forked from PaddlePaddle/PaddleSeg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
export.py
143 lines (120 loc) · 4.15 KB
/
export.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import paddle
import yaml
from medicalseg.cvlibs import Config
from medicalseg.utils import logger
def parse_args():
parser = argparse.ArgumentParser(description='Model export.')
# params of training
parser.add_argument(
"--config",
dest="cfg",
help="The config file.",
default=None,
type=str,
required=True)
parser.add_argument(
'--save_dir',
dest='save_dir',
help='The directory for saving the exported model',
type=str,
default='./output')
parser.add_argument(
'--model_path',
dest='model_path',
help='The path of model for export',
type=str,
default=None)
parser.add_argument(
'--without_argmax',
dest='without_argmax',
help='Do not add the argmax operation at the end of the network',
action='store_true')
parser.add_argument(
'--with_softmax',
dest='with_softmax',
help='Add the softmax operation at the end of the network',
action='store_true')
parser.add_argument(
"--input_shape",
nargs='+',
help="Export the model with fixed input shape, such as 1 3 1024 1024.",
type=int,
default=None)
return parser.parse_args()
class SavedSegmentationNet(paddle.nn.Layer):
def __init__(self, net, without_argmax=False, with_softmax=False):
super().__init__()
self.net = net
self.post_processer = PostPorcesser(without_argmax, with_softmax)
def forward(self, x):
outs = self.net(x)
outs = self.post_processer(outs)
return outs
class PostPorcesser(paddle.nn.Layer):
def __init__(self, without_argmax, with_softmax):
super().__init__()
self.without_argmax = without_argmax
self.with_softmax = with_softmax
def forward(self, outs):
new_outs = []
for out in outs:
if self.with_softmax:
out = paddle.nn.functional.softmax(out, axis=1)
if not self.without_argmax:
out = paddle.argmax(out, axis=1)
new_outs.append(out)
return new_outs
def main(args):
os.environ['MEDICALSEG_EXPORT_STAGE'] = 'True'
cfg = Config(args.cfg)
net = cfg.model
if args.model_path:
para_state_dict = paddle.load(args.model_path)
net.set_dict(para_state_dict)
logger.info('Loaded trained params of model successfully.')
if args.input_shape is None:
shape = [None, 1, None, None, None]
else:
shape = args.input_shape
if not args.without_argmax or args.with_softmax:
new_net = SavedSegmentationNet(net, args.without_argmax,
args.with_softmax)
else:
new_net = net
new_net.eval()
new_net = paddle.jit.to_static(
new_net,
input_spec=[paddle.static.InputSpec(
shape=shape, dtype='float32')]) # export is export to static graph
save_path = os.path.join(args.save_dir, 'model')
paddle.jit.save(new_net, save_path)
yml_file = os.path.join(args.save_dir, 'deploy.yaml')
with open(yml_file, 'w') as file:
transforms = cfg.export_config.get('transforms', [{}])
data = {
'Deploy': {
'transforms': transforms,
'model': 'model.pdmodel',
'params': 'model.pdiparams'
}
}
yaml.dump(data, file)
logger.info(f'Model is saved in {args.save_dir}.')
if __name__ == '__main__':
args = parse_args()
main(args)