-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathautoencoding.lua
385 lines (300 loc) · 12.7 KB
/
autoencoding.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
autoencoding = {}
autoencoding.__name = "autoencoding"
autoencoding.USE_PRETRAINED_EMBEDDINGS = false
assert(not autoencoding.USE_PRETRAINED_EMBEDDINGS)
print(autoencoding)
function autoencoding.create_network(withOutput, doZeroMaskingOnLookupTable, inputDropout)
local x = nn.Identity()()
local prev_c = nn.Identity()()
local prev_h = nn.Identity()()
local i
if doZeroMaskingOnLookupTable then
i = nn.LookupTableMaskZero(params.vocab_size,params.embeddings_dimensionality)(x)
else
i = nn.LookupTable(params.vocab_size,params.embeddings_dimensionality)(x)
end
if inputDropout == true then
i = nn.Dropout(0.2)(i)
end
local next_s = {}
local next_c, next_h = lstm.lstm(i, prev_c, prev_h, params.embeddings_dimensionality)
local module
if withOutput then
local h2y = nn.Linear(params.rnn_size, params.vocab_size)(next_c)
local output = nn.MulConstant(-1)(nn.LogSoftMax()(h2y))
module = nn.gModule({x, prev_c, prev_h},
{next_c, next_h, output})
else
module = nn.gModule({x, prev_c, prev_h},
{next_c, next_h})
end
module:getParameters():uniform(-params.init_weight, params.init_weight)
return transfer_data(module)
end
function autoencoding.setupAutoencoding()
print("Creating a RNN LSTM network.")
-- initialize data structures
model.sR = {}
model.dsR = {}
model.dsA = {}
model.start_sR = {}
for j = 0, params.seq_length do
model.sR[j] = transfer_data(torch.zeros(params.batch_size, params.rnn_size))
end
model.dsR[1] = transfer_data(torch.zeros(params.rnn_size))
model.dsR[2] = transfer_data(torch.zeros(params.rnn_size))
model.dsA[1] = transfer_data(torch.zeros(params.rnn_size))
model.dsA[2] = transfer_data(torch.zeros(params.rnn_size))
model.dsA[3] = transfer_data(torch.zeros(params.rnn_size)) -- NOTE actually will later have different size
reader_c ={}
reader_h = {}
actor_c ={[0] = torch.CudaTensor(params.rnn_size)}
actor_h = {[0] = torch.CudaTensor(params.rnn_size)}
reader_c[0] = torch.CudaTensor(params.batch_size,params.rnn_size):zero()
reader_h[0] = torch.CudaTensor(params.batch_size,params.rnn_size):zero()
if params.TASK == 'combined' then
reader_output = {}
surprisal_values = {[1] = transfer_data(torch.zeros(params.batch_size,1))}
end
attention_decisions = {}
attention_scores = {}
baseline_scores = {}
for i=1, params.seq_length do
attention_decisions[i] = torch.CudaTensor(params.batch_size)
attention_scores[i] = torch.CudaTensor(params.batch_size,1)
baseline_scores[i] = torch.CudaTensor(params.batch_size,1)
end
probabilityOfChoices = torch.FloatTensor(params.batch_size)
totalAttentions = torch.FloatTensor(params.batch_size)
nll = torch.FloatTensor(params.batch_size)
if params.TASK == 'combined' then
nll_reader = torch.FloatTensor(params.batch_size)
end
attention_inputTensors = {}
if USE_PREDICTION_FOR_ATTENTION then
for i=1, params.seq_length do
attention_inputTensors[i] = torch.CudaTensor(params.batch_size)
end
end
ones = transfer_data(torch.ones(params.batch_size))
rewardBaseline = 0
variance_average = 100
recurrent_variance_average = 100
if not LOAD then
-- READER
local reader_core_network
reader_core_network = autoencoding.create_network(true,false,true)
paramxR, paramdxR = reader_core_network:getParameters()
readerRNNs = {}
for i=1,params.seq_length do
readerRNNs[i] = clone_network(reader_core_network)
end
-- ACTOR
local actor_core_network = autoencoding.create_network(true)
paramxA, paramdxA = actor_core_network:getParameters()
actorRNNs = {}
for i=1,params.seq_length do
actorRNNs[i] = clone_network(actor_core_network)
end
-- ATTENTION
local attentionNetwork = attention.createAttentionNetwork()
paramxRA, paramdxRA = attentionNetwork:getParameters()
attentionNetworks = {}
for i=1,params.seq_length do
attentionNetworks[i] = clone_network(attentionNetwork)
end
elseif true then
print("LOADING MODEL AT "..BASE_DIRECTORY.."/model-"..fileToBeLoaded)
local params2, sentencesRead, SparamxR, SparamdxR, SparamxA, SparamdxA, SparamxRA, SparamdxRA, readerCStart, readerHStart, SparamxB, SparamdxB = unpack(torch.load(BASE_DIRECTORY.."/model-"..fileToBeLoaded, "binary"))
if SparamxB == nil and USE_BIDIR_BASELINE and DO_TRAINING and IS_CONTINUING_ATTENTION then
print("no baseline in saved file")
assert(false)
end
print(params2)
local reader_core_network
reader_core_network = autoencoding.create_network(true,false,true)
-- LOAD PARAMETERS
reader_network_params, reader_network_gradparams = reader_core_network:parameters()
for j=1, #SparamxR do
reader_network_params[j]:set(SparamxR[j])
reader_network_gradparams[j]:set(SparamxR[j])
end
paramxR, paramdxR = reader_core_network:getParameters()
reader_network_params, reader_network_gradparams = reader_core_network:parameters()
-- CLONE
readerRNNs = {}
for i=1,params.seq_length do
readerRNNs[i] = clone_network(reader_core_network)
end
-- ACTOR
local actor_core_network = autoencoding.create_network(true)
actor_network_params, actor_network_gradparams = actor_core_network:parameters()
for j=1, #SparamxA do
actor_network_params[j]:set(SparamxA[j])
actor_network_gradparams[j]:set(SparamdxA[j])
end
paramxA, paramdxA = actor_core_network:getParameters()
actorRNNs = {}
for i=1,params.seq_length do
actorRNNs[i] = clone_network(actor_core_network)
end
-- ATTENTION
local attentionNetwork = attention.createAttentionNetwork()
att_network_params, network_gradparams = attentionNetwork:parameters()
if params.ATTENTION_WITH_EMBEDDINGS then
if not IS_CONTINUING_ATTENTION then
att_network_params[1]:set(reader_network_params[1])
print("Using embeddings from the reader")
else
print("Not using embeddings from the reader because continuing attention")
end
end
if USE_BIDIR_BASELINE and DO_TRAINING then
setupBidirBaseline(reader_network_params, SparamxB, SparamdxB)
end
if IS_CONTINUING_ATTENTION then
network_params, network_gradparams = attentionNetwork:parameters()
for j=1, #SparamxRA do
network_params[j]:set(SparamxRA[j])
network_gradparams[j]:set(SparamdxRA[j])
end
print("Got attention network from file")
else
print("NOTE am not using the attention network from the file")
end
paramxRA, paramdxRA = attentionNetwork:getParameters()
attentionNetworks = {}
for i=1,params.seq_length do
attentionNetworks[i] = clone_network(attentionNetwork)
end
paramdxRA:zero()
print("Sequences read by model "..sentencesRead)
reader_c[0] = readerCStart
reader_h[0] = readerHStart
end
end
function autoencoding.fpAutoencoding(corpus, startIndex, endIndex)
probabilityOfChoices:fill(1)
totalAttentions:fill(params.ATTENTION_VALUES_BASELINE)
local inputTensors = buildInputTensors(corpus, startIndex, endIndex)
if params.TASK == 'combined' then
nll_reader:zero()
reader_output = {}
end
for i=1, params.seq_length do
local inputTensor = inputTensors[i]
-- make attention decisions
if i>1 then
surprisal_values[i] = retrieveSurprisalValue(reader_output[i-1], inputTensors[i])
end
if (not USE_PREDICTION_FOR_ATTENTION) and attention_inputTensors[i] ~= nil then
crash()
elseif PREDICTION_FOR_ATTENTION and attention_inputTensors[i] == nil then
crash()
end
local attendedInputTensor, probability = hardAttention.makeAttentionDecisions(i, inputTensor, surprisal_values[i], attention_inputTensors[i])
reader_c[i], reader_h[i], reader_output[i] = unpack(readerRNNs[i]:forward({attendedInputTensor, reader_c[i-1], reader_h[i-1]}))
if i < params.seq_length then
for item=1, params.batch_size do
local lm_loss_for_item = reader_output[i][item][getFromData(corpus,startIndex+ item - 1,i+1)]
nll_reader[item] = nll_reader[item] + lm_loss_for_item
end
end
end
actor_c[0] = reader_c[params.seq_length]
actor_h[0] = reader_h[params.seq_length]
nll:zero()
actor_output = {}
local inputTensor
for i=1, params.seq_length do
inputTensor = inputTensors[i-1]
actor_c[i], actor_h[i], actor_output[i] = unpack(actorRNNs[i]:forward({inputTensor, actor_c[i-1], actor_h[i-1]}))
for item=1, params.batch_size do
local rec_loss_for_item = actor_output[i][item][getFromData(corpus,startIndex+ item - 1,i)]
nll[item] = nll[item] + rec_loss_for_item
end
end
return nll, actor_output
end
function autoencoding.bpAutoencoding(corpus, startIndex, endIndex)
paramdxR:zero()
paramdxA:zero()
-- MOMENTUM
paramdxRA:mul(params.lr_momentum / (1-params.lr_momentum))
reset_ds()
buildGradientsOfProbOutputs(model.dsA[3], corpus, startIndex, endIndex, params.seq_length)
local inputTensors = buildInputTensors(corpus, startIndex, endIndex)
if params.lr > 0 or train_autoencoding then
for i = params.seq_length, 1, -1 do
inputTensor = inputTensors[i-1]
local prior_c = actor_c[i-1]
local prior_h = actor_h[i-1]
local derr = transfer_data(torch.ones(1))
local tmp = actorRNNs[i]:backward({inputTensor, prior_c, prior_h},
model.dsA)
model.dsA[1]:copy(tmp[2])
model.dsA[2]:copy(tmp[3])
model.dsA[3]:zero()
buildGradientsOfProbOutputs(model.dsA[3], corpus, startIndex, endIndex, i-1)
cutorch.synchronize()
end
model.dsR[1]:copy(model.dsA[1])
model.dsR[2]:copy(model.dsA[2])
-- do it for reader network
for i = params.seq_length, 1, -1 do
inputTensor= torch.cmul(inputTensors[i], attention_decisions[i])
local prior_c = reader_c[i-1]
local prior_h = reader_h[i-1]
local derr = transfer_data(torch.ones(1))
local tmp = readerRNNs[i]:backward({inputTensor, prior_c, prior_h},
model.dsR)
model.dsR[1]:copy(tmp[2])
model.dsR[2]:copy(tmp[3])
cutorch.synchronize()
end
model.norm_dwR = paramdxR:norm()
if model.norm_dwR > params.max_grad_norm then
local shrink_factor = params.max_grad_norm / model.norm_dwR
paramdxR:mul(shrink_factor)
end
model.norm_dwA = paramdxA:norm()
if model.norm_dwA > params.max_grad_norm then
local shrink_factor = params.max_grad_norm / model.norm_dwA
paramdxA:mul(shrink_factor)
end
momentum = 0.8
paramxR:add(paramdxR:mul(-params.lr))
paramxA:add(paramdxA:mul(-params.lr))
end
if train_attention_network then
local reward = torch.add(nll, params.TOTAL_ATTENTIONS_WEIGHT,totalAttentions) -- gives the reward for each batch item
local rewardDifference = reward:cuda():add(-rewardBaseline, ones)
rewardBaseline = 0.8 * rewardBaseline + 0.2 * torch.sum(reward) * 1/params.batch_size
rewardDifference:mul(REWARD_DIFFERENCE_SCALING)
for i = params.seq_length, 1, -1 do
local whatToMultiplyToTheFinalDerivative = torch.CudaTensor(params.batch_size)
local attentionEntropyFactor = torch.CudaTensor(params.batch_size)
for j=1,params.batch_size do
attentionEntropyFactor[j] = params.ENTROPY_PENALTY * (math.log(attention_scores[i][j][1]) - math.log(1 - attention_scores[i][j][1]))
if attention_decisions[i][j] == 0 then
whatToMultiplyToTheFinalDerivative[j] = -1 / (1 - attention_scores[i][j][1])
else
whatToMultiplyToTheFinalDerivative[j] = 1 / (attention_scores[i][j][1])
end
end
local factorsForTheDerivatives = rewardDifference:clone():cmul(whatToMultiplyToTheFinalDerivative)
factorsForTheDerivatives:add(attentionEntropyFactor)
local tmp = attentionNetworks[i]:backward({inputTensors[i], reader_c[i-1]},factorsForTheDerivatives)
end
local norm_dwRA = paramdxRA:norm()
if norm_dwRA > params.max_grad_norm then
local shrink_factor = params.max_grad_norm / norm_dwRA
paramdxRA:mul(shrink_factor)
end
assert(norm_dwRA == norm_dwRA)
-- MOMENTUM
paramdxRA:mul((1-params.lr_momentum))
paramxRA:add(paramdxRA:mul(- 1 * params.lr_att))
paramdxRA:mul(1 / (- 1 * params.lr_att)) -- is this really better than cloning before multiplying?
end
end