forked from nblt/DLDR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_psgd.py
404 lines (321 loc) · 13 KB
/
train_psgd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
import argparse
import os
import shutil
import time
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
import numpy as np
from numpy import linalg as LA
import pickle
import random
import resnet
from utils import get_datasets, get_model
def set_seed(seed=233):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
print ('P-SGD')
parser = argparse.ArgumentParser(description='P(+)-SGD in pytorch')
parser.add_argument('--arch', '-a', metavar='ARCH', default='resnet32',
help='model architecture (default: resnet32)')
parser.add_argument('--datasets', metavar='DATASETS', default='CIFAR10', type=str,
help='The training datasets')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=100, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=128, type=int,
metavar='N', help='mini-batch size (default: 128)')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--print-freq', '-p', default=50, type=int,
metavar='N', help='print frequency (default: 50)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('--pretrained', dest='pretrained', action='store_true',
help='use pre-trained model')
parser.add_argument('--half', dest='half', action='store_true',
help='use half-precision(16-bit) ')
parser.add_argument('--save-dir', dest='save_dir',
help='The directory used to save the trained models',
default='save_temp', type=str)
parser.add_argument('--save-every', dest='save_every',
help='Saves checkpoints at every specified number of epochs',
type=int, default=10)
parser.add_argument('--n_components', default=40, type=int, metavar='N',
help='n_components for PCA')
parser.add_argument('--params_start', default=0, type=int, metavar='N',
help='which epoch start for PCA')
parser.add_argument('--params_end', default=51, type=int, metavar='N',
help='which epoch end for PCA')
parser.add_argument('--alpha', default=0, type=float, metavar='N',
help='lr for momentum')
parser.add_argument('--lr', default=1, type=float, metavar='N',
help='lr for PSGD')
parser.add_argument('--gamma', default=0.9, type=float, metavar='N',
help='gamma for momentum')
parser.add_argument('--randomseed',
help='Randomseed for training and initialization',
type=int, default=1)
parser.add_argument('--corrupt', default=0, type=float,
metavar='c', help='noise level for training set')
parser.add_argument('--smalldatasets', default=None, type=float, dest='smalldatasets',
help='percent of small datasets')
args = parser.parse_args()
set_seed(args.randomseed)
best_prec1 = 0
P = None
train_acc, test_acc, train_loss, test_loss = [], [], [], []
def get_model_param_vec(model):
"""
Return model parameters as a vector
"""
vec = []
for name,param in model.named_parameters():
vec.append(param.detach().cpu().numpy().reshape(-1))
return np.concatenate(vec, 0)
def get_model_grad_vec(model):
# Return the model grad as a vector
vec = []
for name,param in model.named_parameters():
vec.append(param.grad.detach().reshape(-1))
return torch.cat(vec, 0)
def update_grad(model, grad_vec):
idx = 0
for name,param in model.named_parameters():
arr_shape = param.grad.shape
size = 1
for i in range(len(list(arr_shape))):
size *= arr_shape[i]
param.grad.data = grad_vec[idx:idx+size].reshape(arr_shape)
idx += size
def update_param(model, param_vec):
idx = 0
for name,param in model.named_parameters():
arr_shape = param.data.shape
size = 1
for i in range(len(list(arr_shape))):
size *= arr_shape[i]
param.data = param_vec[idx:idx+size].reshape(arr_shape)
idx += size
def main():
global args, best_prec1, Bk, p0, P
# Check the save_dir exists or not
print (args.save_dir)
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
# Define model
model = torch.nn.DataParallel(get_model(args))
model.cuda()
# Load sampled model parameters
print ('params: from', args.params_start, 'to', args.params_end)
W = []
for i in range(args.params_start, args.params_end):
############################################################################
# if i % 2 != 0: continue
model.load_state_dict(torch.load(os.path.join(args.save_dir, str(i) + '.pt')))
W.append(get_model_param_vec(model))
W = np.array(W)
print ('W:', W.shape)
# Obtain base variables through PCA
pca = PCA(n_components=args.n_components)
pca.fit_transform(W)
P = np.array(pca.components_)
print ('ratio:', pca.explained_variance_ratio_)
print ('P:', P.shape)
P = torch.from_numpy(P).cuda()
# Resume from params_start
model.load_state_dict(torch.load(os.path.join(args.save_dir, str(args.params_start) + '.pt')))
# Prepare Dataloader
train_loader, val_loader = get_datasets(args)
# Define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().cuda()
if args.half:
model.half()
criterion.half()
cudnn.benchmark = True
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=0.9)
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer,
milestones=[30, 50], last_epoch=args.start_epoch - 1)
if args.evaluate:
validate(val_loader, model, criterion)
return
print ('Train:', (args.start_epoch, args.epochs))
end = time.time()
p0 = get_model_param_vec(model)
for epoch in range(args.start_epoch, args.epochs):
# Train for one epoch
train(train_loader, model, criterion, optimizer, epoch)
# Bk = torch.eye(args.n_components).cuda()
lr_scheduler.step()
# Evaluate on validation set
prec1 = validate(val_loader, model, criterion)
# Remember best prec@1 and save checkpoint
is_best = prec1 > best_prec1
best_prec1 = max(prec1, best_prec1)
print ('total time:', time.time() - end)
print ('train loss: ', train_loss)
print ('train acc: ', train_acc)
print ('test loss: ', test_loss)
print ('test acc: ', test_acc)
print ('best_prec1:', best_prec1)
# torch.save(model.state_dict(), 'PBFGS.pt',_use_new_zipfile_serialization=False)
torch.save(model.state_dict(), 'PSGD.pt')
running_grad = 0
def train(train_loader, model, criterion, optimizer, epoch):
# Run one train epoch
global P, W, iters, T, train_loss, train_acc, search_times, running_grad, p0
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
# Switch to train mode
model.train()
end = time.time()
for i, (input, target) in enumerate(train_loader):
# Measure data loading time
data_time.update(time.time() - end)
# Load batch data to cuda
target = target.cuda()
input_var = input.cuda()
target_var = target
if args.half:
input_var = input_var.half()
# Compute output
output = model(input_var)
loss = criterion(output, target_var)
# Compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
# Do P_plus_BFGS update
gk = get_model_grad_vec(model)
P_SGD(model, optimizer, gk, loss.item(), input_var, target_var)
# Measure accuracy and record loss
prec1 = accuracy(output.data, target)[0]
losses.update(loss.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
# Measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0 or i == len(train_loader)-1:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})'.format(
epoch, i, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1))
train_loss.append(losses.avg)
train_acc.append(top1.avg)
# Set the update period of basis variables (per iterations)
T = 1000
# Set the momentum parameters
gamma = args.gamma
alpha = args.alpha
grad_res_momentum = 0
# Store the last gradient on basis variables for P_plus_BFGS update
gk_last = None
# Variables for BFGS and backtracking line search
rho = 0.55
rho = 0.4
sigma = 0.4
Bk = torch.eye(args.n_components).cuda()
sk = None
# Store the backtracking line search times
search_times = []
def P_SGD(model, optimizer, grad, oldf, X, y):
# P_plus_BFGS algorithm
global rho, sigma, Bk, sk, gk_last, grad_res_momentum, gamma, alpha, search_times
gk = torch.mm(P, grad.reshape(-1,1))
grad_proj = torch.mm(P.transpose(0, 1), gk)
grad_res = grad - grad_proj.reshape(-1)
# Update the model grad and do a step
update_grad(model, grad_proj)
optimizer.step()
def validate(val_loader, model, criterion):
# Run evaluation
global test_acc, test_loss
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
# Switch to evaluate mode
model.eval()
end = time.time()
with torch.no_grad():
for i, (input, target) in enumerate(val_loader):
target = target.cuda()
input_var = input.cuda()
target_var = target.cuda()
if args.half:
input_var = input_var.half()
# Compute output
output = model(input_var)
loss = criterion(output, target_var)
output = output.float()
loss = loss.float()
# Measure accuracy and record loss
prec1 = accuracy(output.data, target)[0]
losses.update(loss.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
# Measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})'.format(
i, len(val_loader), batch_time=batch_time, loss=losses,
top1=top1))
print(' * Prec@1 {top1.avg:.3f}'
.format(top1=top1))
# Store the test loss and test accuracy
test_loss.append(losses.avg)
test_acc.append(top1.avg)
return top1.avg
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
# Save the training model
torch.save(state, filename)
class AverageMeter(object):
# Computes and stores the average and current value
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def accuracy(output, target, topk=(1,)):
# Computes the precision@k for the specified values of k
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
if __name__ == '__main__':
main()