Skip to content

Latest commit

 

History

History

1175

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 

Return the number of permutations of 1 to n so that prime numbers are at prime indices (1-indexed.)

(Recall that an integer is prime if and only if it is greater than 1, and cannot be written as a product of two positive integers both smaller than it.)

Since the answer may be large, return the answer modulo 10^9 + 7.

 

Example 1:

Input: n = 5
Output: 12
Explanation: For example [1,2,5,4,3] is a valid permutation, but [5,2,3,4,1] is not because the prime number 5 is at index 1.

Example 2:

Input: n = 100
Output: 682289015

 

Constraints:

  • 1 <= n <= 100

Related Topics:
Math

Solution 1. Sieve of Eratosthenes

// OJ: https://leetcode.com/problems/prime-arrangements/
// Author: github.com/lzl124631x
// Time: O(NloglogN)
// Space: O(N)
class Solution {
    int countPrimes(int n) {
        if (n <= 1) return 0;
        vector<int> prime(n + 1, true);
        int ans = 0, bound = sqrt(n);
        for (int i = 2; i <= n; ++i) {
            if (!prime[i]) continue;
            ++ans;
            if (i > bound) continue;
            for (int j = i * i; j <= n; j += i) prime[j] = false;
        }
        return ans;
    }
public:
    int numPrimeArrangements(int n) {
        int cnt = countPrimes(n), ans = 1, mod = 1e9 + 7;
        for (int i = 1; i <= cnt; ++i) ans = ((long)ans * i) % mod;
        for (int i = 1; i <= n - cnt; ++i) ans = ((long)ans * i) % mod;
        return ans;
    }
};