forked from alexanderrichard/NeuralNetwork-Viterbi
-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval.py
executable file
·51 lines (38 loc) · 1.54 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
#!/usr/bin/python
import argparse
import glob
import re
def recog_file(filename, ground_truth_path):
# read ground truth
gt_file = ground_truth_path + re.sub('.*/','/',filename) + '.txt'
with open(gt_file, 'r') as f:
ground_truth = f.read().split('\n')[0:-1]
f.close()
# read recognized sequence
with open(filename, 'r') as f:
recognized = f.read().split('\n')[5].split() # framelevel recognition is in 6-th line of file
f.close()
n_frame_errors = 0
for i in range(len(recognized)):
if not recognized[i] == ground_truth[i]:
n_frame_errors += 1
return n_frame_errors, len(recognized)
### MAIN #######################################################################
### arguments ###
### --recog_dir: the directory where the recognition files from inferency.py are placed
### --ground_truth_dir: the directory where the framelevel ground truth can be found
parser = argparse.ArgumentParser()
parser.add_argument('--recog_dir', default='results')
parser.add_argument('--ground_truth_dir', default='data/groundTruth')
args = parser.parse_args()
filelist = glob.glob(args.recog_dir + '/P*')
print('Evaluate %d video files...' % len(filelist))
n_frames = 0
n_errors = 0
# loop over all recognition files and evaluate the frame error
for filename in filelist:
errors, frames = recog_file(filename, args.ground_truth_dir)
n_errors += errors
n_frames += frames
# print frame accuracy (1.0 - frame error rate)
print('frame accuracy: %f' % (1.0 - float(n_errors) / n_frames))