forked from tobegit3hub/tensorflow_template_application
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dense_classifier.py
executable file
·614 lines (547 loc) · 24.4 KB
/
dense_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import datetime
import json
import logging
import math
import numpy as np
import os
import pprint
from sklearn import metrics
import tensorflow as tf
from tensorflow.contrib.session_bundle import exporter
from tensorflow.python.saved_model import builder as saved_model_builder
from tensorflow.python.saved_model import signature_constants
from tensorflow.python.saved_model import signature_def_utils
from tensorflow.python.saved_model import tag_constants
from tensorflow.python.saved_model import utils
from tensorflow.python.util import compat
# Define hyperparameters
flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_boolean("enable_colored_log", False, "Enable colored log")
flags.DEFINE_string("input_file_format", "tfrecord", "Input file format")
flags.DEFINE_string("train_file", "./data/cancer/cancer_train.csv.tfrecords",
"The glob pattern of train TFRecords files")
flags.DEFINE_string("validate_file", "./data/cancer/cancer_test.csv.tfrecords",
"The glob pattern of validate TFRecords files")
flags.DEFINE_integer("feature_size", 9, "Number of feature size")
flags.DEFINE_integer("label_size", 2, "Number of label size")
flags.DEFINE_float("learning_rate", 0.01, "The learning rate")
flags.DEFINE_integer("epoch_number", 1000, "Number of epochs to train")
flags.DEFINE_integer("batch_size", 1024, "The batch size of training")
flags.DEFINE_integer("validate_batch_size", 1024,
"The batch size of validation")
flags.DEFINE_integer("batch_thread_number", 1,
"Number of threads to read data")
flags.DEFINE_integer("min_after_dequeue", 100,
"The minimal number after dequeue")
flags.DEFINE_string("checkpoint_path", "./checkpoint/",
"The path of checkpoint")
flags.DEFINE_string("output_path", "./tensorboard/",
"The path of tensorboard event files")
flags.DEFINE_string("scenario", "classification",
"Support classification and regression")
flags.DEFINE_string("model", "dnn", "Support dnn, lr, wide_and_deep")
flags.DEFINE_string("model_network", "128 32 8", "The neural network of model")
flags.DEFINE_boolean("enable_bn", False, "Enable batch normalization or not")
flags.DEFINE_float("bn_epsilon", 0.001, "The epsilon of batch normalization")
flags.DEFINE_boolean("enable_dropout", False, "Enable dropout or not")
flags.DEFINE_float("dropout_keep_prob", 0.5, "The dropout keep prob")
flags.DEFINE_boolean("enable_lr_decay", False, "Enable learning rate decay")
flags.DEFINE_float("lr_decay_rate", 0.96, "Learning rate decay rate")
flags.DEFINE_string("optimizer", "adagrad", "The optimizer to train")
flags.DEFINE_integer("steps_to_validate", 10,
"Steps to validate and print state")
flags.DEFINE_string("mode", "train",
"Support train, export, inference, savedmodel")
flags.DEFINE_string("model_path", "./model/", "The path of the model")
flags.DEFINE_string("saved_model_path", "./saved_model/",
"The path of the saved model")
flags.DEFINE_integer("model_version", 1, "The version of the model")
flags.DEFINE_string("inference_test_file", "./data/cancer_test.csv",
"The test file for inference")
flags.DEFINE_string("inference_result_file", "./inference_result.txt",
"The result file from inference")
flags.DEFINE_boolean("benchmark_mode", False,
"Reduce extra computation in benchmark mode")
def main():
# Get hyperparameters
if FLAGS.enable_colored_log:
import coloredlogs
coloredlogs.install()
logging.basicConfig(level=logging.INFO)
INPUT_FILE_FORMAT = FLAGS.input_file_format
if INPUT_FILE_FORMAT not in ["tfrecord", "csv"]:
logging.error("Unknow input file format: {}".format(INPUT_FILE_FORMAT))
exit(1)
FEATURE_SIZE = FLAGS.feature_size
LABEL_SIZE = FLAGS.label_size
EPOCH_NUMBER = FLAGS.epoch_number
if EPOCH_NUMBER <= 0:
EPOCH_NUMBER = None
BATCH_THREAD_NUMBER = FLAGS.batch_thread_number
MIN_AFTER_DEQUEUE = FLAGS.min_after_dequeue
BATCH_CAPACITY = BATCH_THREAD_NUMBER * FLAGS.batch_size + MIN_AFTER_DEQUEUE
MODE = FLAGS.mode
SCENARIO = FLAGS.scenario
MODEL = FLAGS.model
CHECKPOINT_PATH = FLAGS.checkpoint_path
if not CHECKPOINT_PATH.startswith("fds://") and not os.path.exists(
CHECKPOINT_PATH):
os.makedirs(CHECKPOINT_PATH)
CHECKPOINT_FILE = CHECKPOINT_PATH + "/checkpoint.ckpt"
LATEST_CHECKPOINT = tf.train.latest_checkpoint(CHECKPOINT_PATH)
OUTPUT_PATH = FLAGS.output_path
if not OUTPUT_PATH.startswith("fds://") and not os.path.exists(OUTPUT_PATH):
os.makedirs(OUTPUT_PATH)
pprint.PrettyPrinter().pprint(FLAGS.__flags)
# Process TFRecoreds files
def read_and_decode_tfrecord(filename_queue):
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(
serialized_example,
features={
"label": tf.FixedLenFeature([], tf.float32),
"features": tf.FixedLenFeature([FEATURE_SIZE], tf.float32),
})
label = features["label"]
features = features["features"]
return label, features
def read_and_decode_csv(filename_queue):
# TODO: Not generic for all datasets
reader = tf.TextLineReader()
key, value = reader.read(filename_queue)
# Default values, in case of empty columns. Also specifies the type of the
# decoded result.
#record_defaults = [[1], [1], [1], [1], [1]]
record_defaults = [[1], [1.0], [1.0], [1.0], [1.0]]
col1, col2, col3, col4, col5 = tf.decode_csv(
value, record_defaults=record_defaults)
label = col1
features = tf.stack([col2, col3, col4, col4])
return label, features
# Read TFRecords files for training
filename_queue = tf.train.string_input_producer(
tf.train.match_filenames_once(FLAGS.train_file), num_epochs=EPOCH_NUMBER)
if INPUT_FILE_FORMAT == "tfrecord":
label, features = read_and_decode_tfrecord(filename_queue)
elif INPUT_FILE_FORMAT == "csv":
label, features = read_and_decode_csv(filename_queue)
batch_labels, batch_features = tf.train.shuffle_batch(
[label, features],
batch_size=FLAGS.batch_size,
num_threads=BATCH_THREAD_NUMBER,
capacity=BATCH_CAPACITY,
min_after_dequeue=MIN_AFTER_DEQUEUE)
# Read TFRecords file for validatioin
validate_filename_queue = tf.train.string_input_producer(
tf.train.match_filenames_once(FLAGS.validate_file),
num_epochs=EPOCH_NUMBER)
if INPUT_FILE_FORMAT == "tfrecord":
validate_label, validate_features = read_and_decode_tfrecord(
validate_filename_queue)
elif INPUT_FILE_FORMAT == "csv":
validate_label, validate_features = read_and_decode_csv(
validate_filename_queue)
validate_batch_labels, validate_batch_features = tf.train.shuffle_batch(
[validate_label, validate_features],
batch_size=FLAGS.validate_batch_size,
num_threads=BATCH_THREAD_NUMBER,
capacity=BATCH_CAPACITY,
min_after_dequeue=MIN_AFTER_DEQUEUE)
# Define the model
input_units = FEATURE_SIZE
output_units = LABEL_SIZE
model_network_hidden_units = [int(i) for i in FLAGS.model_network.split()]
def full_connect(inputs, weights_shape, biases_shape, is_train=True):
weights = tf.get_variable(
"weights", weights_shape, initializer=tf.random_normal_initializer())
biases = tf.get_variable(
"biases", biases_shape, initializer=tf.random_normal_initializer())
layer = tf.matmul(inputs, weights) + biases
if FLAGS.enable_bn and is_train:
mean, var = tf.nn.moments(layer, axes=[0])
scale = tf.get_variable(
"scale", biases_shape, initializer=tf.random_normal_initializer())
shift = tf.get_variable(
"shift", biases_shape, initializer=tf.random_normal_initializer())
layer = tf.nn.batch_normalization(layer, mean, var, shift, scale,
FLAGS.bn_epsilon)
return layer
def full_connect_relu(inputs, weights_shape, biases_shape, is_train=True):
layer = full_connect(inputs, weights_shape, biases_shape, is_train)
layer = tf.nn.relu(layer)
return layer
def customized_inference(inputs, is_train=True):
hidden1_units = 128
hidden2_units = 32
hidden3_units = 8
with tf.variable_scope("input"):
layer = full_connect_relu(inputs, [input_units, hidden1_units],
[hidden1_units], is_train)
with tf.variable_scope("layer0"):
layer = full_connect_relu(layer, [hidden1_units, hidden2_units],
[hidden2_units], is_train)
with tf.variable_scope("layer1"):
layer = full_connect_relu(layer, [hidden2_units, hidden3_units],
[hidden3_units], is_train)
if FLAGS.enable_dropout and is_train:
layer = tf.nn.dropout(layer, FLAGS.dropout_keep_prob)
with tf.variable_scope("output"):
layer = full_connect(layer, [hidden3_units, output_units],
[output_units], is_train)
return layer
def dnn_inference(inputs, is_train=True):
with tf.variable_scope("input"):
layer = full_connect_relu(inputs,
[input_units, model_network_hidden_units[0]],
[model_network_hidden_units[0]], is_train)
for i in range(len(model_network_hidden_units) - 1):
with tf.variable_scope("layer{}".format(i)):
layer = full_connect_relu(layer, [
model_network_hidden_units[i], model_network_hidden_units[i + 1]
], [model_network_hidden_units[i + 1]], is_train)
with tf.variable_scope("output"):
layer = full_connect(layer,
[model_network_hidden_units[-1],
output_units], [output_units], is_train)
return layer
def lr_inference(inputs, is_train=True):
with tf.variable_scope("lr"):
layer = full_connect(inputs, [input_units, output_units], [output_units])
return layer
def wide_and_deep_inference(inputs, is_train=True):
return lr_inference(inputs, is_train) + dnn_inference(inputs, is_train)
def cnn_inference(inputs, is_train=True):
# TODO: Change if validate_batch_size is different
# [BATCH_SIZE, 512 * 512 * 1] -> [BATCH_SIZE, 512, 512, 1]
inputs = tf.reshape(inputs, [FLAGS.batch_size, 512, 512, 1])
# [BATCH_SIZE, 512, 512, 1] -> [BATCH_SIZE, 128, 128, 8]
with tf.variable_scope("conv0"):
weights = tf.get_variable(
"weights", [3, 3, 1, 8], initializer=tf.random_normal_initializer())
bias = tf.get_variable(
"bias", [8], initializer=tf.random_normal_initializer())
layer = tf.nn.conv2d(
inputs, weights, strides=[1, 1, 1, 1], padding="SAME")
layer = tf.nn.bias_add(layer, bias)
layer = tf.nn.relu(layer)
layer = tf.nn.max_pool(
layer, ksize=[1, 4, 4, 1], strides=[1, 4, 4, 1], padding="SAME")
# [BATCH_SIZE, 128, 128, 8] -> [BATCH_SIZE, 32, 32, 8]
with tf.variable_scope("conv1"):
weights = tf.get_variable(
"weights", [3, 3, 8, 8], initializer=tf.random_normal_initializer())
bias = tf.get_variable(
"bias", [8], initializer=tf.random_normal_initializer())
layer = tf.nn.conv2d(
layer, weights, strides=[1, 1, 1, 1], padding="SAME")
layer = tf.nn.bias_add(layer, bias)
layer = tf.nn.relu(layer)
layer = tf.nn.max_pool(
layer, ksize=[1, 4, 4, 1], strides=[1, 4, 4, 1], padding="SAME")
# [BATCH_SIZE, 32, 32, 8] -> [BATCH_SIZE, 8, 8, 8]
with tf.variable_scope("conv2"):
weights = tf.get_variable(
"weights", [3, 3, 8, 8], initializer=tf.random_normal_initializer())
bias = tf.get_variable(
"bias", [8], initializer=tf.random_normal_initializer())
layer = tf.nn.conv2d(
layer, weights, strides=[1, 1, 1, 1], padding="SAME")
layer = tf.nn.bias_add(layer, bias)
layer = tf.nn.relu(layer)
layer = tf.nn.max_pool(
layer, ksize=[1, 4, 4, 1], strides=[1, 4, 4, 1], padding="SAME")
# [BATCH_SIZE, 8, 8, 8] -> [BATCH_SIZE, 8 * 8 * 8]
layer = tf.reshape(layer, [-1, 8 * 8 * 8])
# [BATCH_SIZE, 8 * 8 * 8] -> [BATCH_SIZE, LABEL_SIZE]
with tf.variable_scope("output"):
weights = tf.get_variable(
"weights", [8 * 8 * 8, LABEL_SIZE],
initializer=tf.random_normal_initializer())
bias = tf.get_variable(
"bias", [LABEL_SIZE], initializer=tf.random_normal_initializer())
layer = tf.add(tf.matmul(layer, weights), bias)
return layer
def inference(inputs, is_train=True):
if MODEL == "dnn":
return dnn_inference(inputs, is_train)
elif MODEL == "lr":
return lr_inference(inputs, is_train)
elif MODEL == "wide_and_deep":
return wide_and_deep_inference(inputs, is_train)
elif MODEL == "customized":
return customized_inference(inputs, is_train)
elif MODEL == "cnn":
return cnn_inference(inputs, is_train)
else:
logging.error("Unknown model, exit now")
exit(1)
logging.info("Use the model: {}, model network: {}".format(
MODEL, FLAGS.model_network))
logits = inference(batch_features, True)
if SCENARIO == "classification":
batch_labels = tf.to_int64(batch_labels)
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=logits, labels=batch_labels)
loss = tf.reduce_mean(cross_entropy, name="loss")
elif SCENARIO == "regression":
msl = tf.square(logits - batch_labels, name="msl")
loss = tf.reduce_mean(msl, name="loss")
else:
logging.error("Unknow scenario: {}".format(SCENARIO))
return
global_step = tf.Variable(0, name="global_step", trainable=False)
if FLAGS.enable_lr_decay:
logging.info(
"Enable learning rate decay rate: {}".format(FLAGS.lr_decay_rate))
starter_learning_rate = FLAGS.learning_rate
learning_rate = tf.train.exponential_decay(
starter_learning_rate,
global_step,
100000,
FLAGS.lr_decay_rate,
staircase=True)
else:
learning_rate = FLAGS.learning_rate
optimizer = get_optimizer(FLAGS.optimizer, learning_rate)
train_op = optimizer.minimize(loss, global_step=global_step)
tf.get_variable_scope().reuse_variables()
# Avoid error when not using acc and auc op
if SCENARIO == "regression":
batch_labels = tf.to_int64(batch_labels)
# Define accuracy op for train data
train_accuracy_logits = inference(batch_features, False)
train_softmax = tf.nn.softmax(train_accuracy_logits)
train_correct_prediction = tf.equal(
tf.argmax(train_softmax, 1), batch_labels)
train_accuracy = tf.reduce_mean(
tf.cast(train_correct_prediction, tf.float32))
# Define auc op for train data
batch_labels = tf.cast(batch_labels, tf.int32)
sparse_labels = tf.reshape(batch_labels, [-1, 1])
derived_size = tf.shape(batch_labels)[0]
indices = tf.reshape(tf.range(0, derived_size, 1), [-1, 1])
concated = tf.concat(axis=1, values=[indices, sparse_labels])
outshape = tf.stack([derived_size, LABEL_SIZE])
new_batch_labels = tf.sparse_to_dense(concated, outshape, 1.0, 0.0)
_, train_auc = tf.contrib.metrics.streaming_auc(train_softmax,
new_batch_labels)
# Define accuracy op for validate data
validate_accuracy_logits = inference(validate_batch_features, False)
validate_softmax = tf.nn.softmax(validate_accuracy_logits)
validate_batch_labels = tf.to_int64(validate_batch_labels)
validate_correct_prediction = tf.equal(
tf.argmax(validate_softmax, 1), validate_batch_labels)
validate_accuracy = tf.reduce_mean(
tf.cast(validate_correct_prediction, tf.float32))
# Define auc op for validate data
validate_batch_labels = tf.cast(validate_batch_labels, tf.int32)
sparse_labels = tf.reshape(validate_batch_labels, [-1, 1])
derived_size = tf.shape(validate_batch_labels)[0]
indices = tf.reshape(tf.range(0, derived_size, 1), [-1, 1])
concated = tf.concat(axis=1, values=[indices, sparse_labels])
outshape = tf.stack([derived_size, LABEL_SIZE])
new_validate_batch_labels = tf.sparse_to_dense(concated, outshape, 1.0, 0.0)
_, validate_auc = tf.contrib.metrics.streaming_auc(validate_softmax,
new_validate_batch_labels)
# Define inference op
inference_features = tf.placeholder("float", [None, FEATURE_SIZE])
inference_logits = inference(inference_features, False)
inference_softmax = tf.nn.softmax(inference_logits)
inference_op = tf.argmax(inference_softmax, 1)
keys_placeholder = tf.placeholder(tf.int32, shape=[None, 1])
keys = tf.identity(keys_placeholder)
model_signature = {
"inputs":
exporter.generic_signature({
"keys": keys_placeholder,
"features": inference_features
}),
"outputs":
exporter.generic_signature({
"keys": keys,
"softmax": inference_softmax,
"prediction": inference_op
})
}
# Initialize saver and summary
saver = tf.train.Saver()
tf.summary.scalar("loss", loss)
if SCENARIO == "classification":
tf.summary.scalar("train_accuracy", train_accuracy)
tf.summary.scalar("train_auc", train_auc)
tf.summary.scalar("validate_accuracy", validate_accuracy)
tf.summary.scalar("validate_auc", validate_auc)
summary_op = tf.summary.merge_all()
init_op = [
tf.global_variables_initializer(),
tf.local_variables_initializer()
]
# Create session to run
with tf.Session() as sess:
logging.info("Start to run with mode: {}".format(MODE))
writer = tf.summary.FileWriter(OUTPUT_PATH, sess.graph)
sess.run(init_op)
if MODE == "train":
# Restore session and start queue runner
restore_session_from_checkpoint(sess, saver, LATEST_CHECKPOINT)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord, sess=sess)
start_time = datetime.datetime.now()
try:
while not coord.should_stop():
if FLAGS.benchmark_mode:
sess.run(train_op)
else:
_, step = sess.run([train_op, global_step])
# Print state while training
if step % FLAGS.steps_to_validate == 0:
if SCENARIO == "classification":
loss_value, train_accuracy_value, train_auc_value, validate_accuracy_value, validate_auc_value, summary_value = sess.run(
[
loss, train_accuracy, train_auc, validate_accuracy,
validate_auc, summary_op
])
end_time = datetime.datetime.now()
logging.info(
"[{}] Step: {}, loss: {}, train_acc: {}, train_auc: {}, valid_acc: {}, valid_auc: {}".
format(end_time - start_time, step, loss_value,
train_accuracy_value, train_auc_value,
validate_accuracy_value, validate_auc_value))
elif SCENARIO == "regression":
loss_value, summary_value = sess.run([loss, summary_op])
end_time = datetime.datetime.now()
logging.info("[{}] Step: {}, loss: {}".format(
end_time - start_time, step, loss_value))
writer.add_summary(summary_value, step)
saver.save(sess, CHECKPOINT_FILE, global_step=step)
start_time = end_time
except tf.errors.OutOfRangeError:
if FLAGS.benchmark_mode:
print("Finish training for benchmark")
exit(0)
else:
# Export the model after training
export_model(sess, saver, model_signature, FLAGS.model_path,
FLAGS.model_version)
finally:
coord.request_stop()
coord.join(threads)
elif MODE == "export":
if not restore_session_from_checkpoint(sess, saver, LATEST_CHECKPOINT):
logging.error("No checkpoint found, exit now")
exit(1)
# Export the model
export_model(sess, saver, model_signature, FLAGS.model_path,
FLAGS.model_version)
elif MODE == "savedmodel":
if not restore_session_from_checkpoint(sess, saver, LATEST_CHECKPOINT):
logging.error("No checkpoint found, exit now")
exit(1)
logging.info(
"Export the saved model to {}".format(FLAGS.saved_model_path))
export_path_base = FLAGS.saved_model_path
export_path = os.path.join(
compat.as_bytes(export_path_base),
compat.as_bytes(str(FLAGS.model_version)))
model_signature = signature_def_utils.build_signature_def(
inputs={
"keys": utils.build_tensor_info(keys_placeholder),
"features": utils.build_tensor_info(inference_features)
},
outputs={
"keys": utils.build_tensor_info(keys),
"softmax": utils.build_tensor_info(inference_softmax),
"prediction": utils.build_tensor_info(inference_op)
},
method_name=signature_constants.PREDICT_METHOD_NAME)
try:
builder = saved_model_builder.SavedModelBuilder(export_path)
builder.add_meta_graph_and_variables(
sess,
[tag_constants.SERVING],
clear_devices=True,
signature_def_map={
signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
model_signature,
},
#legacy_init_op=legacy_init_op)
legacy_init_op=tf.group(
tf.initialize_all_tables(), name="legacy_init_op"))
builder.save()
except Exception as e:
logging.error("Fail to export saved model, exception: {}".format(e))
elif MODE == "inference":
if not restore_session_from_checkpoint(sess, saver, LATEST_CHECKPOINT):
logging.error("No checkpoint found, exit now")
exit(1)
# Load inference test data
inference_result_file_name = FLAGS.inference_result_file
inference_test_file_name = FLAGS.inference_test_file
inference_data = np.genfromtxt(inference_test_file_name, delimiter=",")
inference_data_features = inference_data[:, 0:9]
inference_data_labels = inference_data[:, 9]
# Run inference
start_time = datetime.datetime.now()
prediction, prediction_softmax = sess.run(
[inference_op, inference_softmax],
feed_dict={inference_features: inference_data_features})
end_time = datetime.datetime.now()
# Compute accuracy
label_number = len(inference_data_labels)
correct_label_number = 0
for i in range(label_number):
if inference_data_labels[i] == prediction[i]:
correct_label_number += 1
accuracy = float(correct_label_number) / label_number
# Compute auc
y_true = np.array(inference_data_labels)
y_score = prediction_softmax[:, 1]
fpr, tpr, thresholds = metrics.roc_curve(y_true, y_score, pos_label=1)
auc = metrics.auc(fpr, tpr)
logging.info("[{}] Inference accuracy: {}, auc: {}".format(
end_time - start_time, accuracy, auc))
# Save result into the file
np.savetxt(inference_result_file_name, prediction_softmax, delimiter=",")
logging.info(
"Save result to file: {}".format(inference_result_file_name))
def get_optimizer(optimizer, learning_rate):
logging.info("Use the optimizer: {}".format(optimizer))
if optimizer == "sgd":
return tf.train.GradientDescentOptimizer(learning_rate)
elif optimizer == "adadelta":
return tf.train.AdadeltaOptimizer(learning_rate)
elif optimizer == "adagrad":
return tf.train.AdagradOptimizer(learning_rate)
elif optimizer == "adam":
return tf.train.AdamOptimizer(learning_rate)
elif optimizer == "ftrl":
return tf.train.FtrlOptimizer(learning_rate)
elif optimizer == "rmsprop":
return tf.train.RMSPropOptimizer(learning_rate)
else:
logging.error("Unknow optimizer, exit now")
exit(1)
def restore_session_from_checkpoint(sess, saver, checkpoint):
if checkpoint:
logging.info("Restore session from checkpoint: {}".format(checkpoint))
saver.restore(sess, checkpoint)
return True
else:
return False
def export_model(sess, saver, signature, model_path, model_version):
logging.info("Export the model to {}".format(model_path))
model_exporter = exporter.Exporter(saver)
model_exporter.init(
sess.graph.as_graph_def(),
named_graph_signatures=signature,
clear_devices=True)
try:
model_exporter.export(model_path, tf.constant(model_version), sess)
except Exception as e:
logging.error("Fail to export model, exception: {}".format(e))
if __name__ == "__main__":
main()