-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtest.py
76 lines (70 loc) · 2.54 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import time
import os
from options.test_options import TestOptions
from data.data_loader import CreateDataLoader
from models.models import create_model
from util.visualizer import Visualizer
from pdb import set_trace as st
from util import html
from util.metrics import PSNR
from util.metrics import SSIM
from PIL import Image
import torch
import warnings
warnings.filterwarnings("ignore")
opt = TestOptions().parse()
opt.nThreads = 1 # test code only supports nThreads = 1
opt.batch_size = 1 # test code only supports batchSize = 1
opt.serial_batches = True # no shuffle
opt.no_flip = True # no flip
data_loader = CreateDataLoader(opt)
dataset = data_loader.load_data()
model = create_model(opt)
visualizer = Visualizer(opt)
# create website
web_dir = os.path.join(opt.results_dir, opt.name,
'%s_%s' % (opt.phase, opt.which_epoch))
webpage = html.HTML(
web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (opt.name, opt.phase,
opt.which_epoch))
# test
avgPSNR = 0.0
avgPSNR_b = 0.0
#avgSSIM = 0.0
#avgSSIM_b = 0.0
counter = 0
with torch.no_grad():
for i, data in enumerate(dataset):
if i >= opt.how_many:
break
counter = i
model.set_input(data)
model.test()
visuals = model.get_current_visuals()
PSNR_b = PSNR(visuals['real_A'], visuals['real_B'])
PSNR_d = PSNR(visuals['fake_B'], visuals['real_B'])
avgPSNR += PSNR_d
avgPSNR_b += PSNR_b
#pilReala = Image.fromarray(visuals['real_A'])
#pilFake = Image.fromarray(visuals['fake_B'])
#pilReal = Image.fromarray(visuals['real_B'])
#SSIM_b = SSIM(pilReala,pilReal)
#SSIM_b = SSIM(pilReala).cw_ssim_value(pilReal)
#SSIM_d = SSIM(pilFake).cw_ssim_value(pilReal)
#avgSSIM += SSIM_d
#avgSSIM_b += SSIM_b
img_path = model.get_image_paths()
#print('process image... %s ... Deblurred PSNR ... %f' % (img_path, PSNR_d))
print(
'process image... %s ... Blurred PSNR ... %f ... Deblurred PSNR ... %f'
% (img_path, PSNR_b, PSNR_d))
#print('process image... %s ... Blurred SSIM ... %f ... Deblurred SSIM ... %f' % (img_path, SSIM_b, SSIM_d))
visualizer.save_images(webpage, visuals, img_path)
avgPSNR /= counter
avgPSNR_b /= counter
#avgSSIM /= counter
#avgSSIM_b /= counter
print('Blurred PSNR = %f, Deblurred PSNR = %f' % (avgPSNR_b, avgPSNR))
#print('PSNR = %f, SSIM = %f' %
# (avgPSNR, avgSSIM))
webpage.save()