-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathParser.hs
274 lines (197 loc) · 5.4 KB
/
Parser.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
{-|
Module : Parser
Description : Monadic Parser Combinators for C in Haskell.
Copyright : (c) Luke Geeson, 2019
License : GPL-3
Maintainer : [email protected]
Stability : stable
Portability : POSIX
The "Parser" module provides the monadic parser combinators, grammars, and top-level functions needed to parse a human friendly (read whiteboard) version of C.
-}
module Parser where
-- Sol Imports.
import qualified C
-- Tool Imports.
import qualified Control.Monad as M (liftM, ap)
import qualified Data.Char as C
{-
Implementation based on ideas in Monadic Parser Combinators paper
http://www.cs.nott.ac.uk/~pszgmh/monparsing.pdf
-}
-- | Parser type takes input string and returns a list of possible parses
newtype Parser a = Parser (String -> [(a, String)])
-- | Necessary AMP additions for Parser instance.
instance Functor Parser where
fmap = M.liftM
-- | Necessary AMP additions for Parser instance.
instance Applicative Parser where
pure a = Parser (\cs -> [(a,cs)])
(<*>) = M.ap
-- | Monad instance, generators use the first parser then apply f to the result
instance Monad Parser where
return = pure
p >>= f = Parser (\cs -> concat [parse (f a) cs' | (a,cs') <- parse p cs])
-- | Parser deconstructor.
parse (Parser p) = p
-- | Item takes a string and splits on the first char or fails
item :: Parser Char
item = let split cs = case cs of
"" -> []
(c:cs) -> [(c,cs)]
in Parser split
-- | Combines the results of 2 parsers on an input string
-- shortcircuits on the first result returned or fails
(+++) :: Parser a -> Parser a -> Parser a
p +++ q = let apply cs = case parse p cs ++ parse q cs of
[] -> []
(x:_) -> [x]
in Parser apply
-- | Failure parser.
zerop = Parser (const [])
-- | Parses an element and returns if they satisfy a predicate.
sat :: (Char -> Bool) -> Parser Char
sat p = do
c <- item
if p c
then return c
else zerop
-- | Parses chars only.
char :: Char -> Parser Char
char c = sat (c ==)
-- | Parses a string of chars.
string :: String -> Parser String
string = mapM char
-- | Parses 0 or more elements.
many :: Parser a -> Parser [a]
many p = many1 p +++ return []
-- | Parses 1 or more elements.
many1 :: Parser a -> Parser [a]
many1 p = do
a <- p
as <- many p
return (a:as)
-- | Parses 0 or more whitespace.
space :: Parser String
space = many (sat C.isSpace)
-- | Parsers 1 or more whitespace.
space1 :: Parser String
space1 = many1 (sat C.isSpace)
-- | Trims whitespace between an expression.
spaces :: Parser a -> Parser a
spaces p = do
space
x <- p
space
return x
-- | Parses a single string.
symb :: String -> Parser String
symb = string
-- | Apply a parser to a string.
apply :: Parser a -> String -> [(a,String)]
apply = parse
-- | set of reserved words for C
keywords :: [String]
keywords = ["let", "=", ".", ":", "Pi",
"(", ")", "\x3a0", "\x03bb", "\x25A1", "*"
, "assume", "_"]
-- | 1 or more chars
str :: Parser String
str = do
s <- many1 $ sat C.isAlphaNum
if s `elem` keywords
then zerop
else return s
-- | Left recursion.
chainl1 :: Parser a -> Parser (a -> a -> a) -> Parser a
p `chainl1` op = let rest a = (do f <- op
b <- p
rest (f a b)) +++ return a
in do a <- p
rest a
-- | Parses away brackets as you'd expect.
bracket :: Parser a -> Parser a
bracket p = do
symb "("
x <- p
symb ")"
return x
-- | Parser for term variables
termVar :: Parser C.CTerm
termVar = C.Var <$> str
-- | Parser for star
star :: Parser C.CTerm
star = do symb "*"
return $ C.Sort C.SStar
-- | Abstraction allows escaped backslash or lambda
lambdas :: String
lambdas = ['\x03bb','\\']
-- | Lam parser parses abstractions
lam :: Parser C.CTerm
lam = do
spaces $ identifier lambdas
x <- str
spaces (symb ":")
t <- term
spaces (symb ".")
e <- spaces term
return $ C.Abs x t e
-- | Type-level abstractions
pi :: Parser C.CTerm
pi = do
spaces (symb "Pi" +++ symb "\x3a0")
x <- str
spaces (symb ":")
ty1 <- term
spaces (symb ".")
C.Pi x ty1 <$> term
-- | arrow types are non-dependent pi types
termArr :: Parser C.CTerm
termArr = do
x <- expr
spaces (symb "->")
C.Pi "_" x <$> term -- show inst. prints ->
-- | App parses application terms, with one or more spaces in between terms.
app :: Parser C.CTerm
app = chainl1 expr $ do
space1
return C.App
-- | Parsed expressions are either terms or terms in lets
data PExpr
= PTerm C.CTerm
| PAssume C.CTerm
-- | Parser for let expressions
pLet :: Parser (String, PExpr)
pLet = do
space
symb "let"
space1
v <- str
spaces $ symb "="
t <- term
return (v, PTerm t)
-- | Parser for adding things into the context
pAssume :: Parser (String, PExpr)
pAssume = do
space
symb "assume"
space1
v <- str
spaces $ symb ":"
t <- term
return (v, PAssume t)
-- | Parser for regular terms.
pTerm :: Parser (String, PExpr)
pTerm = do
t <- spaces term
return ("", PTerm t)
-- | Expression follows CFG form with bracketing convention.
expr :: Parser C.CTerm
expr = termVar +++ star
+++ bracket term
-- | Top level of CFG Grammar
term :: Parser C.CTerm
term = lam +++ Parser.pi
+++ termArr +++ app
-- | Identifies key words.
identifier :: String -> Parser Char
identifier xs = sat (`elem` xs)