forked from PaddlePaddle/PaddleSeg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gscnn.py
357 lines (314 loc) · 12.9 KB
/
gscnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import cv2
import numpy as np
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddleseg.cvlibs import manager
from paddleseg.models import layers
from paddleseg.models.backbones import resnet_vd
from paddleseg.models import deeplab
from paddleseg.utils import utils
@manager.MODELS.add_component
class GSCNN(nn.Layer):
"""
The GSCNN implementation based on PaddlePaddle.
The original article refers to
Towaki Takikawa, et, al. "Gated-SCNN: Gated Shape CNNs for Semantic Segmentation"
(https://arxiv.org/pdf/1907.05740.pdf)
Args:
num_classes (int): The unique number of target classes.
backbone (paddle.nn.Layer): Backbone network, currently support Resnet50_vd/Resnet101_vd.
backbone_indices (tuple, optional): Two values in the tuple indicate the indices of output of backbone.
Default: (0, 1, 2, 3).
aspp_ratios (tuple, optional): The dilation rate using in ASSP module.
If output_stride=16, aspp_ratios should be set as (1, 6, 12, 18).
If output_stride=8, aspp_ratios is (1, 12, 24, 36).
Default: (1, 6, 12, 18).
aspp_out_channels (int, optional): The output channels of ASPP module. Default: 256.
align_corners (bool, optional): An argument of F.interpolate. It should be set to False when the feature size is even,
e.g. 1024x512, otherwise it is True, e.g. 769x769. Default: False.
pretrained (str, optional): The path or url of pretrained model. Default: None.
"""
def __init__(self,
num_classes,
backbone,
backbone_indices=(0, 1, 2, 3),
aspp_ratios=(1, 6, 12, 18),
aspp_out_channels=256,
align_corners=False,
pretrained=None):
super().__init__()
self.backbone = backbone
backbone_channels = self.backbone.feat_channels
self.head = GSCNNHead(num_classes, backbone_indices, backbone_channels,
aspp_ratios, aspp_out_channels, align_corners)
self.align_corners = align_corners
self.pretrained = pretrained
self.init_weight()
def forward(self, x):
feat_list = self.backbone(x)
logit_list = self.head(x, feat_list, self.backbone.conv1_logit)
seg_logit, edge_logit = [
F.interpolate(
logit,
x.shape[2:],
mode='bilinear',
align_corners=self.align_corners) for logit in logit_list
]
return [seg_logit, (seg_logit, edge_logit), edge_logit, seg_logit]
def init_weight(self):
if self.pretrained is not None:
utils.load_entire_model(self, self.pretrained)
class GSCNNHead(nn.Layer):
"""
The GSCNNHead implementation based on PaddlePaddle.
Args:
num_classes (int): The unique number of target classes.
backbone_indices (tuple): Two values in the tuple indicate the indices of output of backbone.
the first index will be taken as a low-level feature in Decoder component;
the last one will be taken as input of ASPP component; the second to fourth
will be taken as input for GCL component.
Usually backbone consists of four downsampling stage, and return an output of
each stage. If we set it as (0, 1, 2, 3), it means taking feature map of the first
stage in backbone as low-level feature used in Decoder, feature map of the fourth
stage as input of ASPP, and the feature map of the second to fourth stage as input of GCL.
backbone_channels (tuple): The channels of output of backbone.
aspp_ratios (tuple): The dilation rates using in ASSP module.
aspp_out_channels (int): The output channels of ASPP module.
align_corners (bool): An argument of F.interpolate. It should be set to False when the output size of feature
is even, e.g. 1024x512, otherwise it is True, e.g. 769x769.
"""
def __init__(self, num_classes, backbone_indices, backbone_channels,
aspp_ratios, aspp_out_channels, align_corners):
super().__init__()
self.backbone_indices = backbone_indices
self.align_corners = align_corners
self.dsn1 = nn.Conv2D(
backbone_channels[backbone_indices[1]], 1, kernel_size=1)
self.dsn2 = nn.Conv2D(
backbone_channels[backbone_indices[2]], 1, kernel_size=1)
self.dsn3 = nn.Conv2D(
backbone_channels[backbone_indices[3]], 1, kernel_size=1)
self.res1 = resnet_vd.BasicBlock(64, 64, stride=1)
self.d1 = nn.Conv2D(64, 32, kernel_size=1)
self.gate1 = GatedSpatailConv2d(32, 32)
self.res2 = resnet_vd.BasicBlock(32, 32, stride=1)
self.d2 = nn.Conv2D(32, 16, kernel_size=1)
self.gate2 = GatedSpatailConv2d(16, 16)
self.res3 = resnet_vd.BasicBlock(16, 16, stride=1)
self.d3 = nn.Conv2D(16, 8, kernel_size=1)
self.gate3 = GatedSpatailConv2d(8, 8)
self.fuse = nn.Conv2D(8, 1, kernel_size=1, bias_attr=False)
self.cw = nn.Conv2D(2, 1, kernel_size=1, bias_attr=False)
self.aspp = ASPPModule(
aspp_ratios=aspp_ratios,
in_channels=backbone_channels[-1],
out_channels=aspp_out_channels,
align_corners=self.align_corners,
image_pooling=True)
self.decoder = deeplab.Decoder(
num_classes=num_classes,
in_channels=backbone_channels[0],
align_corners=self.align_corners)
def forward(self, x, feat_list, s_input):
input_shape = paddle.shape(x)
m1f = F.interpolate(
s_input,
input_shape[2:],
mode='bilinear',
align_corners=self.align_corners)
l1, l2, l3 = [
feat_list[self.backbone_indices[i]]
for i in range(1, len(self.backbone_indices))
]
s1 = F.interpolate(
self.dsn1(l1),
input_shape[2:],
mode='bilinear',
align_corners=self.align_corners)
s2 = F.interpolate(
self.dsn2(l2),
input_shape[2:],
mode='bilinear',
align_corners=self.align_corners)
s3 = F.interpolate(
self.dsn3(l3),
input_shape[2:],
mode='bilinear',
align_corners=self.align_corners)
# Get image gradient
im_arr = x.numpy().transpose((0, 2, 3, 1))
im_arr = ((im_arr * 0.5 + 0.5) * 255).astype(np.uint8)
canny = np.zeros((input_shape[0], 1, input_shape[2], input_shape[3]))
for i in range(input_shape[0]):
canny[i] = cv2.Canny(im_arr[i], 10, 100)
canny = canny / 255
canny = paddle.to_tensor(canny).astype('float32')
canny.stop_gradient = True
cs = self.res1(m1f)
cs = F.interpolate(
cs,
input_shape[2:],
mode='bilinear',
align_corners=self.align_corners)
cs = self.d1(cs)
cs = self.gate1(cs, s1)
cs = self.res2(cs)
cs = F.interpolate(
cs,
input_shape[2:],
mode='bilinear',
align_corners=self.align_corners)
cs = self.d2(cs)
cs = self.gate2(cs, s2)
cs = self.res3(cs)
cs = F.interpolate(
cs,
input_shape[2:],
mode='bilinear',
align_corners=self.align_corners)
cs = self.d3(cs)
cs = self.gate3(cs, s3)
cs = self.fuse(cs)
cs = F.interpolate(
cs,
input_shape[2:],
mode='bilinear',
align_corners=self.align_corners)
edge_out = F.sigmoid(cs) # Ouput of shape stream
cat = paddle.concat([edge_out, canny], axis=1)
acts = self.cw(cat)
acts = F.sigmoid(acts) # Input of fusion module
x = self.aspp(l3, acts)
low_level_feat = feat_list[self.backbone_indices[0]]
logit = self.decoder(x, low_level_feat)
logit_list = [logit, edge_out]
return logit_list
class GatedSpatailConv2d(nn.Layer):
def __init__(self,
in_channels,
out_channels,
kernel_size=1,
stride=1,
padding=0,
dilation=1,
groups=1,
bias_attr=False):
super().__init__()
self._gate_conv = nn.Sequential(
layers.SyncBatchNorm(in_channels + 1),
nn.Conv2D(
in_channels + 1, in_channels + 1, kernel_size=1),
nn.ReLU(),
nn.Conv2D(
in_channels + 1, 1, kernel_size=1),
layers.SyncBatchNorm(1),
nn.Sigmoid())
self.conv = nn.Conv2D(
in_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
bias_attr=bias_attr)
def forward(self, input_features, gating_features):
cat = paddle.concat([input_features, gating_features], axis=1)
alphas = self._gate_conv(cat)
x = input_features * (alphas + 1)
x = self.conv(x)
return x
class ASPPModule(nn.Layer):
"""
Atrous Spatial Pyramid Pooling.
Args:
aspp_ratios (tuple): The dilation rate using in ASSP module.
in_channels (int): The number of input channels.
out_channels (int): The number of output channels.
align_corners (bool): An argument of F.interpolate. It should be set to False when the output size of feature
is even, e.g. 1024x512, otherwise it is True, e.g. 769x769.
use_sep_conv (bool, optional): If using separable conv in ASPP module. Default: False.
image_pooling (bool, optional): If augmented with image-level features. Default: False
"""
def __init__(self,
aspp_ratios,
in_channels,
out_channels,
align_corners,
use_sep_conv=False,
image_pooling=False):
super().__init__()
self.align_corners = align_corners
self.aspp_blocks = nn.LayerList()
for ratio in aspp_ratios:
if use_sep_conv and ratio > 1:
conv_func = layers.SeparableConvBNReLU
else:
conv_func = layers.ConvBNReLU
block = conv_func(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=1 if ratio == 1 else 3,
dilation=ratio,
padding=0 if ratio == 1 else ratio)
self.aspp_blocks.append(block)
out_size = len(self.aspp_blocks)
if image_pooling:
self.global_avg_pool = nn.Sequential(
nn.AdaptiveAvgPool2D(output_size=(1, 1)),
layers.ConvBNReLU(
in_channels, out_channels, kernel_size=1, bias_attr=False))
out_size += 1
self.image_pooling = image_pooling
self.edge_conv = layers.ConvBNReLU(
1, out_channels, kernel_size=1, bias_attr=False)
out_size += 1
self.conv_bn_relu = layers.ConvBNReLU(
in_channels=out_channels * out_size,
out_channels=out_channels,
kernel_size=1)
self.dropout = nn.Dropout(p=0.1) # drop rate
def forward(self, x, edge):
outputs = []
x_shape = paddle.shape(x)
for block in self.aspp_blocks:
y = block(x)
y = F.interpolate(
y,
x_shape[2:],
mode='bilinear',
align_corners=self.align_corners)
outputs.append(y)
if self.image_pooling:
img_avg = self.global_avg_pool(x)
img_avg = F.interpolate(
img_avg,
x_shape[2:],
mode='bilinear',
align_corners=self.align_corners)
outputs.append(img_avg)
edge_features = F.interpolate(
edge,
size=x_shape[2:],
mode='bilinear',
align_corners=self.align_corners)
edge_features = self.edge_conv(edge_features)
outputs.append(edge_features)
x = paddle.concat(outputs, axis=1)
x = self.conv_bn_relu(x)
x = self.dropout(x)
return x