forked from yangxy/GPEN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
face_enhancement.py
executable file
·111 lines (83 loc) · 4.45 KB
/
face_enhancement.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
'''
@paper: GAN Prior Embedded Network for Blind Face Restoration in the Wild (CVPR2021)
@author: yangxy ([email protected])
'''
import os
import cv2
import glob
import time
import numpy as np
from PIL import Image
import __init_paths
from retinaface.retinaface_detection import RetinaFaceDetection
from face_model.face_gan import FaceGAN
from align_faces import warp_and_crop_face, get_reference_facial_points
from skimage import transform as tf
class FaceEnhancement(object):
def __init__(self, base_dir='./', size=512, model=None, channel_multiplier=2, narrow=1):
self.facedetector = RetinaFaceDetection(base_dir)
self.facegan = FaceGAN(base_dir, size, model, channel_multiplier, narrow)
self.size = size
self.threshold = 0.9
# the mask for pasting restored faces back
self.mask = np.zeros((512, 512), np.float32)
cv2.rectangle(self.mask, (26, 26), (486, 486), (1, 1, 1), -1, cv2.LINE_AA)
self.mask = cv2.GaussianBlur(self.mask, (101, 101), 11)
self.mask = cv2.GaussianBlur(self.mask, (101, 101), 11)
self.kernel = np.array((
[0.0625, 0.125, 0.0625],
[0.125, 0.25, 0.125],
[0.0625, 0.125, 0.0625]), dtype="float32")
# get the reference 5 landmarks position in the crop settings
default_square = True
inner_padding_factor = 0.25
outer_padding = (0, 0)
self.reference_5pts = get_reference_facial_points(
(self.size, self.size), inner_padding_factor, outer_padding, default_square)
def process(self, img):
facebs, landms = self.facedetector.detect(img)
orig_faces, enhanced_faces = [], []
height, width = img.shape[:2]
full_mask = np.zeros((height, width), dtype=np.float32)
full_img = np.zeros(img.shape, dtype=np.uint8)
for i, (faceb, facial5points) in enumerate(zip(facebs, landms)):
if faceb[4]<self.threshold: continue
fh, fw = (faceb[3]-faceb[1]), (faceb[2]-faceb[0])
facial5points = np.reshape(facial5points, (2, 5))
of, tfm_inv = warp_and_crop_face(img, facial5points, reference_pts=self.reference_5pts, crop_size=(self.size, self.size))
# enhance the face
ef = self.facegan.process(of)
orig_faces.append(of)
enhanced_faces.append(ef)
tmp_mask = self.mask
tmp_mask = cv2.resize(tmp_mask, ef.shape[:2])
tmp_mask = cv2.warpAffine(tmp_mask, tfm_inv, (width, height), flags=3)
if min(fh, fw)<100: # gaussian filter for small faces
ef = cv2.filter2D(ef, -1, self.kernel)
tmp_img = cv2.warpAffine(ef, tfm_inv, (width, height), flags=3)
mask = tmp_mask - full_mask
full_mask[np.where(mask>0)] = tmp_mask[np.where(mask>0)]
full_img[np.where(mask>0)] = tmp_img[np.where(mask>0)]
full_mask = full_mask[:, :, np.newaxis]
img = cv2.convertScaleAbs(img*(1-full_mask) + full_img*full_mask)
return img, orig_faces, enhanced_faces
if __name__=='__main__':
#model = {'name':'GPEN-BFR-512', 'size':512, 'channel_multiplier':2, 'narrow':1}
model = {'name':'GPEN-BFR-256', 'size':256, 'channel_multiplier':1, 'narrow':0.5}
indir = 'examples/imgs'
outdir = 'examples/outs-BFR'
os.makedirs(outdir, exist_ok=True)
faceenhancer = FaceEnhancement(size=model['size'], model=model['name'], channel_multiplier=model['channel_multiplier'], narrow=model['narrow'])
files = sorted(glob.glob(os.path.join(indir, '*.*g')))
for n, file in enumerate(files[:]):
filename = os.path.basename(file)
im = cv2.imread(file, cv2.IMREAD_COLOR) # BGR
if not isinstance(im, np.ndarray): print(filename, 'error'); continue
im = cv2.resize(im, (0,0), fx=2, fy=2)
img, orig_faces, enhanced_faces = faceenhancer.process(im)
cv2.imwrite(os.path.join(outdir, '.'.join(filename.split('.')[:-1])+'_COMP.jpg'), np.hstack((im, img)))
cv2.imwrite(os.path.join(outdir, '.'.join(filename.split('.')[:-1])+'_GPEN.jpg'), img)
for m, (ef, of) in enumerate(zip(enhanced_faces, orig_faces)):
of = cv2.resize(of, ef.shape[:2])
cv2.imwrite(os.path.join(outdir, '.'.join(filename.split('.')[:-1])+'_face%02d'%m+'.jpg'), np.hstack((of, ef)))
if n%10==0: print(n, filename)