 15, 15, 17, 17, 19, 19, 21, 21, 23, 24, 25, 26, 27, 29, 29, 31, 31, 31, 35, 35, 37, 37, 39, 39, 41, 41, 43, 44, 46, 47, 47, 49, 51, 51, 53, 54, 55, 57, 58, 59, 61, 63, 63, 63, 67, 67, 69, 69, 71, 73, 73, 75, 76, 78, 79, 81, 83, 83, 85, 85, 87, 89, 90, 91, 93, 95, 95, 97, 98, 99, 101, 103, 104, 105, 107, 108, 110, 111, 113, 114, 115, 117, 118, 119, 121, 123, 124, 126, 127, 128, 128, 130, 131, 132, 133, 134, 134, 136, 136, 136, 138, 138, 141, 117, 117, 118, 119, 119, 119, 122, 122, 123, 123, 124, 125, 125, 126, 127, 128, 128, 129, 130, 131, 131, 132, 132, 134, 134, 134, 136, 136, 137, 137, 138, 116, 117, 118, 118, 119, 119, 120, 121, 121, 122, 122, 123, 123, 124, 125, 125, 126, 127, 127, 128, 128, 129, 130, 130, 131, 131, 132, 132, 134, 134, 134, 135, 135, 136, 136, 137, 119, 119, 120, 120, 121, 122, 122, 123, 123, 124, 124, 125, 126, 126, 126, 127, 127, 128, 128, 129, 130, 130, 130, 132, 132, 132, 132, 133, 134, 134, 135, 136, 136, 136, 137, 137, 120, 121, 121, 121, 122, 122, 123, 123, 123, 123, 125, 125, 125, 125, 126, 126, 127, 127, 127, 128, 128, 128, 129, 130, 130, 131, 131, 131, 132, 132, 133, 133, 134, 134, 135, 135, 135, 135, 119, 119, 119, 120, 120, 120, 121, 121, 122, 122, 123, 123, 123, 123, 124, 124, 125, 125, 125, 126, 126, 127, 127, 127, 127, 128, 128, 128, 129, 129, 130, 131, 131, 132, 132, 133, 133, 133, 134, 134, 134, 135, 135, 136, 137, 137, 137, 119, 119, 120, 120, 121, 121, 121, 121, 122, 122, 122, 122, 122, 123, 124, 124, 124, 124, 125, 125, 125, 125, 126, 126, 127, 127, 127, 127, 127, 128, 128, 129, 129, 129, 130, 130, 131, 131, 131, 132, 132, 133, 133, 134, 134, 134, 135, 135, 135, 136, 137, 137, 137, 137, 137, 139, 122, 122, 123, 123, 123, 123, 124, 124, 124, 125, 125, 125, 126, 126, 126, 126, 127, 127, 127, 127, 128, 128, 128, 129, 129, 129, 130, 131, 131, 131, 131, 132, 132, 133, 133, 133, 134, 134, 135, 135, 135, 137, 137, 137, 137, 137, 138, 138, 139, 139, 141, 141, 141, 141, 141, 141, 141, 143, 144, 144, 144, 144, 145, 148, 149, 151, 152, 153, 153, 153, 155, 155, 156, 156, 158, 158, 159, 159, 159, 163, 163, 164, 164, 166, 166, 168, 168, 168, 236, 236, 236, 245, 245, 249, 250, 252, 253, 254, 254, 254, 254, 238, 238, 242, 245, 245, 248, 248, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255]),
np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 3, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7]),
)
MAGENTA_TO_SELECTION = (
2, 0x0A,
np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 8, 8, 9, 9, 9, 9, 10, 10, 10, 11, 11, 12, 12, 10, 10, 13, 13, 14, 14, 15, 15, 14, 14, 16, 16, 17, 17, 18, 18, 19, 19, 19, 18, 18, 20, 20, 21, 21, 22, 19, 19, 23, 23, 24, 24, 25, 25, 23, 23, 26, 26, 27, 27, 28, 28, 26, 26, 29, 29, 30, 30, 31, 31, 29, 32, 32, 33, 33, 34, 34, 35, 35, 32, 32, 36, 36, 37, 38, 38, 35, 35, 39, 39, 40, 40, 41, 38, 38, 42, 42, 43, 43, 44, 44, 41, 45, 45, 46, 46, 47, 47, 40, 48, 48, 49, 49, 50, 50, 51, 47, 47, 52, 52, 53, 53, 54, 50, 50, 55, 55, 56, 56, 57, 48, 48, 58, 58, 59, 60, 60, 55, 55, 61, 62, 62, 63, 63, 58, 64, 64, 65, 65, 66, 67, 67, 49, 49, 68, 69, 69, 70, 70, 64, 71, 71, 72, 72, 73, 67, 67, 74, 74, 75, 76, 76, 70, 77, 77, 78, 78, 79, 73, 73, 80, 81, 81, 82, 82, 83, 76, 76, 84, 85, 85, 86, 86, 79, 87, 87, 88, 89, 89, 82, 82, 90, 91, 91, 92, 78, 78, 93, 94, 94, 95, 95, 87, 96, 96, 97, 98, 98, 99, 91, 91, 100, 101, 101, 102, 102, 86, 103, 103, 104, 105, 105, 96, 106, 106, 107, 108, 108, 99, 109, 109, 110, 111, 111, 102, 112, 112, 113, 114, 114, 115, 97, 97, 116, 117, 117, 118, 108, 108, 119, 120, 120, 121, 111, 111, 122, 123, 123, 124, 114, 114, 125, 126, 126, 127, 107, 107, 128, 128, 129, 129, 130, 130, 131, 131, 120, 120, 132, 132, 133, 133, 134, 134, 123, 123, 135, 135, 136, 136, 137, 137, 107, 107, 138, 138, 139, 139, 140, 140, 128, 128, 141, 141, 142, 142, 143, 143, 131, 131, 144, 144, 145, 145, 146, 146, 147, 147, 124, 124, 148, 148, 149, 149, 150, 150, 117, 117, 151, 151, 152, 152, 153, 153, 140, 140, 154, 154, 155, 155, 156, 156, 143, 143, 157, 157, 158, 158, 159, 159, 146, 146, 160, 160, 161, 161, 162, 162, 163, 163, 149, 149, 164, 164, 165, 165, 166, 166, 152, 152, 167, 167, 168, 168, 169, 169, 155, 155, 170, 170, 171, 171, 172, 172, 145, 145, 173, 173, 174, 174, 175, 175, 160, 160, 176, 176, 177, 177, 178, 178, 179, 179, 164, 164, 180, 180, 181, 181, 182, 182, 153, 153, 183, 183, 184, 184, 185, 185, 156, 156, 186, 186, 187, 187, 188, 188, 172, 172, 189, 189, 190, 190, 191, 191, 175, 175, 192, 192, 193, 193, 194, 194, 195]),
np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 4, 4, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0]),
)
STRUCT_RECOLOURS = [ # Struct recolours
[70, 71, 72, 73, 74, 75, 76, 77, 78, 79], # no remap
[144, 144, 145, 146, 147, 148, 149, 150, 151, 152], # 795
[104, 105, 106, 107, 108, 109, 110, 111, 37, 38], # 796
[70, 3, 5, 7, 8, 10, 11, 12, 13, 14], # 797
[70, 178, 179, 180, 181, 162, 163, 164, 165, 166], # 798
[70, 96, 96, 97, 98, 99, 100, 101, 102, 103], # 799
[70, 16, 17, 18, 19, 20, 21, 22, 23, 14], # 800
[60, 61, 62, 63, 64, 65, 66, 67, 68, 69], # 801
]
THIS_FILE = grf.PythonFile(__file__)
ASE_IDX = {}
def aseidx(path, **kw):
key = (path, tuple(kw.items()))
ase = ASE_IDX.get(key)
if ase is None:
ase = ASE_IDX[key] = AseImageFile(path, **kw)
return ase
def zoom_to_factor(zoom):
return {
grf.ZOOM_NORMAL: 1,
grf.ZOOM_2X: 2,
grf.ZOOM_4X: 4,
}[zoom]
# Takes a list of sprites or AlternativeSprites and shifts their xofs and yofs by provided values (multiplied by zoom factor)
def move(sprites, *, xofs, yofs):
for s in sprites:
if isinstance(s, grf.AlternativeSprites):
sl = s.sprites
else:
sl = (s,)
for s in sl:
z = zoom_to_factor(s.zoom)
s.xofs += xofs * z
s.yofs += yofs * z
return sprites
def template(sprite_class):
def decorator(tmpl_func):
def wrapper(name, paths, zoom, *args):
def make_func_lists(path, zoom):
if path is None:
return None
try:
it = iter(path)
except TypeError:
it = iter((path,))
z = zoom_to_factor(zoom)
def make_sprite_func(p):
if isinstance(p, (str, pathlib.Path)):
p = aseidx(p)
def sprite_func(suffix, *args, **kw):
return sprite_class(p, *args, **kw, zoom=zoom, name=name.format(suffix=suffix))
return sprite_func
res = list(map(make_sprite_func, it))
if len(res) == 1:
return res[0]
return res
funcs = make_func_lists(paths, zoom)
return tmpl_func(funcs, zoom_to_factor(zoom), *args)
return wrapper
return decorator
class BaseGrid:
def __init__(self, *, func, add_xofs=0, add_yofs=0, add_width=0, add_height=0):
self.func = func
self.add_xofs = add_xofs
self.add_yofs = add_yofs
self.add_width = add_width
self.add_height = add_height
self.kw = {}
def set_default(self, **kw):
self.kw.update(kw)
return self
def get_default(self, key):
return self.kw.get(key)
def __call__(self, name, x, y, *, width, height, keep_state=None, **kw):
if self.add_xofs is not None:
kw['xofs'] = self.add_xofs + kw.get('xofs', 0)
if self.add_yofs is not None:
kw['yofs'] = self.add_yofs + kw.get('yofs', 0)
return self.func(name, x, y, width + self.add_width, height + self.add_height, **kw)
class RectGrid(BaseGrid):
def __init__(self, *, func, width, height, padding=0, **kw):
super().__init__(func=func, **kw)
self.set_default(width=width, height=height)
self.height = height
self.width = width
self.padding = padding
def __call__(self, name, grid_pos, **kw):
x, y = grid_pos
fx = x * self.width + self.padding * (x + 1)
fy = y * self.height + self.padding * (y + 1)
kw = {**self.kw, **kw}
return super().__call__(name, fx, fy, **kw)
class FlexGrid(BaseGrid):
def __init__(self, *, func, padding=0, start=(0, 0), **kw):
super().__init__(func=func, **kw)
self.padding = padding
self.x = padding + start[0]
self.y = padding + start[1]
def __call__(self, name, *, keep_state=False, **kw):
kw = {**self.kw, **kw}
x, y = self.x, self.y
if not keep_state:
self.x += kw['width'] + self.add_width + self.padding
return super().__call__(name, x, y, **kw)
class HouseGrid(BaseGrid):
def __init__(self, *, func, height, width=64, padding=2, z=2, offset=(0, 0), **kw):
super().__init__(func=func, **kw)
self.z = z
# assert width == 64 # TODO width should participate in xofs if not 64
self.zwidth = width * z
self.zheight = height * z + z - 1
self.zpadding = padding
self.offset = offset
def __call__(self, name, grid_pos, bb=None, rel=None, **kw):
kw = {**self.kw, **kw}
assert bb is None or rel is None
x, y = grid_pos
fx = x * self.zwidth + self.zpadding * (x + 1) + self.offset[0]
fy = y * self.zheight + self.zpadding * (y + 1) + self.offset[1]
if rel is not None:
zxofs = -rel[0] * self.z
zyofs = -rel[1] * self.z + 1
else:
zxofs = -31 * self.z
# TODO buildings are aligned to bb so don't need z // 2 but maybe some stuff does
# TODO x4 probably needs -1 zyofs
zyofs = 31 * self.z - self.zheight # - self.z // 2 # z // 2 is a ground sprite offset to align foundations
if bb is not None:
zxofs -= self.z * (bb[1] - bb[0]) * 2
zyofs -= self.z * (bb[0] + bb[1])
return super().__call__(name, fx, fy, width=self.zwidth, height=self.zheight, xofs=zxofs, yofs=zyofs, **kw)
def ground(self, name, grid_pos, **kw):
x, y = grid_pos
width = 64 * self.z
height = 32 * self.z -1
fx = x * self.zwidth + self.zpadding * (x + 1) + self.offset[0]
fy = y * self.zheight + self.zpadding * (y + 1) + self.offset[1]
zxofs = -31 * self.z
zyofs = - self.z // 2 # ground sprite offset to align foundations
kw = {**self.kw, **kw}
return super().__call__(name, fx, fy + self.zheight - height, width=width, height=height, xofs=zxofs, yofs=zyofs, **kw)
class BuildingSlicesGrid(BaseGrid):
class GroundGrid(BaseGrid):
def __init__(self, building_grid):
super().__init__(func=building_grid.func)
self.building_grid = building_grid
def __call__(self, name, grid_pos, **kw):
sx, sy = self.building_grid.tile_size
gx, gy = grid_pos
z = self.building_grid.z
assert gx < sx and gy < sy
tile_ws = 32 * z
tile_hs = 16 * z
x = (gy - gx + sx - 1) * tile_ws # left, relative to border
ground_h = 32 * z - 1
y = self.building_grid.zheight - ground_h - (sx + sy - 2 - gx - gy) * tile_hs # top, relative to border
kw = {**self.kw, **kw}
return MaskGround(super().__call__(
name,
x + self.building_grid.offset[0] + self.building_grid.zborder,
y + self.building_grid.offset[1] + self.building_grid.zborder,
width=tile_ws * 2,
height=ground_h,
xofs=-31 * z,
yofs=-(z // 2), # ground sprite offset to align foundations
**kw,
))
def __init__(self, *, func, height, z=1, tile_size=(1, 1), offset=(0, 0), border=1, **kw):
super().__init__(func=func, **kw)
self.height = height
self.z = z
self.tile_size = tile_size
self.offset = offset
self.zheight = height * z + z - 1
self.zborder = border * z
self._ground_sprite = None
self._ground_grid = None
@property
def ground(self):
if self._ground_grid is None:
self._ground_grid = self.GroundGrid(self)
return self._ground_grid
def __call__(self, name, grid_pos, *, has_left=None, has_right=None, below=0, **kw):
sx, sy = self.tile_size
gx, gy = grid_pos
assert gx < sx and gy < sy
if has_left is None:
has_left = (gx == sx - 1)
if has_right is None:
has_right = (gy == sy - 1)
assert has_left or has_right
tile_ws = 32 * self.z
tile_hs = 16 * self.z
x = (gy - gx + self.tile_size[0] - 1) * tile_ws # left, relative to border
y = self.zheight - (sx + sy - 2 - gx - gy) * tile_hs # bottom, relative to border
MAX_HEIGHT = 200 * self.z # above ground
assert self.z < 4 # TODO yofs and h are off by one
h = min(MAX_HEIGHT + 31 * self.z, y)
xofs = kw.pop('xofs', None)
yofs = kw.pop('yofs', None)
kw = {**self.kw, **kw}
return super().__call__(
name,
x + tile_ws * (not has_left) + self.offset[0] + self.zborder,
y - h + self.offset[1] + self.zborder,
width=tile_ws * (has_left + has_right),
height=h + below,
xofs=(-31 * self.z if has_left else self.z) if xofs is None else xofs,
yofs=(-h + 31 * self.z) if yofs is None else yofs,
**kw,
)
old_sprites = defaultdict(dict)
new_sprites = defaultdict(lambda: defaultdict(dict))
old_sprites_collection = defaultdict(lambda: defaultdict(lambda: (10000, 0)))
new_sprites_collection = defaultdict(lambda: defaultdict(lambda: defaultdict(lambda: (10000, 0))))
dict_to_key = lambda d : tuple(sorted(d.items()))
def replace_old(collection, first_id, sprites, **kw):
if isinstance(sprites, (grf.Resource, grf.ResourceAction)):
sprites = [sprites]
amount = len(sprites)
assert first_id + amount <= 4896
key = dict_to_key(kw)
first, amount = old_sprites_collection[key][collection]
old_sprites_collection[key][collection] = (min(first, first_id), amount + len(sprites))
for i, s in enumerate(sprites):
old_sprites[key][first_id + i] = s
def replace_new(collection, set_type, offset, sprites, **kw):
if isinstance(sprites, (grf.Resource, grf.ResourceAction)):
sprites = [sprites]
key = dict_to_key(kw)
first, amount = new_sprites_collection[key][set_type][collection]
new_sprites_collection[key][set_type][collection] = (min(first, offset), amount + len(sprites))
for i, s in enumerate(sprites):
new_sprites[key][set_type][offset + i] = s
class SpriteCollection:
def __init__(self, name):
self.name = name
self.sprites = []
def __getitem__(self, sl):
if isinstance(sl, int):
sl = slice(sl, sl + 1)
res = SpriteCollection(self.name)
for zoom, kw, sprites in self.sprites:
res.sprites.append((zoom, kw, sprites[sl]))
return res
def pick(self, *indexes):
res = SpriteCollection(self.name)
for zoom, kw, sprites in self.sprites:
res.sprites.append((zoom, kw, [sprites[i] for i in indexes]))
return res
def __mul__(self, amount):
assert isinstance(amount, int)
res = SpriteCollection(self.name)
for zoom, kw, sprites in self.sprites:
res.sprites.append((zoom, kw, sprites * amount))
return res
def __len__(self):
if len(self.sprites) == 0:
return 0
return len(self.sprites[0][2])
def add(self, files, template, zoom, *args, name=None, **kw):
if not isinstance(files, tuple):
files = (files,)
files = tuple(aseidx(f) if isinstance(f, str) else f for f in files)
z = zoom_to_factor(zoom)
kwsuffix = ''
name_str = '' if name is None else f'_{name}';
if 'thin' in kw:
kwsuffix = 'thin_' if kw['thin'] else 'thick_'
sprites = template(f'{self.name}{name_str}_{{suffix}}_{kwsuffix}{z}x', files, zoom, *args)
assert all(s.zoom == zoom or s == grf.EMPTY_SPRITE for s in sprites)
self.sprites.append((zoom, kw, sprites))
return self
def add_sprites(self, sprites, **kw):
zoom = sprites[0].zoom
self.sprites.append((zoom, kw, sprites))
return self
def compose_on(self, dest, pattern=None, exact_size=True, offsets=None):
srckeys = set(tuple(p) for _, kw, _ in self.sprites for p in kw.items())
dstkeys = set(tuple(p) for _, kw, _ in dest.sprites for p in kw.items())
compose_keys = set()
# print(self.name, dest.name)
for srckeys in self.get_keys():
for dstkeys in dest.get_keys():
srckw = dict(srckeys)
dstkw = dict(dstkeys)
if any(k in dstkw and dstkw[k] != v for k, v in srckw.items()):
# have same key with different values -> incompatible
continue
compose_keys.add(dict_to_key({**dstkw, **srckw}))
# print(' ', srckw, dstkw)
# print()
res = SpriteCollection(f'{dest.name}+{self.name}')
def patternzip(dstl, srcl):
if pattern is None:
if len(dstl) == 1:
l = zip(srcl, [dstl[0]] * len(srcl))
elif len(srcl) == 1:
l = zip([srcl[0]] * len(dstl), dstl)
else:
assert len(dstl) == len(srcl)
l = zip(srcl, dstl)
else:
l = ((None if i is None else srcl[i], None if j is None else dstl[j]) for i, j in pattern)
res = []
for i, (s, d) in enumerate(l):
if d is None:
res.append(s)
continue
if s is None:
res.append(d)
continue
offset = None if offsets is None else offsets[i]
res.append(CompositeSprite((d, s), exact_size=exact_size, offset=offset))
return res
return [s if d is None else CompositeSprite((d, s), exact_size=exact_size) for s, d in l]
# TODO calculate key combinations for each sprite separately to avoid bloating
for keys in compose_keys:
srcl = self.get_sprites(keys)
dstl = dest.get_sprites(keys)
# print(keys)
# for s in self.sprites:
# print('SRC', s)
# for s in dest.sprites:
# print('DST', s)
assert srcl is not None and dstl is not None
src1x, src2x = srcl
dst1x, dst2x = dstl
if src1x is not None and dst1x is not None:
res.sprites.append((ZOOM_NORMAL, dict(keys), patternzip(dst1x, src1x)))
if src2x is not None and dst2x is not None:
res.sprites.append((ZOOM_2X, dict(keys), patternzip(dst2x, src2x)))
return res
def get_keys(self):
keys1x = set(dict_to_key(kw) for zoom, kw, _ in self.sprites if zoom == ZOOM_NORMAL)
keys2x = set(dict_to_key(kw) for zoom, kw, _ in self.sprites if zoom == ZOOM_2X)
if len(keys2x) > len(keys1x):
return keys2x
return keys1x
def _find_sprites(self, keys, exact):
kw = dict(keys)
d = {}
for zoom, params, sprites in self.sprites:
if any(k not in kw for k in params):
continue
if any(k in params and params[k] != v for k, v in kw.items()):
continue
matches = sum(k in params for k in kw)
if zoom not in d or d[zoom][0] < matches:
d[zoom] = (matches, sprites)
# print(self.name, ', '.join(map(str, d.keys())), kw)
# for zoom in (ZOOM_NORMAL, ZOOM_2X):
# if zoom in d:
# print(' ', zoom_to_factor(zoom), ', '.join(x.name for x in d[zoom][1]))
# print()
if exact and all(v[0] != len(kw) for v in d.values()):
return None, None
return d.get(ZOOM_NORMAL, (0, None))[1], d.get(ZOOM_2X, (0, None))[1]
def get_sprites(self, keys):
return self._find_sprites(keys, False)
def get_exact_sprites(self, keys):
x1, x2 = self._find_sprites(keys, True)
if x2 is None and x1 is None:
return None
if x2 is None:
return x1
if x1 is None:
return x2
res = []
for x1, x2 in zip(x1, x2):
res.append(grf.AlternativeSprites(x1, x2))
return res
def _reduce(self, unspecify, **keys):
if not keys:
return self
matches = {}
for zoom, kw, sprites in self.sprites:
# Find common keys
match = []
for k, v in kw.items():
if k in keys:
if v != keys[k]:
continue # Incompatible keys are filtered out
match.append(k)
m = frozenset(match)
if m in matches:
matches[m].append((zoom, kw, sprites))
continue
# There is a better match already
if any(m.issubset(mi) for mi in matches.keys()):
continue
# Delete worse matches
for mi in list(matches.keys()):
if mi.issubset(m):
del matches[mi]
if unspecify:
kw = {k: v for k, v in kw.items() if k not in keys}
matches[m] = [(zoom, kw, sprites)]
res = SpriteCollection(self.name)
for sl in matches.values():
res.sprites.extend(sl)
return res
def reduce(self, **keys):
return self._reduce(False, **keys)
def unspecify(self, **keys):
return self._reduce(True, **keys)
def replace_old(self, first_id, **kw):
reduced = self.reduce(**kw)
for key in reduced.get_keys():
sprites = reduced.get_exact_sprites(key)
cur_kw = kw.copy()
for k, v in key:
if k in cur_kw:
assert cur_kw[k] == v, (k, cur_kw[k], v)
cur_kw[k] = v
replace_old(self, first_id, sprites, **cur_kw)
def replace_new(self, set_type, offset, **kw):
reduced = self.reduce(**kw)
for k in self.get_keys():
sprites = reduced.get_exact_sprites(k)
replace_new(self, set_type, offset, sprites, **dict(k), **kw)
class CCReplacingFileSprite(grf.FileSprite):
def __init__(self, file, *args, **kw):
super().__init__(file, *args, **kw)
def get_data_layers(self, context, *args, **kw):
w, h, img, bpp = self._do_get_image(context)
timer = context.start_timer()
if bpp != grf.BPP_32 and bpp != grf.BPP_24:
raise RuntimeError('Only 32-bit RGB sprites are currently supported for CC replacement')
self.bpp = bpp
npimg = np.asarray(img).copy()
magenta_mask = (
(npimg[:, :, 0] == npimg[:, :, 2]) &
(
((npimg[:, :, 0] == 255) & (npimg[:, :, 1] != 255)) |
((npimg[:, :, 1] == 0) & (npimg[:, :, 0] != 0))
)
)
value = npimg[magenta_mask][:, 0].astype(np.uint16) + npimg[magenta_mask][:, 1]
npimg[magenta_mask, 0] = CC_VALUE_TO_BRIGHTNESS[value]
npimg[magenta_mask, 1] = 0
npimg[magenta_mask, 2] = 0
mask = np.zeros((h, w), dtype=np.uint8)
mask[magenta_mask] = CC_VALUE_TO_INDEX[value] + 0xC6
if bpp == grf.BPP_32:
rgb, alpha = npimg[:, :, :3], npimg[:, :, 3]
else:
rgb, alpha = npimg, None
timer.count_custom('Magenta and mask processing')
return w, h, rgb, alpha, mask
def get_resource_files(self):
return super().get_resource_files() + (THIS_FILE,)
class MaskGround(grf.SpriteWrapper):
def __init__(self, sprite):
z = zoom_to_factor(sprite.zoom)
assert sprite.w == 64 * z
assert sprite.h == 32 * z - 1
super().__init__((sprite, ))
self.sprite = sprite
def get_data_layers(self, context):
z = zoom_to_factor(self.zoom)
assert self.w == 64 * z
assert self.h == 32 * z - 1
w, h, rgb, alpha, mask = self.sprite.get_data_layers(context)
assert w == 64 * z
assert h == 32 * z - 1
assert z == 2 # untested for other z
tile_ws = 32 * z
tile_hs = 16 * z
ground_mask = np.full((h, w), True)
def get_n (i, above):
# i -= self.above_h - above
n = i if i < tile_hs + above else 31 * z - i + above
return max(0, min((n + 1) * 2, tile_ws))
for i in range(h):
nl = get_n(i, 0)
nr = get_n(i, 0)
ground_mask[i, tile_ws - nl: tile_ws + nr] = False
if rgb is not None:
rgb = grf.np_make_writable(rgb)
rgb[ground_mask, :] = 0
if alpha is not None:
alpha = grf.np_make_writable(alpha)
alpha[ground_mask] = 0
if mask is not None:
mask = grf.np_make_writable(mask)
mask[ground_mask] = 0
return w, h, rgb, alpha, mask
class DebugSprite(grf.SpriteWrapper):
def __init__(self, filename, sprite):
super().__init__((sprite, ))
self.filename = filename
self.sprite = sprite
def get_data_layers(self, context):
w, h, rgb, alpha, mask = self.sprite.get_data_layers(context)
if rgb is not None or alhpa is not None:
rgba = np.zeros((h, w, 4), dtype=np.uint8)
if rgb is not None:
rgba[:, :, :3] = rgb
if alpha is not None:
rgba[:, :, 3] = alpha
path = self.filename + '_rgba.png'
Image.fromarray(rgba, mode='RGBA').save(path)
print(f'Saved {path} for {self.sprite.name}')
if mask is not None:
im = Image.fromarray(mask, mode='P')
im.putpalette(grf.PIL_PALETTE)
path = self.filename + '_mask.png'
im.save(path)
print(f'Saved {path} for {self.sprite.name}')
return w, h, rgb, alpha, mask
def get_fingerprint(self):
return dict(
**super().get_fingerprint(),
filename=self.filename
)
def make_magenta_mask(rgb):
return (
(rgb[:, :, 0] == rgb[:, :, 2]) &
(
((rgb[:, :, 0] == 255) & (rgb[:, :, 1] != 255)) |
((rgb[:, :, 1] == 0) & (rgb[:, :, 0] != 0))
)
)
class MagentaToColour(grf.SpriteWrapper):
def __init__(self, sprite, colour):
self.colour = colour
self._oklab_colour = grf.srgb_to_oklab(colour)
super().__init__((sprite, ))
def get_data_layers(self, context):
w, h, rgb, alpha, mask = self.sprites[0].get_data_layers(context)
timer = context.start_timer()
magenta_mask = make_magenta_mask(rgb)
value = rgb[magenta_mask][:, 0].astype(np.uint16) + rgb[magenta_mask][:, 1]
value_map = np.zeros((255 * 2, 3), dtype=np.uint8)
BLACK = grf.srgb_to_oklab((0, 0, 0))
WHITE = grf.srgb_to_oklab((255, 255, 255))
for v in set(value):
if v < 255:
value_map[v] = grf.oklab_to_srgb(grf.oklab_blend(BLACK, self._oklab_colour, v / 255.))
elif v > 255:
value_map[v] = grf.oklab_to_srgb(grf.oklab_blend(self._oklab_colour, WHITE, (v - 255) / 255.))
else:
value_map[v] = self.colour
rgb = grf.np_make_writable(rgb)
rgb[magenta_mask, :] = value_map[value]
timer.count_custom('Magenta and mask processing')
return w, h, rgb, alpha, mask
def get_fingerprint(self):
return dict(
**super().get_fingerprint(),
colour=self.colour,
)
class MagentaRecolour(grf.SpriteWrapper):
def __init__(self, sprite, magenta_map):
self.magenta_map = magenta_map
super().__init__((sprite, ))
def get_data_layers(self, context):
_fingerprint, first, vtb, vti = self.magenta_map
w, h, rgb, alpha, mask = self.sprites[0].get_data_layers(context)
timer = context.start_timer()
rgb = grf.np_make_writable(rgb)
magenta_mask = make_magenta_mask(rgb)
if mask is not None:
magenta_mask &= (mask == 0)
value = rgb[magenta_mask][:, 0].astype(np.uint16) + rgb[magenta_mask][:, 1]
rgb[magenta_mask, 0] = vtb[value]
rgb[magenta_mask, 1] = 0
rgb[magenta_mask, 2] = 0
if mask is None:
mask = np.zeros((h, w), dtype=np.uint8)
else:
mask = grf.np_make_writable(mask)
mask[magenta_mask] = vti[value] + first
timer.count_custom('Magenta and mask processing')
return w, h, rgb, alpha, mask
def get_fingerprint(self):
return dict(
**super().get_fingerprint(),
map=self.magenta_map[0],
)
class MagentaToCC(MagentaRecolour):
def __init__(self, sprite):
super().__init__(sprite, MAGENTA_TO_CC)
class MagentaToHCC(MagentaRecolour):
def __init__(self, sprite):
super().__init__(sprite, MAGENTA_TO_HOUSE_CC)
class MagentaToStruct(MagentaRecolour):
def __init__(self, sprite):
super().__init__(sprite, MAGENTA_TO_STRUCT)
class MagentaToSelection(MagentaRecolour):
def __init__(self, sprite):
super().__init__(sprite, MAGENTA_TO_SELECTION)
class MagentaToLight(grf.Sprite):
def __init__(self, sprite, order):
self.sprite = sprite
self.order = order
super().__init__(w=sprite.w, h=sprite.h, xofs=sprite.xofs, yofs=sprite.yofs, zoom=sprite.zoom, bpp=sprite.bpp, name=self.sprite.name)
def prepare_files(self):
self.sprite.prepare_files()
self.order.prepare_files()
def get_data_layers(self, context):
w, h, npimg, npalpha, npmask = self.sprite.get_data_layers(context)
assert npmask is None
ow, oh, ni, na, nm = self.order.get_data_layers(context)
assert nm is None
assert w == ow and h == oh
timer = context.start_timer()
magenta_mask = make_magenta_mask(rgb)
order_mask = (na > 0)
colours = list(set(map(tuple, ni[order_mask])))
if len(colours) != 4:
raise ValueError(f'Expected 4 colors in order mask, found {len(colours)} in {self.order.name}')
colours.sort(key=lambda x: int(x[0]) + x[1] + x[2], reverse=True)
order_mask &= magenta_mask
order = ni[order_mask]
if np.any(magenta_mask != order_mask):
raise ValueError(f'Not all magenta pixels of sprite {self.sprite.name} have a defined order in {self.order.name}')
npmask = np.zeros((h, w), dtype=np.uint8)
ordered = np.zeros(order.shape[0], dtype=np.uint8)
for i, c in enumerate(colours):
ordered[(order == c).all(axis=1)] = 0xf1 + i
npmask[order_mask] = ordered
timer.count_custom('Magenta and mask processing')
return w, h, npimg, npalpha, npmask
def get_resource_files(self):
return super().get_resource_files() + (THIS_FILE,) + self.sprite.get_resource_files() + self.order.get_resource_files()
def get_fingerprint(self):
return {
'class': self.__class__.__name__,
'sprite': self.sprite.get_fingerprint(),
'order': self.order.get_fingerprint(),
}
class MagentaAndMask(grf.Sprite):
def __init__(self, sprite, mask, name=None):
self.sprite = sprite
super().__init__(w=sprite.w, h=sprite.h, xofs=sprite.xofs, yofs=sprite.yofs, zoom=sprite.zoom, bpp=sprite.bpp, name=name or self.sprite.name)
self.mask = mask # TODO sprite mask has a special meaning
def prepare_files(self):
self.sprite.prepare_files()
self.mask.prepare_files()
def get_data_layers(self, context):
w, h, rgb, alpha, mask = self.sprite.get_data_layers(context)
ow, oh, ni, na, nm = self.mask.get_data_layers(context)
assert nm is None
assert w == ow and h == oh
timer = context.start_timer()
magenta_mask = make_magenta_mask(rgb)
anim_mask = (na > 0)
pal_mask = (na > 0) & magenta_mask
if np.any(anim_mask != pal_mask):
context.warning('animated-missing-magenta', self, f'Not all pixels of animation sprite {self.mask.name} have a magenta in {self.sprite.name}')
masked = ni[pal_mask]
colours = set(map(tuple, masked))
new_masked = np.zeros(masked.shape[0], dtype=np.uint8)
for c in colours:
m = grf.PALETTE_IDX.get(c)
if m is None:
raise ValueError(f'Color {c} is not in the palette in sprite {self.mask.name}')
new_masked[(masked == c).all(axis=1)] = m
mask = np.zeros((h, w), dtype=np.uint8) if mask is None else grf.np_make_writable(mask)
mask[pal_mask] = new_masked
brightness = (rgb[pal_mask,:2].sum(axis=1, dtype=np.uint16) + 1) // 2
rgb = grf.np_make_writable(rgb)
rgb[pal_mask, 0] = brightness
rgb[pal_mask, 1] = 0
rgb[pal_mask, 2] = 0
timer.count_custom('Magenta and mask processing')
return w, h, rgb, alpha, mask
def get_resource_files(self):
return super().get_resource_files() + (THIS_FILE,) + self.sprite.get_resource_files() + self.mask.get_resource_files()
def get_fingerprint(self):
return {
'class': self.__class__.__name__,
'sprite': self.sprite.get_fingerprint(),
'mask': self.mask.get_fingerprint(),
}
class AlphaAndMask(grf.Sprite):
def __init__(self, sprite, mask, name=None):
self.sprite = sprite
super().__init__(w=sprite.w, h=sprite.h, xofs=sprite.xofs, yofs=sprite.yofs, zoom=sprite.zoom, bpp=sprite.bpp, name=name or self.sprite.name)
self.mask = mask # TODO sprite mask has a special meaning
def prepare_files(self):
self.sprite.prepare_files()
self.mask.prepare_files()
def get_data_layers(self, context):
w, h, npimg, npalpha, npmask = self.sprite.get_data_layers(context)
ow, oh, ni, na, nm = self.mask.get_data_layers(context)
assert nm is None
assert w == ow and h == oh
timer = context.start_timer()
mask = (na > 0)
masked = ni[mask]
colours = set(map(tuple, masked))
new_masked = np.zeros(masked.shape[0], dtype=np.uint8)
for c in colours:
m = grf.PALETTE_IDX.get(c)
if m is None:
raise ValueError(f'Color {c} is not in the palette in sprite {self.mask.name}')
new_masked[(masked == c).all(axis=1)] = m
if npmask is None:
npmask = np.zeros((h, w), dtype=np.uint8)
else:
npmask = grf.np_make_writable(npmask)
npmask[mask] = new_masked
npalpha = grf.np_make_writable(npalpha)
npalpha[mask] = 255
timer.count_custom('Alpha and mask processing')
return w, h, npimg, npalpha, npmask
def get_resource_files(self):
return super().get_resource_files() + (THIS_FILE,) + self.sprite.get_resource_files() + self.mask.get_resource_files()
def get_fingerprint(self):
return {
'class': self.__class__.__name__,
'sprite': self.sprite.get_fingerprint(),
'mask': self.mask.get_fingerprint(),
}
# TODO switch anchor tile from bottom to top
class CutGround(grf.Sprite):
def __init__(self, sprite, position, name=None, above=0):
assert sprite.zoom == ZOOM_2X
z = 2
self.sprite = sprite
self.position = position
if isinstance(above, (tuple, list)):
self.above_l, self.above_r = above
else:
self.above_l = self.above_r = above
self.ground_h = 32 * z - 1
self.above_h = max(self.above_l, self.above_r) * z
super().__init__(w=64 * z, h=self.ground_h + self.above_h, xofs=-31 * z, yofs=-self.above_h - (z // 2), zoom=sprite.zoom, bpp=sprite.bpp, name=name)
def prepare_files(self):
self.sprite.prepare_files()
def get_data_layers(self, context):
gx, gy = self.position
z = 2 # NOTE untested for other z
tile_ws = 32 * z
tile_hs = 16 * z
x = -self.sprite.xofs - 31 * z + (gy - gx) * tile_ws
y = -self.sprite.yofs + (gx + gy) * tile_hs - self.above_h
w, h, rgb, alpha, mask = self.sprite.get_data_layers(context)
ground_mask = np.full((self.h, self.w), True)
def get_n (i, above):
i -= self.above_h - above
n = i if i < tile_hs + above else 31 * z - i + above
return max(0, min((n + 1) * 2, tile_ws))
for i in range(self.h):
nl = get_n(i, self.above_l * z)
nr = get_n(i, self.above_r * z)
ground_mask[i, tile_ws - nl: tile_ws + nr] = False
if x < 0 or y < 0 or y + self.h > h or x + self.w > w:
raise ValueError(f'Ground sprite region({x}..{x + self.w}, {y}..{y + self.h}) is outside sprite boundaries (0..{w}, 0..{h}) for sprite {self.sprite.name}/{self.name}')
if rgb is not None:
rgb = rgb[y:y + self.h, x:x + self.w].copy()
rgb[ground_mask, :] = 0
if alpha is not None:
alpha = alpha[y:y + self.h, x:x + self.w].copy()
alpha[ground_mask] = 0
if mask is not None:
mask = mask[y:y + self.h, x:x + self.w].copy()
mask[ground_mask] = 0
return self.w, self.h, rgb, alpha, mask
def get_resource_files(self):