-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain.py
294 lines (263 loc) · 10.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import os
import argparse
import random
import re
import multiprocessing as mp
from datetime import datetime
import numpy as np
import pandas as pd
import segmentation_models_pytorch as smp
from glob import glob
import torch.backends.cudnn as cudnn
from torch.utils.tensorboard import SummaryWriter
import torch
from torch import nn
import torch.utils.data as data
from torch import autocast
from torch.cuda.amp import GradScaler
from augment import make_train_augmenter
from dataset import VisionDataset
from models import ModelWrapper
from config import Config
import util
parser = argparse.ArgumentParser()
parser.add_argument(
'-j', '--num-workers', default=mp.cpu_count(), type=int, metavar='N',
help='number of data loading workers')
parser.add_argument(
'--epochs', default=40, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument(
'-p', '--print-interval', default=100, type=int, metavar='N',
help='print-interval in batches')
parser.add_argument(
'--seed', default=None, type=int,
help='seed for initializing the random number generator')
parser.add_argument(
'--resume', default='', type=str, metavar='PATH',
help='path to saved model')
parser.add_argument(
'-s', '--subset', default=100, type=int, metavar='N',
help='use a percentage of the data for training and validation')
parser.add_argument(
'--input', default='../input', metavar='DIR',
help='input directory')
device_type = 'cuda' if torch.cuda.is_available() else 'cpu'
device = torch.device(device_type)
class Trainer:
def __init__(
self, conf, input_dir, device, num_workers,
checkpoint, print_interval=100, subset=100):
self.conf = conf
self.input_dir = input_dir
self.device = device
self.max_patience = 10
self.print_interval = print_interval
self.use_amp = torch.cuda.is_available()
if self.use_amp:
self.scaler = GradScaler()
self.create_dataloaders(num_workers, subset)
self.model = ModelWrapper(conf, self.num_classes)
self.model = self.model.to(device)
self.optimizer = self.create_optimizer(conf, self.model)
assert self.optimizer is not None, f'Unknown optimizer {conf.optim}'
if checkpoint:
self.model.load_state_dict(checkpoint['model'])
self.optimizer.load_state_dict(checkpoint['optimizer'])
self.scheduler = torch.optim.lr_scheduler.ExponentialLR(
self.optimizer, gamma=conf.gamma)
self.loss_funcs = [
smp.losses.SoftBCEWithLogitsLoss(),
smp.losses.TverskyLoss(mode='multilabel', log_loss=False),
]
self.history = None
self.model_id = 0
model_files = glob('model*.pth')
# find a number that has not been taken
nums = list(map(int, re.findall('\d+', ' '.join(model_files))))
if len(nums) > 0:
self.model_id = np.max(nums) + 1
def create_dataloaders(self, num_workers, subset):
conf = self.conf
meta_file = os.path.join(self.input_dir, 'train.csv')
assert os.path.exists(meta_file), f'{meta_file} not found on Compute Server'
meta_df = pd.read_csv(meta_file, dtype=str)
class_names = util.get_class_names(meta_df)
self.num_classes = len(class_names)
df = util.process_files(self.input_dir, 'train', meta_df, class_names)
# shuffle
df = df.sample(frac=1, random_state=0).reset_index(drop=True)
train_aug = make_train_augmenter(conf)
test_aug = util.make_test_augmenter(conf)
# split into train and validation sets
split = df.shape[0]*90//100
train_df = df.iloc[:split].reset_index(drop=True)
val_df = df.iloc[split:].reset_index(drop=True)
train_dataset = VisionDataset(
train_df, conf, self.input_dir, 'train',
class_names, train_aug, subset=subset)
val_dataset = VisionDataset(
val_df, conf, self.input_dir, 'train',
class_names, test_aug, subset=subset)
drop_last = (len(train_dataset) % conf.batch_size) == 1
self.train_loader = data.DataLoader(
train_dataset, batch_size=conf.batch_size, shuffle=True,
num_workers=num_workers, pin_memory=False,
worker_init_fn=worker_init_fn, drop_last=drop_last)
self.val_loader = data.DataLoader(
val_dataset, batch_size=conf.batch_size, shuffle=False,
num_workers=num_workers, pin_memory=False)
def create_optimizer(self, conf, model):
if conf.optim == 'sgd':
return torch.optim.SGD(
model.parameters(), lr=conf.lr, momentum=0.9,
weight_decay=conf.weight_decay)
if conf.optim == 'adam':
return torch.optim.AdamW(
model.parameters(), lr=conf.lr,
weight_decay=conf.weight_decay)
return None
def save_model(self, state):
torch.save(state, f'model{self.model_id}.pth')
def fit(self, epochs):
best_loss = None
patience = self.max_patience
self.sample_count = 0
self.history = util.LossHistory()
print(f'Running on {device}')
print(f'{len(self.train_loader.dataset)} examples in training set')
print(f'{len(self.val_loader.dataset)} examples in validation set')
trial = os.environ.get('TRIAL')
suffix = f"-trial{trial}" if trial is not None else ""
log_dir = f"runs/{datetime.now().strftime('%b%d_%H-%M-%S')}{suffix}"
writer = SummaryWriter(log_dir=log_dir)
print(f'The best model will be saved as model{self.model_id}.pth')
print('Training in progress...')
for epoch in range(epochs):
# train for one epoch
print(f'Epoch {epoch}:')
train_loss = self.train_epoch(epoch)
val_loss, val_score = self.validate()
self.scheduler.step()
writer.add_scalar('Training loss', train_loss, epoch)
writer.add_scalar('Validation loss', val_loss, epoch)
writer.add_scalar('Validation Dice score', val_score, epoch)
writer.flush()
print(f'training loss {train_loss:.5f}')
print(f'Validation Dice score {val_score:.4f} loss {val_loss:.4f}\n')
self.history.add_epoch_val_loss(epoch, self.sample_count, val_loss)
if best_loss is None or val_loss < best_loss:
best_loss = val_loss
state = {
'epoch': epoch, 'model': self.model.state_dict(),
'optimizer' : self.optimizer.state_dict(),
'conf': self.conf.as_dict()
}
self.save_model(state)
patience = self.max_patience
else:
patience -= 1
if patience == 0:
print(
f'Validation loss did not improve for '
f'{self.max_patience} epochs')
break
self.history.save()
writer.close()
def criterion(self, outputs, labels):
result = 0
for func in self.loss_funcs:
result += func(outputs, labels)
return result
def train_epoch(self, epoch):
model = self.model
optimizer = self.optimizer
val_iter = iter(self.val_loader)
val_interval = len(self.train_loader)//len(self.val_loader)
assert val_interval > 0
train_loss_list = []
model.train()
for step, (images, labels) in enumerate(self.train_loader):
if (step + 1) % val_interval == 0:
model.eval()
# collect validation history for tuning
try:
with torch.no_grad():
val_images, val_labels = next(val_iter)
val_images = val_images.to(device)
val_labels = val_labels.to(device)
with autocast(device_type, enabled=self.use_amp):
val_outputs = model(val_images)
val_loss = self.criterion(val_outputs, val_labels)
self.history.add_val_loss(epoch, self.sample_count, val_loss.item())
except StopIteration:
pass
# switch back to training mode
model.train()
images = images.to(device)
labels = labels.to(device)
# compute output
# use AMP
with autocast(device_type, enabled=self.use_amp):
outputs = model(images)
loss = self.criterion(outputs, labels)
train_loss_list.append(loss.item())
self.sample_count += images.shape[0]
self.history.add_train_loss(epoch, self.sample_count, loss.item())
if (step + 1) % self.print_interval == 0:
print(f'Batch {step + 1}: training loss {loss.item():.5f}')
# compute gradient and do SGD step
if self.use_amp:
self.scaler.scale(loss).backward()
self.scaler.step(optimizer)
self.scaler.update()
else:
loss.backward()
optimizer.step()
optimizer.zero_grad()
mean_train_loss = np.array(train_loss_list).mean()
return mean_train_loss
def validate(self):
sigmoid = nn.Sigmoid()
losses = []
scores = []
self.model.eval()
with torch.no_grad():
for images, labels in self.val_loader:
images = images.to(device)
labels = labels.to(device)
with autocast(device_type, enabled=self.use_amp):
outputs = self.model(images)
loss = self.criterion(outputs,labels)
preds = sigmoid(outputs).round().to(torch.float32)
scores.append(util.dice_coeff(labels, preds).item())
losses.append(loss.item())
return np.array(losses).mean(), np.mean(scores)
def worker_init_fn(worker_id):
random.seed(random.randint(0, 2**32) + worker_id)
np.random.seed(random.randint(0, 2**32) + worker_id)
def main():
args = parser.parse_args()
if args.subset != 100:
print(f'\nWARNING: {args.subset}% of the data will be used for training\n')
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
input_dir = args.input
model_file = args.resume
if model_file:
print(f'Loading model from {model_file}')
checkpoint = torch.load(model_file)
conf = Config(checkpoint['conf'])
else:
checkpoint = None
conf = Config()
print(conf)
trainer = Trainer(
conf, input_dir, device, args.num_workers,
checkpoint, args.print_interval, args.subset)
trainer.fit(args.epochs)
if __name__ == '__main__':
main()
print('Done')