forked from PaddlePaddle/PaddleSeg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pspnet.py
147 lines (122 loc) · 5.88 KB
/
pspnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.nn as nn
import paddle.nn.functional as F
import paddle
from paddleseg.cvlibs import manager
from paddleseg.models import layers
from paddleseg.utils import utils
@manager.MODELS.add_component
class PSPNet(nn.Layer):
"""
The PSPNet implementation based on PaddlePaddle.
The original article refers to
Zhao, Hengshuang, et al. "Pyramid scene parsing network"
(https://openaccess.thecvf.com/content_cvpr_2017/papers/Zhao_Pyramid_Scene_Parsing_CVPR_2017_paper.pdf).
Args:
num_classes (int): The unique number of target classes.
backbone (Paddle.nn.Layer): Backbone network, currently support Resnet50/101.
backbone_indices (tuple, optional): Two values in the tuple indicate the indices of output of backbone.
pp_out_channels (int, optional): The output channels after Pyramid Pooling Module. Default: 1024.
bin_sizes (tuple, optional): The out size of pooled feature maps. Default: (1,2,3,6).
enable_auxiliary_loss (bool, optional): A bool value indicates whether adding auxiliary loss. Default: True.
align_corners (bool, optional): An argument of F.interpolate. It should be set to False when the feature size is even,
e.g. 1024x512, otherwise it is True, e.g. 769x769. Default: False.
pretrained (str, optional): The path or url of pretrained model. Default: None.
"""
def __init__(self,
num_classes,
backbone,
backbone_indices=(2, 3),
pp_out_channels=1024,
bin_sizes=(1, 2, 3, 6),
enable_auxiliary_loss=True,
align_corners=False,
pretrained=None):
super().__init__()
self.backbone = backbone
backbone_channels = [
backbone.feat_channels[i] for i in backbone_indices
]
self.head = PSPNetHead(num_classes, backbone_indices, backbone_channels,
pp_out_channels, bin_sizes,
enable_auxiliary_loss, align_corners)
self.align_corners = align_corners
self.pretrained = pretrained
self.init_weight()
def forward(self, x):
feat_list = self.backbone(x)
logit_list = self.head(feat_list)
return [
F.interpolate(
logit,
paddle.shape(x)[2:],
mode='bilinear',
align_corners=self.align_corners) for logit in logit_list
]
def init_weight(self):
if self.pretrained is not None:
utils.load_entire_model(self, self.pretrained)
class PSPNetHead(nn.Layer):
"""
The PSPNetHead implementation.
Args:
num_classes (int): The unique number of target classes.
backbone_indices (tuple): Two values in the tuple indicate the indices of output of backbone.
The first index will be taken as a deep-supervision feature in auxiliary layer;
the second one will be taken as input of Pyramid Pooling Module (PPModule).
Usually backbone consists of four downsampling stage, and return an output of
each stage. If we set it as (2, 3) in ResNet, that means taking feature map of the third
stage (res4b22) in backbone, and feature map of the fourth stage (res5c) as input of PPModule.
backbone_channels (tuple): The same length with "backbone_indices". It indicates the channels of corresponding index.
pp_out_channels (int): The output channels after Pyramid Pooling Module.
bin_sizes (tuple): The out size of pooled feature maps.
enable_auxiliary_loss (bool, optional): A bool value indicates whether adding auxiliary loss. Default: True.
align_corners (bool): An argument of F.interpolate. It should be set to False when the output size of feature
is even, e.g. 1024x512, otherwise it is True, e.g. 769x769.
"""
def __init__(self, num_classes, backbone_indices, backbone_channels,
pp_out_channels, bin_sizes, enable_auxiliary_loss,
align_corners):
super().__init__()
self.backbone_indices = backbone_indices
self.psp_module = layers.PPModule(
in_channels=backbone_channels[1],
out_channels=pp_out_channels,
bin_sizes=bin_sizes,
dim_reduction=True,
align_corners=align_corners)
self.dropout = nn.Dropout(p=0.1) # dropout_prob
self.conv = nn.Conv2D(
in_channels=pp_out_channels,
out_channels=num_classes,
kernel_size=1)
if enable_auxiliary_loss:
self.auxlayer = layers.AuxLayer(
in_channels=backbone_channels[0],
inter_channels=backbone_channels[0] // 4,
out_channels=num_classes)
self.enable_auxiliary_loss = enable_auxiliary_loss
def forward(self, feat_list):
logit_list = []
x = feat_list[self.backbone_indices[1]]
x = self.psp_module(x)
x = self.dropout(x)
logit = self.conv(x)
logit_list.append(logit)
if self.enable_auxiliary_loss:
auxiliary_feat = feat_list[self.backbone_indices[0]]
auxiliary_logit = self.auxlayer(auxiliary_feat)
logit_list.append(auxiliary_logit)
return logit_list