-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathgenerate_spectrograms.py
62 lines (40 loc) · 1.44 KB
/
generate_spectrograms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
2
# coding: utf-8
# In[43]:
import csv
import os
import librosa
import numpy as np
import matplotlib.pyplot as plt
import librosa.display
import time
# In[41]:
count=-1
with open('metadata/UrbanSound8K.csv') as csvfile:
spamreader = csv.reader(csvfile, delimiter=',')
for row in spamreader:
count+=1
if count == 0:
continue
print count
if not os.path.exists('spectrograms/' + row[7]):
os.makedirs('spectrograms/' + row[7])
y, sr = librosa.load("audio/fold" + str(row[5])+ "/" + str(row[0]))
# Let's make and display a mel-scaled power (energy-squared) spectrogram
S = librosa.feature.melspectrogram(y, sr=sr, n_mels=128)
# Convert to log scale (dB). We'll use the peak power as reference.
log_S = librosa.logamplitude(S, ref_power=np.max)
# Make a new figure
fig = plt.figure(figsize=(12,4))
ax = plt.Axes(fig, [0., 0., 1., 1.])
ax.set_axis_off()
fig.add_axes(ax)
# Display the spectrogram on a mel scale
# sample rate and hop length parameters are used to render the time axis
librosa.display.specshow(log_S, sr=sr, x_axis='time', y_axis='mel')
# Make the figure layout compact
#plt.show()
plt.savefig('spectrograms/' + row[7] + '/' + row[0] + '.png')
plt.close()
#print count
# In[44]: