There is an integer array nums
sorted in ascending order (with distinct values).
Prior to being passed to your function, nums
is possibly rotated at an unknown pivot index k
(1 <= k < nums.length
) such that the resulting array is [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]]
(0-indexed). For example, [0,1,2,4,5,6,7]
might be rotated at pivot index 3
and become [4,5,6,7,0,1,2]
.
Given the array nums
after the possible rotation and an integer target
, return the index of target
if it is in nums
, or -1
if it is not in nums
.
You must write an algorithm with O(log n)
runtime complexity.
Example 1:
Input: nums = [4,5,6,7,0,1,2], target = 0 Output: 4
Example 2:
Input: nums = [4,5,6,7,0,1,2], target = 3 Output: -1
Example 3:
Input: nums = [1], target = 0 Output: -1
Constraints:
1 <= nums.length <= 5000
-104 <= nums[i] <= 104
- All values of
nums
are unique. nums
is an ascending array that is possibly rotated.-104 <= target <= 104
Companies: Amazon, Apple, Google
Related Topics:
Array, Binary Search
Similar Questions:
- Search in Rotated Sorted Array II (Medium)
- Find Minimum in Rotated Sorted Array (Medium)
- Pour Water Between Buckets to Make Water Levels Equal (Medium)
Use the solution to 153. Find Minimum in Rotated Sorted Array (Medium).
We first find the pivot point, then we can do a normal binary search on [0, pivot - 1]
or [pivot, N - 1]
.
// OJ: https://leetcode.com/problems/search-in-rotated-sorted-array/
// Author: github.com/lzl124631x
// Time: O(logN)
// Space: O(1)
class Solution {
public:
int search(vector<int>& nums, int target) {
if (nums.empty()) return -1;
int L = 0, R = nums.size() - 1, pivot;
while (L < R) {
int M = L + (R - L) / 2;
if (nums[M] < nums[R]) R = M;
else L = M + 1;
}
pivot = L;
if (pivot && target >= nums[0] && target <= nums[pivot - 1]) L = 0, R = pivot - 1;
else L = pivot, R = nums.size() - 1;
while (L <= R) {
int M = L + (R - L) / 2;
if (nums[M] == target) return M;
if (target > nums[M]) L = M + 1;
else R = M - 1;
}
return -1;
}
};
Similar to the Solution 1, but we shift the M
by pivot
to find the real mid point (need to % N
).
// OJ: https://leetcode.com/problems/search-in-rotated-sorted-array/
// Author: github.com/lzl124631x
// Time: O(logN)
// Space: O(1)
// https://discuss.leetcode.com/topic/3538/concise-o-log-n-binary-search-solution
class Solution {
public:
int search(vector<int>& nums, int target) {
if (nums.empty()) return -1;
int N = nums.size(), L = 0, R = N - 1, pivot;
while (L < R) {
int M = L + (R - L) / 2;
if (nums[M] < nums[R]) R = M;
else L = M + 1;
}
pivot = L;
L = 0, R = N - 1;
while (L <= R) {
int M = L + (R - L) / 2;
int MM = (M + pivot) % N;
if (nums[MM] == target) return MM;
if (target > nums[MM]) L = M + 1;
else R = M - 1;
}
return -1;
}
};
Let L = 0, R = N - 1, M = (L + R) / 2
.
- If
A[M] == target
, returnM
- If
A[M] > A[R]
, the min point in the array is to the right ofA[M]
, we then comparetarget
withA[M]
orA[L]
to see if we should moveL
orR
. - If
A[M] <= A[R]
, the min point in the array is to the left ofA[M]
, we can then compare target withA[M]
orA[R]
to see if we should moveL
orR
.
// OJ: https://leetcode.com/problems/search-in-rotated-sorted-array/
// Author: github.com/lzl124631x
// Time: O(logN)
// Space: O(1)
class Solution {
public:
int search(vector<int>& A, int target) {
int N = A.size(), L = 0, R = N - 1;
while (L <= R) {
int M = (L + R) / 2;
if (A[M] == target) return M;
if (A[M] > A[R]) {
if (target >= A[L] && target < A[M]) R = M - 1;
else L = M + 1;
} else {
if (target > A[M] && target <= A[R]) L = M + 1;
else R = M - 1;
}
}
return -1;
}
};
We can simplify it by combining the cases.
// OJ: https://leetcode.com/problems/search-in-rotated-sorted-array/
// Author: github.com/lzl124631x
// Time: O(logN)
// Space: O(1)
class Solution {
public:
int search(vector<int>& A, int target) {
int L = 0, R = A.size() - 1;
while (L <= R) {
int M = (L + R) / 2;
if (A[M] == target) return M;
if ((A[M] > A[R] && (target > A[M] || target < A[L]))
|| (A[M] <= A[R] && (target > A[M] && target <= A[R]))) L = M + 1;
else R = M - 1;
}
return -1;
}
};