forked from PaddlePaddle/PaddleDetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
detr_loss.py
665 lines (609 loc) · 26 KB
/
detr_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ppdet.core.workspace import register
from .iou_loss import GIoULoss
from ..transformers import bbox_cxcywh_to_xyxy, sigmoid_focal_loss, varifocal_loss_with_logits
from ..bbox_utils import bbox_iou
__all__ = ['DETRLoss', 'DINOLoss']
@register
class DETRLoss(nn.Layer):
__shared__ = ['num_classes', 'use_focal_loss']
__inject__ = ['matcher']
def __init__(self,
num_classes=80,
matcher='HungarianMatcher',
loss_coeff={
'class': 1,
'bbox': 5,
'giou': 2,
'no_object': 0.1,
'mask': 1,
'dice': 1
},
aux_loss=True,
use_focal_loss=False,
use_vfl=False,
vfl_iou_type='bbox',
use_uni_match=False,
uni_match_ind=0):
r"""
Args:
num_classes (int): The number of classes.
matcher (HungarianMatcher): It computes an assignment between the targets
and the predictions of the network.
loss_coeff (dict): The coefficient of loss.
aux_loss (bool): If 'aux_loss = True', loss at each decoder layer are to be used.
use_focal_loss (bool): Use focal loss or not.
"""
super(DETRLoss, self).__init__()
self.num_classes = num_classes
self.matcher = matcher
self.loss_coeff = loss_coeff
self.aux_loss = aux_loss
self.use_focal_loss = use_focal_loss
self.use_vfl = use_vfl
self.vfl_iou_type = vfl_iou_type
self.use_uni_match = use_uni_match
self.uni_match_ind = uni_match_ind
if not self.use_focal_loss:
self.loss_coeff['class'] = paddle.full([num_classes + 1],
loss_coeff['class'])
self.loss_coeff['class'][-1] = loss_coeff['no_object']
self.giou_loss = GIoULoss()
def _get_loss_class(self,
logits,
gt_class,
match_indices,
bg_index,
num_gts,
postfix="",
iou_score=None,
gt_score=None):
# logits: [b, query, num_classes], gt_class: list[[n, 1]]
name_class = "loss_class" + postfix
target_label = paddle.full(logits.shape[:2], bg_index, dtype='int64')
bs, num_query_objects = target_label.shape
num_gt = sum(len(a) for a in gt_class)
if num_gt > 0:
index, updates = self._get_index_updates(num_query_objects,
gt_class, match_indices)
target_label = paddle.scatter(
target_label.reshape([-1, 1]), index, updates.astype('int64'))
target_label = target_label.reshape([bs, num_query_objects])
if self.use_focal_loss:
target_label = F.one_hot(target_label,
self.num_classes + 1)[..., :-1]
if iou_score is not None and self.use_vfl:
if gt_score is not None:
target_score = paddle.zeros([bs, num_query_objects])
target_score = paddle.scatter(
target_score.reshape([-1, 1]), index, gt_score)
target_score = target_score.reshape(
[bs, num_query_objects, 1]) * target_label
target_score_iou = paddle.zeros([bs, num_query_objects])
target_score_iou = paddle.scatter(
target_score_iou.reshape([-1, 1]), index, iou_score)
target_score_iou = target_score_iou.reshape(
[bs, num_query_objects, 1]) * target_label
target_score = paddle.multiply(target_score,
target_score_iou)
loss_ = self.loss_coeff[
'class'] * varifocal_loss_with_logits(
logits, target_score, target_label,
num_gts / num_query_objects)
else:
target_score = paddle.zeros([bs, num_query_objects])
if num_gt > 0:
target_score = paddle.scatter(
target_score.reshape([-1, 1]), index, iou_score)
target_score = target_score.reshape(
[bs, num_query_objects, 1]) * target_label
loss_ = self.loss_coeff[
'class'] * varifocal_loss_with_logits(
logits, target_score, target_label,
num_gts / num_query_objects)
else:
loss_ = self.loss_coeff['class'] * sigmoid_focal_loss(
logits, target_label, num_gts / num_query_objects)
else:
loss_ = F.cross_entropy(
logits, target_label, weight=self.loss_coeff['class'])
return {name_class: loss_}
def _get_loss_bbox(self, boxes, gt_bbox, match_indices, num_gts,
postfix=""):
# boxes: [b, query, 4], gt_bbox: list[[n, 4]]
name_bbox = "loss_bbox" + postfix
name_giou = "loss_giou" + postfix
loss = dict()
if sum(len(a) for a in gt_bbox) == 0:
loss[name_bbox] = paddle.to_tensor([0.])
loss[name_giou] = paddle.to_tensor([0.])
return loss
src_bbox, target_bbox = self._get_src_target_assign(boxes, gt_bbox,
match_indices)
loss[name_bbox] = self.loss_coeff['bbox'] * F.l1_loss(
src_bbox, target_bbox, reduction='sum') / num_gts
loss[name_giou] = self.giou_loss(
bbox_cxcywh_to_xyxy(src_bbox), bbox_cxcywh_to_xyxy(target_bbox))
loss[name_giou] = loss[name_giou].sum() / num_gts
loss[name_giou] = self.loss_coeff['giou'] * loss[name_giou]
return loss
def _get_loss_mask(self, masks, gt_mask, match_indices, num_gts,
postfix=""):
# masks: [b, query, h, w], gt_mask: list[[n, H, W]]
name_mask = "loss_mask" + postfix
name_dice = "loss_dice" + postfix
loss = dict()
if sum(len(a) for a in gt_mask) == 0:
loss[name_mask] = paddle.to_tensor([0.])
loss[name_dice] = paddle.to_tensor([0.])
return loss
src_masks, target_masks = self._get_src_target_assign(masks, gt_mask,
match_indices)
src_masks = F.interpolate(
src_masks.unsqueeze(0),
size=target_masks.shape[-2:],
mode="bilinear")[0]
loss[name_mask] = self.loss_coeff['mask'] * F.sigmoid_focal_loss(
src_masks,
target_masks,
paddle.to_tensor(
[num_gts], dtype='float32'))
loss[name_dice] = self.loss_coeff['dice'] * self._dice_loss(
src_masks, target_masks, num_gts)
return loss
def _dice_loss(self, inputs, targets, num_gts):
inputs = F.sigmoid(inputs)
inputs = inputs.flatten(1)
targets = targets.flatten(1)
numerator = 2 * (inputs * targets).sum(1)
denominator = inputs.sum(-1) + targets.sum(-1)
loss = 1 - (numerator + 1) / (denominator + 1)
return loss.sum() / num_gts
def _get_loss_aux(self,
boxes,
logits,
gt_bbox,
gt_class,
bg_index,
num_gts,
dn_match_indices=None,
postfix="",
masks=None,
gt_mask=None,
gt_score=None):
loss_class = []
loss_bbox, loss_giou = [], []
loss_mask, loss_dice = [], []
if dn_match_indices is not None:
match_indices = dn_match_indices
elif self.use_uni_match:
match_indices = self.matcher(
boxes[self.uni_match_ind],
logits[self.uni_match_ind],
gt_bbox,
gt_class,
masks=masks[self.uni_match_ind] if masks is not None else None,
gt_mask=gt_mask)
for i, (aux_boxes, aux_logits) in enumerate(zip(boxes, logits)):
aux_masks = masks[i] if masks is not None else None
if not self.use_uni_match and dn_match_indices is None:
match_indices = self.matcher(
aux_boxes,
aux_logits,
gt_bbox,
gt_class,
masks=aux_masks,
gt_mask=gt_mask)
if self.use_vfl:
if sum(len(a) for a in gt_bbox) > 0:
src_bbox, target_bbox = self._get_src_target_assign(
aux_boxes.detach(), gt_bbox, match_indices)
iou_score = bbox_iou(
bbox_cxcywh_to_xyxy(src_bbox).split(4, -1),
bbox_cxcywh_to_xyxy(target_bbox).split(4, -1))
else:
iou_score = None
if gt_score is not None:
_, target_score = self._get_src_target_assign(
logits[-1].detach(), gt_score, match_indices)
else:
iou_score = None
loss_class.append(
self._get_loss_class(
aux_logits,
gt_class,
match_indices,
bg_index,
num_gts,
postfix,
iou_score,
gt_score=target_score
if gt_score is not None else None)['loss_class' + postfix])
loss_ = self._get_loss_bbox(aux_boxes, gt_bbox, match_indices,
num_gts, postfix)
loss_bbox.append(loss_['loss_bbox' + postfix])
loss_giou.append(loss_['loss_giou' + postfix])
if masks is not None and gt_mask is not None:
loss_ = self._get_loss_mask(aux_masks, gt_mask, match_indices,
num_gts, postfix)
loss_mask.append(loss_['loss_mask' + postfix])
loss_dice.append(loss_['loss_dice' + postfix])
loss = {
"loss_class_aux" + postfix: paddle.add_n(loss_class),
"loss_bbox_aux" + postfix: paddle.add_n(loss_bbox),
"loss_giou_aux" + postfix: paddle.add_n(loss_giou)
}
if masks is not None and gt_mask is not None:
loss["loss_mask_aux" + postfix] = paddle.add_n(loss_mask)
loss["loss_dice_aux" + postfix] = paddle.add_n(loss_dice)
return loss
def _get_index_updates(self, num_query_objects, target, match_indices):
batch_idx = paddle.concat([
paddle.full_like(src, i) for i, (src, _) in enumerate(match_indices)
])
src_idx = paddle.concat([src for (src, _) in match_indices])
src_idx += (batch_idx * num_query_objects)
target_assign = paddle.concat([
paddle.gather(
t, dst, axis=0) for t, (_, dst) in zip(target, match_indices)
])
return src_idx, target_assign
def _get_src_target_assign(self, src, target, match_indices):
src_assign = paddle.concat([
paddle.gather(
t, I, axis=0) if len(I) > 0 else paddle.zeros([0, t.shape[-1]])
for t, (I, _) in zip(src, match_indices)
])
target_assign = paddle.concat([
paddle.gather(
t, J, axis=0) if len(J) > 0 else paddle.zeros([0, t.shape[-1]])
for t, (_, J) in zip(target, match_indices)
])
return src_assign, target_assign
def _get_num_gts(self, targets, dtype="float32"):
num_gts = sum(len(a) for a in targets)
num_gts = paddle.to_tensor([num_gts], dtype=dtype)
if paddle.distributed.get_world_size() > 1:
paddle.distributed.all_reduce(num_gts)
num_gts /= paddle.distributed.get_world_size()
num_gts = paddle.clip(num_gts, min=1.)
return num_gts
def _get_prediction_loss(self,
boxes,
logits,
gt_bbox,
gt_class,
masks=None,
gt_mask=None,
postfix="",
dn_match_indices=None,
num_gts=1,
gt_score=None):
if dn_match_indices is None:
match_indices = self.matcher(
boxes, logits, gt_bbox, gt_class, masks=masks, gt_mask=gt_mask)
else:
match_indices = dn_match_indices
if self.use_vfl:
if gt_score is not None: #ssod
_, target_score = self._get_src_target_assign(
logits[-1].detach(), gt_score, match_indices)
elif sum(len(a) for a in gt_bbox) > 0:
if self.vfl_iou_type == 'bbox':
src_bbox, target_bbox = self._get_src_target_assign(
boxes.detach(), gt_bbox, match_indices)
iou_score = bbox_iou(
bbox_cxcywh_to_xyxy(src_bbox).split(4, -1),
bbox_cxcywh_to_xyxy(target_bbox).split(4, -1))
elif self.vfl_iou_type == 'mask':
assert (masks is not None and gt_mask is not None,
'Make sure the input has `mask` and `gt_mask`')
assert sum(len(a) for a in gt_mask) > 0
src_mask, target_mask = self._get_src_target_assign(
masks.detach(), gt_mask, match_indices)
src_mask = F.interpolate(
src_mask.unsqueeze(0),
scale_factor=2,
mode='bilinear',
align_corners=False).squeeze(0)
target_mask = F.interpolate(
target_mask.unsqueeze(0),
size=src_mask.shape[-2:],
mode='bilinear',
align_corners=False).squeeze(0)
src_mask = src_mask.flatten(1)
src_mask = F.sigmoid(src_mask)
src_mask = paddle.where(
src_mask > 0.5, 1., 0.).astype(masks.dtype)
target_mask = target_mask.flatten(1)
target_mask = paddle.where(
target_mask > 0.5, 1., 0.).astype(masks.dtype)
inter = (src_mask * target_mask).sum(1)
union = src_mask.sum(1) + target_mask.sum(1) - inter
iou_score = (inter + 1e-2) / (union + 1e-2)
iou_score = iou_score.unsqueeze(-1)
else:
iou_score = None
else:
iou_score = None
else:
iou_score = None
loss = dict()
loss.update(
self._get_loss_class(
logits,
gt_class,
match_indices,
self.num_classes,
num_gts,
postfix,
iou_score,
gt_score=target_score if gt_score is not None else None))
loss.update(
self._get_loss_bbox(boxes, gt_bbox, match_indices, num_gts,
postfix))
if masks is not None and gt_mask is not None:
loss.update(
self._get_loss_mask(masks, gt_mask, match_indices, num_gts,
postfix))
return loss
def forward(self,
boxes,
logits,
gt_bbox,
gt_class,
masks=None,
gt_mask=None,
postfix="",
gt_score=None,
**kwargs):
r"""
Args:
boxes (Tensor): [l, b, query, 4]
logits (Tensor): [l, b, query, num_classes]
gt_bbox (List(Tensor)): list[[n, 4]]
gt_class (List(Tensor)): list[[n, 1]]
masks (Tensor, optional): [l, b, query, h, w]
gt_mask (List(Tensor), optional): list[[n, H, W]]
postfix (str): postfix of loss name
"""
dn_match_indices = kwargs.get("dn_match_indices", None)
num_gts = kwargs.get("num_gts", None)
if num_gts is None:
num_gts = self._get_num_gts(gt_class)
total_loss = self._get_prediction_loss(
boxes[-1],
logits[-1],
gt_bbox,
gt_class,
masks=masks[-1] if masks is not None else None,
gt_mask=gt_mask,
postfix=postfix,
dn_match_indices=dn_match_indices,
num_gts=num_gts,
gt_score=gt_score if gt_score is not None else None)
if self.aux_loss:
total_loss.update(
self._get_loss_aux(
boxes[:-1],
logits[:-1],
gt_bbox,
gt_class,
self.num_classes,
num_gts,
dn_match_indices,
postfix,
masks=masks[:-1] if masks is not None else None,
gt_mask=gt_mask,
gt_score=gt_score if gt_score is not None else None))
return total_loss
@register
class DINOLoss(DETRLoss):
def forward(self,
boxes,
logits,
gt_bbox,
gt_class,
masks=None,
gt_mask=None,
postfix="",
dn_out_bboxes=None,
dn_out_logits=None,
dn_meta=None,
gt_score=None,
**kwargs):
num_gts = self._get_num_gts(gt_class)
total_loss = super(DINOLoss, self).forward(
boxes,
logits,
gt_bbox,
gt_class,
num_gts=num_gts,
gt_score=gt_score)
if dn_meta is not None:
dn_positive_idx, dn_num_group = \
dn_meta["dn_positive_idx"], dn_meta["dn_num_group"]
assert len(gt_class) == len(dn_positive_idx)
# denoising match indices
dn_match_indices = self.get_dn_match_indices(
gt_class, dn_positive_idx, dn_num_group)
# compute denoising training loss
num_gts *= dn_num_group
dn_loss = super(DINOLoss, self).forward(
dn_out_bboxes,
dn_out_logits,
gt_bbox,
gt_class,
postfix="_dn",
dn_match_indices=dn_match_indices,
num_gts=num_gts,
gt_score=gt_score)
total_loss.update(dn_loss)
else:
total_loss.update(
{k + '_dn': paddle.to_tensor([0.])
for k in total_loss.keys()})
return total_loss
@staticmethod
def get_dn_match_indices(labels, dn_positive_idx, dn_num_group):
dn_match_indices = []
for i in range(len(labels)):
num_gt = len(labels[i])
if num_gt > 0:
gt_idx = paddle.arange(end=num_gt, dtype="int64")
gt_idx = gt_idx.tile([dn_num_group])
assert len(dn_positive_idx[i]) == len(gt_idx)
dn_match_indices.append((dn_positive_idx[i], gt_idx))
else:
dn_match_indices.append((paddle.zeros(
[0], dtype="int64"), paddle.zeros(
[0], dtype="int64")))
return dn_match_indices
@register
class MaskDINOLoss(DETRLoss):
__shared__ = ['num_classes', 'use_focal_loss', 'num_sample_points']
__inject__ = ['matcher']
def __init__(self,
num_classes=80,
matcher='HungarianMatcher',
loss_coeff={
'class': 4,
'bbox': 5,
'giou': 2,
'mask': 5,
'dice': 5
},
aux_loss=True,
use_focal_loss=False,
use_vfl=False,
vfl_iou_type='bbox',
num_sample_points=12544,
oversample_ratio=3.0,
important_sample_ratio=0.75):
super(MaskDINOLoss, self).__init__(num_classes, matcher, loss_coeff,
aux_loss, use_focal_loss, use_vfl, vfl_iou_type)
assert oversample_ratio >= 1
assert important_sample_ratio <= 1 and important_sample_ratio >= 0
self.num_sample_points = num_sample_points
self.oversample_ratio = oversample_ratio
self.important_sample_ratio = important_sample_ratio
self.num_oversample_points = int(num_sample_points * oversample_ratio)
self.num_important_points = int(num_sample_points *
important_sample_ratio)
self.num_random_points = num_sample_points - self.num_important_points
def forward(self,
boxes,
logits,
gt_bbox,
gt_class,
masks=None,
gt_mask=None,
postfix="",
dn_out_bboxes=None,
dn_out_logits=None,
dn_out_masks=None,
dn_meta=None,
**kwargs):
num_gts = self._get_num_gts(gt_class)
total_loss = super(MaskDINOLoss, self).forward(
boxes,
logits,
gt_bbox,
gt_class,
masks=masks,
gt_mask=gt_mask,
num_gts=num_gts)
if dn_meta is not None:
dn_positive_idx, dn_num_group = \
dn_meta["dn_positive_idx"], dn_meta["dn_num_group"]
assert len(gt_class) == len(dn_positive_idx)
# denoising match indices
dn_match_indices = DINOLoss.get_dn_match_indices(
gt_class, dn_positive_idx, dn_num_group)
# compute denoising training loss
num_gts *= dn_num_group
dn_loss = super(MaskDINOLoss, self).forward(
dn_out_bboxes,
dn_out_logits,
gt_bbox,
gt_class,
masks=dn_out_masks,
gt_mask=gt_mask,
postfix="_dn",
dn_match_indices=dn_match_indices,
num_gts=num_gts)
total_loss.update(dn_loss)
else:
total_loss.update(
{k + '_dn': paddle.to_tensor([0.])
for k in total_loss.keys()})
return total_loss
def _get_loss_mask(self, masks, gt_mask, match_indices, num_gts,
postfix=""):
# masks: [b, query, h, w], gt_mask: list[[n, H, W]]
name_mask = "loss_mask" + postfix
name_dice = "loss_dice" + postfix
loss = dict()
if sum(len(a) for a in gt_mask) == 0:
loss[name_mask] = paddle.to_tensor([0.])
loss[name_dice] = paddle.to_tensor([0.])
return loss
src_masks, target_masks = self._get_src_target_assign(masks, gt_mask,
match_indices)
# sample points
sample_points = self._get_point_coords_by_uncertainty(src_masks)
sample_points = 2.0 * sample_points.unsqueeze(1) - 1.0
src_masks = F.grid_sample(
src_masks.unsqueeze(1), sample_points,
align_corners=False).squeeze([1, 2])
target_masks = F.grid_sample(
target_masks.unsqueeze(1), sample_points,
align_corners=False).squeeze([1, 2]).detach()
loss[name_mask] = self.loss_coeff[
'mask'] * F.binary_cross_entropy_with_logits(
src_masks, target_masks,
reduction='none').mean(1).sum() / num_gts
loss[name_dice] = self.loss_coeff['dice'] * self._dice_loss(
src_masks, target_masks, num_gts)
return loss
def _get_point_coords_by_uncertainty(self, masks):
# Sample points based on their uncertainty.
masks = masks.detach()
num_masks = masks.shape[0]
sample_points = paddle.rand(
[num_masks, 1, self.num_oversample_points, 2])
out_mask = F.grid_sample(
masks.unsqueeze(1), 2.0 * sample_points - 1.0,
align_corners=False).squeeze([1, 2])
out_mask = -paddle.abs(out_mask)
_, topk_ind = paddle.topk(out_mask, self.num_important_points, axis=1)
batch_ind = paddle.arange(end=num_masks, dtype=topk_ind.dtype)
batch_ind = batch_ind.unsqueeze(-1).tile([1, self.num_important_points])
topk_ind = paddle.stack([batch_ind, topk_ind], axis=-1)
sample_points = paddle.gather_nd(sample_points.squeeze(1), topk_ind)
if self.num_random_points > 0:
sample_points = paddle.concat(
[
sample_points,
paddle.rand([num_masks, self.num_random_points, 2])
],
axis=1)
return sample_points