-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhm-a3c.py
332 lines (274 loc) · 16.6 KB
/
hm-a3c.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
# Baby Advantage Actor-Critic | Sam Greydanus | October 2017 | MIT License
from __future__ import print_function
import torch, os, gym, time, glob, argparse, sys
import numpy as np
from scipy.signal import lfilter
from scipy.misc import imresize # preserves single-pixel info _unlike_ img = img[::2,::2]
import torch.nn as nn
import torch.nn.functional as F
import torch.multiprocessing as mp
import get_policies
os.environ['OMP_NUM_THREADS'] = '1'
def str2bool(v):
return v.lower() in ("yes", "true", "t", "1")
def get_args():
parser = argparse.ArgumentParser(description=None)
parser.add_argument('--env', default='PongDeterministic-v4', type=str, help='gym environment')
parser.add_argument('--processes', default=16, type=int, help='number of processes to train with')
parser.add_argument('--render', default=False, type=str2bool, help='renders the atari environment')
parser.add_argument('--test', default=False, type=str2bool, help='sets lr=0, chooses most likely actions')
parser.add_argument('--rnn_steps', default=20, type=int, help='steps to train LSTM over')
parser.add_argument('--lr', default=1e-4, type=float, help='learning rate')
parser.add_argument('--seed', default=1, type=int, help='seed random # generators (for reproducibility)')
parser.add_argument('--gamma', default=0.99, type=float, help='rewards discount factor')
parser.add_argument('--tau', default=1.0, type=float, help='generalized advantage estimation discount')
parser.add_argument('--horizon', default=0.99, type=float, help='horizon for running averages')
parser.add_argument('--hidden', default=256, type=int, help='hidden size of GRU')
parser.add_argument('--only_human_state', default=True, type=str2bool, help='renders the atari environment')
return parser.parse_args()
discount = lambda x, gamma: lfilter([1], [1, -gamma], x[::-1])[::-1] # discounted rewards one liner
prepro = lambda img: imresize(img[35:195].mean(2), (80, 80)).astype(np.float32).reshape(1, 80, 80) / 255.
def printlog(args, s, end='\n', mode='a'):
print(s, end=end)
f = open(args.save_dir + 'log.txt', mode)
f.write(s + '\n')
f.close()
class NNPolicy(nn.Module): # an actor-critic neural network for machine
def __init__(self, channels, memsize, num_actions):
super(NNPolicy, self).__init__()
self.conv1 = nn.Conv2d(channels, 32, 3, stride=2, padding=1)
self.conv2 = nn.Conv2d(32, 32, 3, stride=2, padding=1)
self.conv3 = nn.Conv2d(32, 32, 3, stride=2, padding=1)
self.conv4 = nn.Conv2d(32, 32, 3, stride=2, padding=1)
self.gru = nn.GRUCell(32 * 5 * 5, memsize)
self.critic_linear, self.actor_linear = nn.Linear(memsize, 1), nn.Linear(memsize, num_actions)
def forward(self, inputs, train=True, hard=False):
inputs, hx = inputs
x = F.elu(self.conv1(inputs))
x = F.elu(self.conv2(x))
x = F.elu(self.conv3(x))
x = F.elu(self.conv4(x))
hx = self.gru(x.view(-1, 32 * 5 * 5), (hx))
return self.critic_linear(hx), self.actor_linear(hx), hx
def try_load(self, save_dir):
paths = glob.glob(save_dir + '*.tar')
step = 0
if len(paths) > 0:
ckpts = [int(s.split('.')[-2]) for s in paths]
ix = np.argmax(ckpts)
step = ckpts[ix]
self.load_state_dict(torch.load(paths[ix]))
print("\tno saved models") if step is 0 else print("\tloaded model: {}".format(paths[ix]))
return step
class TDPolicy(nn.Module): # an actor-critic neural network for third party
def __init__(self, channels, memsize, num_actions=2):
super(TDPolicy, self).__init__()
self.conv1 = nn.Conv2d(channels, 32, 3, stride=2, padding=1)
self.conv2 = nn.Conv2d(32, 32, 3, stride=2, padding=1)
self.conv3 = nn.Conv2d(32, 32, 3, stride=2, padding=1)
self.conv4 = nn.Conv2d(32, 32, 3, stride=2, padding=1)
self.gru = nn.GRUCell(32 * 5 * 5 + 1, memsize)
self.critic_linear, self.actor_linear = nn.Linear(memsize, 1), nn.Linear(memsize, num_actions)
def forward(self, inputs, train=True, hard=False):
inputs, hx, theta = inputs
x = F.elu(self.conv1(inputs))
x = F.elu(self.conv2(x))
x = F.elu(self.conv3(x))
x = F.elu(self.conv4(x))
x = torch.cat((x.view(-1, 32 * 5 * 5), torch.tensor([[theta]])), dim=1)
hx = self.gru(x, (hx))
return self.critic_linear(hx), self.actor_linear(hx), hx
def try_load_td(self, save_dir):
paths = glob.glob(save_dir + '*.tar')
step = 0
if len(paths) > 0:
ckpts = [int(s.split('.')[-2]) for s in paths]
ix = np.argmax(ckpts)
step = ckpts[ix]
self.load_state_dict(torch.load(paths[ix]))
print("\tno saved models") if step is 0 else print("\tloaded model: {}".format(paths[ix]))
return step
class TDPolicy_h(nn.Module): # a third party policy trained only based on human state
def __init__(self, num_actions=2):
super(TDPolicy_h, self).__init__()
self.fc1 = nn.Linear(1, 100)
self.fc2 = nn.Linear(100, 10)
self.critic_linear, self.actor_linear = nn.Linear(10, 1), nn.Linear(10, num_actions)
def forward(self, inputs):
inputs = torch.tensor(inputs)
inputs = inputs.view(-1, 1)
x = F.elu(self.fc1(inputs))
x = F.elu(self.fc2(x))
return self.critic_linear(x), self.actor_linear(x)
def try_load_td(self, save_dir):
paths = glob.glob(save_dir + '*.tar')
step = 0
if len(paths) > 0:
ckpts = [int(s.split('.')[-2]) for s in paths]
ix = np.argmax(ckpts)
step = ckpts[ix]
self.load_state_dict(torch.load(paths[ix]))
print("\tno saved models") if step is 0 else print("\tloaded model: {}".format(paths[ix]))
return step
class SharedAdam(torch.optim.Adam): # extend a pytorch optimizer so it shares grads across processes
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0):
super(SharedAdam, self).__init__(params, lr, betas, eps, weight_decay)
for group in self.param_groups:
for p in group['params']:
state = self.state[p]
state['shared_steps'], state['step'] = torch.zeros(1).share_memory_(), 0
state['exp_avg'] = p.data.new().resize_as_(p.data).zero_().share_memory_()
state['exp_avg_sq'] = p.data.new().resize_as_(p.data).zero_().share_memory_()
def step(self, closure=None):
for group in self.param_groups:
for p in group['params']:
if p.grad is None: continue
self.state[p]['shared_steps'] += 1
self.state[p]['step'] = self.state[p]['shared_steps'][0] - 1 # a "step += 1" comes later
super.step(closure)
def cost_func(args, values, logps, actions, rewards):
np_values = values.view(-1).data.numpy()
# generalized advantage estimation using \delta_t residuals (a policy gradient method)
delta_t = np.asarray(rewards) + args.gamma * np_values[1:] - np_values[:-1]
logpys = logps.gather(1, torch.tensor(actions).view(-1, 1))
gen_adv_est = discount(delta_t, args.gamma * args.tau)
policy_loss = -(logpys.view(-1) * torch.FloatTensor(gen_adv_est.copy())).sum()
# l2 loss over value estimator
rewards[-1] += args.gamma * np_values[-1]
discounted_r = discount(np.asarray(rewards), args.gamma)
discounted_r = torch.tensor(discounted_r.copy(), dtype=torch.float32)
value_loss = .5 * (discounted_r - values[:-1, 0]).pow(2).sum()
entropy_loss = -(-logps * torch.exp(logps)).sum() # encourage lower entropy
return policy_loss + 0.5 * value_loss + 0.01 * entropy_loss
def train(shared_td_model, shared_optimizer, human_states_thetas,
machine_state_theta, rank, args, info, init_human_index):
env = gym.make(args.env) # make a local (unshared) environment
env.seed(args.seed + rank)
torch.manual_seed(args.seed + rank) # seed everything
if args.only_human_state:
td_model = TDPolicy_h(num_actions=2) # a local model for third party
else:
td_model = TDPolicy(channels=1, memsize=args.hidden, num_actions=2) # a local model for third party
hm_model = NNPolicy(channels=1, memsize=args.hidden, num_actions=args.num_actions) # a model for human or machine
state = torch.tensor(prepro(env.reset())) # get first state
start_time = last_disp_time = time.time()
episode_length, epr, eploss, done = 0, 0, 0, True # bookkeeping
num_human_state = len(human_states_thetas)
human_index = init_human_index
theta = human_states_thetas[human_index][1]
while info['iterations'][0] <= 8e7 or args.test:
td_model.load_state_dict(shared_td_model.state_dict()) # sync with shared model
if not args.only_human_state:
td_hx = torch.zeros(1, 256) if done else td_hx.detach() # initialize hidden state for third party
hm_hx = torch.zeros(1, 256) # initialize hidden state for hm_model
values, logps, actions, rewards = [], [], [], [] # save values for computing gradientss
for step in range(args.rnn_steps):
episode_length += 1
if args.only_human_state:
value, logit = td_model(theta)
else:
value, logit, td_hx = td_model((state.view(1, 1, 80, 80), td_hx, theta))
logp = F.log_softmax(logit, dim=-1)
action = torch.exp(logp).multinomial(num_samples=1).data[0] # logp.max(1)[1].data if args.test else
if action.numpy()[0] == 1:
hm_model.load_state_dict(human_states_thetas[human_index][0])
# possibility = [i**2 / sum(np.square(range(1, human_index + 2))) for i in range(1, human_index + 2)]
possibility = [i**3 / sum(np.power(range(1, human_index + 2), 3)) for i in range(1, human_index + 2)]
human_index = np.random.choice(range(human_index+1), 1, p=possibility)[0]
theta = human_states_thetas[human_index][1]
else:
hm_model.load_state_dict(machine_state_theta[0])
# possibility =[(num_human_state - i)**2 / sum(np.square(range(1, num_human_state - human_index + 1))) for i in range(human_index, num_human_state)]
possibility =[(num_human_state - i)**3 / sum(np.power(range(1, num_human_state - human_index + 1), 3)) for i in range(human_index, num_human_state)]
human_index = np.random.choice(range(human_index, num_human_state), 1, p=possibility)[0]
theta = human_states_thetas[human_index][1]
reward = 0 # reset reward to 0
while reward == 0:
hm_value, hm_logit, hm_hx = hm_model((state.view(1, 1, 80, 80), hm_hx))
hm_logp = F.log_softmax(hm_logit, dim=-1)
hm_action = torch.exp(hm_logp).multinomial(num_samples=1).data[0]
state, reward, done, _ = env.step(hm_action.numpy()[0])
state = torch.tensor(prepro(state))
info['frames'].add_(1)
info['iterations'].add_(1)
if args.render: env.render()
epr += reward
reward = np.clip(reward, -1, 1) # reward
done = done or episode_length >= 1e4 # don't playing one ep for too long
# num_frames = int(info['frames'].item())
num_iterations = int(info['iterations'].item())
if num_iterations % 5e4 == 0: # save every 2M frames
printlog(args, '\n\t{:.0f}F frames: saved td_model\n'.format(num_iterations / 1e4))
torch.save(shared_td_model.state_dict(), args.save_dir + 'td_model.{:.0f}.tar'.format(num_iterations / 1e4))
if done: # update shared data
info['episodes'] += 1
interp = 1 if info['episodes'][0] == 1 else 1 - args.horizon
info['run_epr'].mul_(1 - interp).add_(interp * epr)
info['run_loss'].mul_(1 - interp).add_(interp * eploss)
if rank == 0 and time.time() - last_disp_time > 60: # print info ~ every minute
elapsed = time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - start_time))
printlog(args,
'time {}, episodes {:.0f}, frames {:.1f}*10^5, exp running mean of reward {:.2f}, run loss {:.2f}, num_iterations {:.1f}*10^3'
.format(elapsed, info['episodes'].item(), int(info['frames'].item()) / 1e5,
info['run_epr'].item(), info['run_loss'].item(), num_iterations/1e3))
last_disp_time = time.time()
if done: # maybe print info.
episode_length, epr, eploss = 0, 0, 0
state = torch.tensor(prepro(env.reset()))
values.append(value)
logps.append(logp)
actions.append(action)
rewards.append(reward)
if args.only_human_state:
next_value = torch.zeros(1, 1) if done else td_model(theta)[0]
else:
next_value = torch.zeros(1, 1) if done else td_model((state.unsqueeze(0), td_hx, theta))[0]
values.append(next_value.detach())
loss = cost_func(args, torch.cat(values), torch.cat(logps), torch.cat(actions), np.asarray(rewards))
eploss += loss.item()
shared_optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(td_model.parameters(), 40)
for param, shared_param in zip(td_model.parameters(), shared_td_model.parameters()):
if shared_param.grad is None: shared_param._grad = param.grad # sync gradients with shared model
shared_optimizer.step()
if __name__ == "__main__":
if sys.version_info[0] > 2:
mp.set_start_method('spawn') # this must not be in global scope
elif sys.platform == 'linux' or sys.platform == 'linux2':
raise Exception("Must be using Python 3 with linux!") # or else you get a deadlock in conv2d
args = get_args()
torch.manual_seed(args.seed)
print('this is only_human_state', args.only_human_state)
if args.only_human_state:
args.save_dir = '{}_td_h/'.format(args.env.lower()) # keep the directory structure simple
print('\n\tonly use human state as an input for td_policy')
print('\tdir is saved at', args.save_dir)
shared_td_model = TDPolicy_h(num_actions=2).share_memory()
else:
args.save_dir = '{}_td/'.format(args.env.lower()) # keep the directory structure simple
print('\n\tuse both human state and physical state as input for td_policy')
print('\tdir is saved at', args.save_dir)
shared_td_model = TDPolicy(channels=1, memsize=args.hidden, num_actions=2).share_memory()
if args.render: args.processes = 1; args.test = True # render mode -> test mode w one process
if args.test: args.lr = 0 # don't train in render mode
args.num_actions = gym.make(args.env).action_space.n # get the action space of this game
os.makedirs(args.save_dir) if not os.path.exists(args.save_dir) else None # make dir to save models etc.
shared_optimizer = SharedAdam(shared_td_model.parameters(), lr=args.lr)
humam_policies = get_policies.get_policies()
human_paths_rewards = [(i[1], i[2]) for i in humam_policies]
machine_path_reward = human_paths_rewards[len(human_paths_rewards)//2]
init_human_index = len(human_paths_rewards)-19
highest_reward = 21 # used to normalize theta to [-1, 1]. theta = reward / highest_reward
human_states_thetas = [(torch.load(path), reward/highest_reward) for path, reward in human_paths_rewards]
machine_state_theta = (torch.load(machine_path_reward[0]), machine_path_reward[1]/highest_reward)
info = {k: torch.DoubleTensor([0]).share_memory_() for k in ['run_epr', 'run_loss', 'episodes', 'frames', 'iterations']}
info['iterations'] += shared_td_model.try_load_td(args.save_dir) * 1e4
if int(info['iterations'].item()) == 0: printlog(args, '', end='', mode='w') # clear log file
processes = []
for rank in range(args.processes):
p = mp.Process(target=train, args=(shared_td_model, shared_optimizer, human_states_thetas,
machine_state_theta, rank, args, info, init_human_index))
p.start()
processes.append(p)
for p in processes: p.join()