forked from ufal/whisper_streaming
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathwhisper_online_server.py
223 lines (171 loc) · 6.91 KB
/
whisper_online_server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
#!/usr/bin/env python3
from whisper_online import *
import sys
import argparse
import os
from colorama import Fore, Back, Style
import colorama
parser = argparse.ArgumentParser()
# server options
parser.add_argument("--host", type=str, default='localhost')
parser.add_argument("--port", type=int, default=43007)
parser.add_argument("--samplerate", type=int, default=16000, help="source sample rate")
parser.add_argument("--sampleencoding", type=str, default="PCM_16", help="source sample encoding 'PCM_16, 'PCM_32'")
# options from whisper_online
add_shared_args(parser)
args = parser.parse_args()
# setting whisper object by args
SAMPLING_RATE = 16000
size = args.model
language = args.lan
t = time.time()
print(f"Loading Whisper {size} model for {language}...",file=sys.stderr,end=" ",flush=True)
if args.backend == "faster-whisper":
from faster_whisper import WhisperModel
asr_cls = FasterWhisperASR
elif args.backend == "hf-pipeline":
size = "openai/whisper-"+size
asr_cls = WhisperPipelineASR
elif args.backend == "mlx-whisper":
from mlx_whisper import MLXWhisperASR
asr_cls = MLXWhisperASR
else:
import whisper
import whisper_timestamped
# from whisper_timestamped_model import WhisperTimestampedASR
asr_cls = WhisperTimestampedASR
asr = asr_cls(modelsize=size, lan=language, cache_dir=args.model_cache_dir, model_dir=args.model_dir)
if args.task == "translate":
asr.set_translate_task()
tgt_language = "en"
else:
tgt_language = language
e = time.time()
print(f"done. It took {round(e-t,2)} seconds.",file=sys.stderr)
if args.vad:
print("setting VAD filter",file=sys.stderr)
asr.use_vad()
min_chunk = args.min_chunk_size
if args.buffer_trimming == "sentence":
tokenizer = create_tokenizer(tgt_language)
else:
tokenizer = None
online = OnlineASRProcessor(asr,tokenizer,buffer_trimming=(args.buffer_trimming, args.buffer_trimming_sec))
demo_audio_path = "cs-maji-2.16k.wav"
if os.path.exists(demo_audio_path):
# load the audio into the LRU cache before we start the timer
a = load_audio_chunk(demo_audio_path,0,1)
# TODO: it should be tested whether it's meaningful
# warm up the ASR, because the very first transcribe takes much more time than the other
asr.transcribe(a)
else:
print("Whisper is not warmed up",file=sys.stderr)
######### Server objects
import line_packet
import socket
import logging
class Connection:
'''it wraps conn object'''
PACKET_SIZE = 65536
def __init__(self, conn):
self.conn = conn
self.last_line = ""
self.conn.setblocking(True)
def send(self, line):
'''it doesn't send the same line twice, because it was problematic in online-text-flow-events'''
if line == self.last_line:
return
line_packet.send_one_line(self.conn, line)
self.last_line = line
def receive_lines(self):
in_line = line_packet.receive_lines(self.conn)
return in_line
def non_blocking_receive_audio(self):
r = self.conn.recv(self.PACKET_SIZE)
return r
import io
import soundfile
# wraps socket and ASR object, and serves one client connection.
# next client should be served by a new instance of this object
class ServerProcessor:
def __init__(self, c, online_asr_proc, min_chunk):
self.connection = c
self.online_asr_proc = online_asr_proc
self.min_chunk = min_chunk
self.last_end = None
def receive_audio_chunk(self):
# receive all audio that is available by this time
# blocks operation if less than self.min_chunk seconds is available
# unblocks if connection is closed or a chunk is available
out = []
while sum(len(x) for x in out) < self.min_chunk*SAMPLING_RATE:
raw_bytes = self.connection.non_blocking_receive_audio()
#print(raw_bytes[:10])
#print(f"non_blocking_receive_audio() {len(raw_bytes)} bytes")#raw_bytes[:10])
if not raw_bytes:
break
sf = soundfile.SoundFile(io.BytesIO(raw_bytes), channels=1,endian="LITTLE",samplerate=args.samplerate, subtype=args.sampleencoding,format="RAW")
audio, _ = librosa.load(sf,sr=SAMPLING_RATE)
out.append(audio)
if not out:
return None
return np.concatenate(out)
def format_output_transcript(self,o):
# output format in stdout is like:
# 0 1720 Takhle to je
# - the first two words are:
# - beg and end timestamp of the text segment, as estimated by Whisper model. The timestamps are not accurate, but they're useful anyway
# - the next words: segment transcript
# This function differs from whisper_online.output_transcript in the following:
# succeeding [beg,end] intervals are not overlapping because ELITR protocol (implemented in online-text-flow events) requires it.
# Therefore, beg, is max of previous end and current beg outputed by Whisper.
# Usually it differs negligibly, by appx 20 ms.
if o[0] is not None:
beg, end = o[0]*1000,o[1]*1000
if self.last_end is not None:
beg = max(beg, self.last_end)
self.last_end = end
print(f"{Fore.GREEN}send_result:{Style.RESET_ALL}%1.0f %1.0f %s" % (beg,end,o[2]),flush=True,file=sys.stderr)
return "%1.0f %1.0f %s" % (beg,end,o[2])
else:
#print(o,file=sys.stderr,flush=True)
return None
def send_result(self, o):
msg = self.format_output_transcript(o)
if msg is not None:
self.connection.send(msg)
def process(self):
# handle one client connection
self.online_asr_proc.init()
while True:
a = self.receive_audio_chunk()
if a is None:
print("break here",file=sys.stderr)
break
self.online_asr_proc.insert_audio_chunk(a)
o = online.process_iter()
try:
self.send_result(o)
except BrokenPipeError:
print("broken pipe -- connection closed?",file=sys.stderr)
break
# o = online.finish() # this should be working
# self.send_result(o)
# Start logging.
level = logging.INFO
logging.basicConfig(level=level, format='whisper-server-%(levelname)s: %(message)s')
# server loop
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.bind((args.host, args.port))
s.listen(1)
logging.info('INFO: Listening on'+str((args.host, args.port)))
while True:
conn, addr = s.accept()
logging.info('INFO: Connected to client on {}'.format(addr))
connection = Connection(conn)
proc = ServerProcessor(connection, online, min_chunk)
proc.process()
conn.close()
logging.info('INFO: Connection to client closed')
logging.info('INFO: Connection closed, terminating.')