From c834ccaa1467faf2f14c999c6bd7542f348feb2c Mon Sep 17 00:00:00 2001 From: MinZhu123 <84722601+MinZhu123@users.noreply.github.com> Date: Mon, 14 Aug 2023 17:17:04 -0400 Subject: [PATCH] Update docs for Fourier-DeepONet (#1434) --- README.md | 2 +- docs/index.rst | 2 +- docs/user/research.rst | 2 +- 3 files changed, 3 insertions(+), 3 deletions(-) diff --git a/README.md b/README.md index 10e29cfd0..e59c4d11d 100644 --- a/README.md +++ b/README.md @@ -27,7 +27,7 @@ DeepXDE is a library for scientific machine learning and physics-informed learni - DeepONet: learning operators [[Nat. Mach. Intell.](https://doi.org/10.1038/s42256-021-00302-5)] - DeepONet extensions, e.g., POD-DeepONet [[Comput. Methods Appl. Mech. Eng.](https://doi.org/10.1016/j.cma.2022.114778)] - MIONet: learning multiple-input operators [[SIAM J. Sci. Comput.](https://doi.org/10.1137/22M1477751)] - - Fourier-DeepONet [[arXiv](https://arxiv.org/abs/2305.17289)], Fourier-MIONet [[arXiv](https://arxiv.org/abs/2303.04778)] + - Fourier-DeepONet [[Comput. Methods Appl. Mech. Eng.](https://doi.org/10.1016/j.cma.2023.116300)], Fourier-MIONet [[arXiv](https://arxiv.org/abs/2303.04778)] - physics-informed DeepONet [[Sci. Adv.](https://doi.org/10.1126/sciadv.abi8605)] - multifidelity DeepONet [[Phys. Rev. Research](https://doi.org/10.1103/PhysRevResearch.4.023210)] - DeepM&Mnet: solving multiphysics and multiscale problems [[J. Comput. Phys.](https://doi.org/10.1016/j.jcp.2021.110296), [J. Comput. Phys.](https://doi.org/10.1016/j.jcp.2021.110698)] diff --git a/docs/index.rst b/docs/index.rst index ad802938d..5f7ad57d6 100644 --- a/docs/index.rst +++ b/docs/index.rst @@ -19,7 +19,7 @@ DeepXDE - DeepONet: learning operators [`Nat. Mach. Intell. `_] - DeepONet extensions, e.g., POD-DeepONet [`Comput. Methods Appl. Mech. Eng. `_] - MIONet: learning multiple-input operators [`SIAM J. Sci. Comput. `_] - - Fourier-DeepONet [`arXiv `_], Fourier-MIONet [`arXiv `_] + - Fourier-DeepONet [`Comput. Methods Appl. Mech. Eng. `_], Fourier-MIONet [`arXiv `_] - physics-informed DeepONet [`Sci. Adv. `_] - multifidelity DeepONet [`Phys. Rev. Research `_] - DeepM&Mnet: solving multiphysics and multiscale problems [`J. Comput. Phys. `_, `J. Comput. Phys. `_] diff --git a/docs/user/research.rst b/docs/user/research.rst index 92a648006..73afc7670 100644 --- a/docs/user/research.rst +++ b/docs/user/research.rst @@ -210,7 +210,7 @@ PINN DeepONet -------- -#. M\. Zhu, S. Feng, Y. Lin, & L. Lu. `Fourier-DeepONet: Fourier-enhanced deep operator networks for full waveform inversion with improved accuracy, generalizability, and robustness `_. *arXiv preprint arXiv:2305.17289*, 2023. +#. M\. Zhu, S. Feng, Y. Lin, & L. Lu. `Fourier-DeepONet: Fourier-enhanced deep operator networks for full waveform inversion with improved accuracy, generalizability, and robustness `_. *Computer Methods in Applied Mechanics and Engineering*, 416, 116300, 2023. #. S\. Mao, R. Dong, L. Lu, K. M. Yi, S. Wang, & P. Perdikaris. `PPDONet: Deep operator networks for fast prediction of steady-state solutions in disk-planet systems `_. *The Astrophysical Journal Letters*, 950(2), L12, 2023. #. Z\. Jiang, M. Zhu, D. Li, Q. Li, Y. Yuan, & L. Lu. `Fourier-MIONet: Fourier-enhanced multiple-input neural operators for multiphase modeling of geological carbon sequestration `_. *arXiv preprint arXiv:2303.04778*, 2023. #. S\. Wang, & P. Perdikaris. `Long-time integration of parametric evolution equations with physics-informed deeponets `_. *Journal of Computational Physics*, 475, p.111855, 2023.