-
Notifications
You must be signed in to change notification settings - Fork 22
/
cae_base_800e.sh
94 lines (86 loc) · 2.99 KB
/
cae_base_800e.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
tmp_my_name=${0##*/}
my_name=${tmp_my_name%.*}
OUTPUT_DIR='./output/'$my_name
DATA_PATH=/path/to/imagenet1k/train
TOKENIZER_PATH=./tokenizer-weights
ADDRESS=ADDR_FOR_THIS_MACHINE
NNODES=4
RANK=RANK_FOR_THIS_MACHINE
# ============================ pretraining ============================
OMP_NUM_THREADS=1 python -m torch.distributed.launch \
--nproc_per_node=8 \
--nnodes=$NNODES \
--node_rank=$RANK \
--master_addr=$ADDRESS \
--master_port=8899 \
tools/run_pretraining.py \
--data_path ${DATA_PATH} \
--output_dir ${OUTPUT_DIR} \
--model cae_base_patch16_224_8k_vocab --discrete_vae_weight_path ${TOKENIZER_PATH} \
--batch_size 64 --lr 1.5e-3 --warmup_epochs 20 --epochs 800 \
--clip_grad 3.0 --layer_scale_init_value 0.1 \
--imagenet_default_mean_and_std \
--color_jitter 0 \
--drop_path 0.1 \
--sincos_pos_emb \
--mask_generator block \
--num_mask_patches 98 \
--decoder_layer_scale_init_value 0.1 \
--no_auto_resume \
--save_ckpt_freq 100 \
--exp_name $my_name \
--regressor_depth 4 \
--decoder_depth 4 \
--align_loss_weight 2
# ============================ linear probing ============================
DATA_PATH=/path/to/imagenet1k/
MODEL_PATH=/path/to/pretrained/model
OMP_NUM_THREADS=1 python -m torch.distributed.launch \
--nproc_per_node=8 \
--nnodes=$NNODES \
--node_rank=$RANK \
--master_addr=$ADDRESS \
--master_port=8899 \
tools/run_linear.py \
--model cae_base_patch16_224 --data_path $DATA_PATH \
--finetune $MODEL_PATH \
--nb_classes 1000 \
--batch_size 512 \
--epochs 90 \
--blr 0.1 \
--weight_decay 0.0 \
--dist_eval --data_path ${DATA_PATH} \
--output_dir $OUTPUT_DIR \
--log_dir $OUTPUT_DIR \
--enable_linear_eval \
--use_cls \
--dist_eval \
--save_freq 50 \
--disable_rel_pos_bias \
--linear_type standard \
--exp_name $my_name
# ============================ attentive probing ============================
DATA_PATH=/path/to/imagenet1k/
MODEL_PATH=/path/to/pretrained/model
OMP_NUM_THREADS=1 python -m torch.distributed.launch \
--nproc_per_node=8 \
--nnodes=$NNODES \
--node_rank=$RANK \
--master_addr=$ADDRESS \
--master_port=8899 \
tools/run_attentive.py \
--model cae_base_patch16_224 --data_path $DATA_PATH \
--finetune $MODEL_PATH \
--nb_classes 1000 --data_set IMNET --imagenet_default_mean_and_std \
--output_dir $OUTPUT_DIR --batch_size 256 --lr 0.4 --update_freq 1 \
--warmup_epochs 10 --epochs 90 \
--weight_decay 0 --smoothing 0.0 --layer_decay 1.0 --drop_path 0.0 \
--color_jitter 0.0 --mixup 0.0 --cutmix 0.0 --reprob 0.0 \
--opt sgd --momentum 0.9 \
--enable_linear_eval \
--use_cls \
--dist_eval \
--no_auto_resume \
--save_ckpt_freq 50 \
--linear_type attentive \
--exp_name $my_name