-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathelectronics-cooling.tex
281 lines (239 loc) · 10.7 KB
/
electronics-cooling.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
\documentclass[fontsize=9pt,a4paper,twocolumn]{scrartcl}
\usepackage[utf8]{inputenc}
\usepackage[english]{babel}
\usepackage{graphicx}
\usepackage{amsmath, amssymb, amsopn}
\usepackage{xcolor} % include before tikz!
\usepackage{tikz}
\usepackage[european]{circuitikz}
\usepackage{nicefrac}
\usepackage{trfsigns} % for \laplace,\Laplace
\usepackage{framed}
\usepackage{geometry}
\geometry{left=0.5cm,right=0.5cm,top=0.5cm,bottom=0.5cm}
\setlength{\parskip}{5pt}
\setlength{\parindent}{0em}
%
%
%
%
\DeclareMathOperator{\grad}{grad}
\renewcommand\div{}
\DeclareMathOperator{\Div}{div}
\DeclareMathOperator{\rot}{rot}
\DeclareMathOperator{\sinc}{sinc}
%
%
%
\begin{document}
\clearpage
\pagestyle{empty}
\huge{Electronics Cooling Cheat Sheet}\footnote{\small{\texttt{https://github.com/m-thu/sandbox/blob/master/electronics-cooling.tex}}}\\
\large{Matthias Thumann}
\vspace*{0.5cm}
\large{\textbf{Introduction}}
Heat conduction equation / Fourier's law\\ ($A$: area, $T$: temperature, $[\dot Q] = \mathrm{W}$):
\begin{quote}
$\dot Q_\mathrm{cond} = -kA\frac{\mathrm{d}T}{\mathrm{d}x}$
\end{quote}
Thermal conductivity $k$:
\begin{quote}
$[k]=\frac{\mathrm{W}}{\mathrm{m}\cdot\mathrm{K}}$
\end{quote}
Convection heat flow ($A_\mathrm{s}$: surface area, $T_\mathrm{s}$: surface temperature, $T_\mathrm{amb}$: ambient):
\begin{quote}
$\dot Q_\mathrm{conv}=h A_\mathrm{s}\cdot(T_\mathrm{s}-T_\mathrm{amb})$
\end{quote}
Heat transfer coefficient $h$:
\begin{quote}
$[h]=\frac{\mathrm{W}}{\mathrm{m}^2\cdot\mathrm{K}}$
\end{quote}
Forced convection over flat plate ($U$: air speed, $[U]=\frac{\mathrm{m}}{\mathrm{s}}$,\\ $L$: lenght of plate, $[L]=\mathrm{m}$):
\begin{itemize}
\item Laminar flow: $h=3.9\cdot\sqrt{\frac{U}{L}}$
\item Turbulent flow: $h=5.5\cdot\left(\frac{U^4}{L}\right)^{\nicefrac{1}{5}}$
\end{itemize}
Natural convection from vertical flat plate ($L$: height of plate, $[L]=\mathrm{m}$, $T_\mathrm{s}$: surface temperature, $T_\mathrm{amb}$: ambient temperature):
\begin{itemize}
\item Laminar flow: $h=1.4\cdot\left(\frac{T_\mathrm{s}-T_\mathrm{amb}}{L}\right)^{\nicefrac{1}{4}}$
\item Turbulent flow: $h=1.1\cdot\left(T_\mathrm{s}-T_\mathrm{amb}\right)^{\nicefrac{1}{3}}$
\end{itemize}
Radiation heat transfer ($\varepsilon$: surface emissivity, $[\varepsilon]=1$,\\ $\sigma=5.67\cdot 10^{-8}\,\frac{\mathrm{W}}{\mathrm{m}^2 \mathrm{K}^4}$: Stefan-Boltzmann constant,\\ $A_\mathrm{s}$: surface area, $T_\mathrm{s}$: surface temperature,\\ $T_\mathrm{surr}$: surrounding temperature, $[T_\mathrm{s}]=[T_\mathrm{surr}]=\mathrm{K}$):
\begin{quote}
$\dot Q_\mathrm{rad}=\varepsilon\sigma A_\mathrm{s}\cdot\left(T_\mathrm{s}^4-T_\mathrm{surr}^4\right) = h_\mathrm{rad}\,A_\mathrm{s}\cdot\left(T_\mathrm{s}-T_\mathrm{surr}\right)$
\end{quote}
\large{\textbf{Heat losses}}
Joule's law:
\begin{quote}
$P=V\cdot I=R\cdot I^2=\frac{V^2}{R}$
\end{quote}
Average IGBT conduction loss:
\begin{quote}
$P_\mathrm{avg}=u_{\mathrm{ce},0}\cdot I_{\mathrm{c},\mathrm{avg}} + r_\mathrm{c}\cdot I_{\mathrm{c},\mathrm{rms}}^2$
\end{quote}
Average diode conduction loss:
\begin{quote}
$P_\mathrm{avg}=u_{\mathrm{D},0}\cdot I_{\mathrm{D},\mathrm{avg}} + r_\mathrm{D}\cdot I_{\mathrm{D},\mathrm{rms}}^2$
\end{quote}
IGBT switching loss:
\begin{itemize}
\item $E_\mathrm{on}=\sum_{i=1}^n k_\mathrm{on}\cdot i_\mathrm{IGBT}(t_i)$
\item $E_\mathrm{off}=\sum_{i=1}^n k_\mathrm{off}\cdot i_\mathrm{IGBT}(t_i)$
\item $P_\mathrm{sw}=\frac{1}{T}(E_\mathrm{on}+E_\mathrm{off})$
\end{itemize}
Diode switching loss:
\begin{itemize}
\item $E_\mathrm{rr}=\sum_{i=1}^n k_\mathrm{rr}\cdot i_\mathrm{DIode}(t_i)$
\item $P_\mathrm{rr}=\frac{E_\mathrm{rr}}{T}$
\end{itemize}
\large{\textbf{Thermal resistance networks}}
Thermal resistance $R_\mathrm{th}$:
\begin{itemize}
\item $\dot Q = \frac{1}{R_\mathrm{th}}\cdot\Delta T$
\item $[R_\mathrm{th}]=\frac{\mathrm{K}}{\mathrm{W}}$
\end{itemize}
\newpage
Thermal resistivity $r_\mathrm{th}$ ($[\dot q]=\frac{\mathrm{W}}{\mathrm{m}^2}$):
\begin{itemize}
\item $\dot q = \frac{1}{r_\mathrm{th}}\cdot\Delta T$
\item $[r_\mathrm{th}]=\frac{\mathrm{K}\cdot\mathrm{m}^2}{\mathrm{W}}$
\end{itemize}
Thermal resistance of conduction ($t$: thickness, $k$: thermal coductivity, $A$: area):
\begin{quote}
$R_{\mathrm{th},\mathrm{cond}} = \frac{t}{kA} = \frac{r_\mathrm{th}}{A}$
\end{quote}
Thermal resistivity of conduction ($t$: thickness, $k$: thermal conductivity):
\begin{quote}
$r_{\mathrm{th},\mathrm{cond}} = \frac{t}{k}$
\end{quote}
Thermal resistance of convection ($h$: heat transfer coefficient, $A_\mathrm{s}$: surface area):
\begin{quote}
$R_{\mathrm{th},\mathrm{conv}} = \frac{1}{h A_\mathrm{s}}$
\end{quote}
Conversion of Celcius temperatures to Kelvin:
\begin{quote}
$\frac{T}{\mathrm{K}} = \frac{\vartheta}{^\circ\mathrm{C}} + 273.15$
\end{quote}
Radiation heat transfer coefficient ($[T_\mathrm{s}]=[T_\mathrm{surr}]=\mathrm{K}$):
\begin{quote}
$h_\mathrm{rad}=\varepsilon\sigma (T_\mathrm{s}^2+T_\mathrm{surr}^2) (T_\mathrm{s}+T_\mathrm{surr})$
\end{quote}
Thermal resistance of radiation:
\begin{quote}
$R_{\mathrm{th},\mathrm{rad}} = \frac{1}{h_\mathrm{rad} A}$
\end{quote}
Modified heat transfer coefficient ($[T_\mathrm{s}]=[T_\mathrm{surr}]=\mathrm{K}$):
\begin{quote}
$h'_\mathrm{rad} = \frac{\varepsilon\sigma(T_\mathrm{s}^4-T_\mathrm{surr}^4)}{T_\mathrm{s}-T_\mathrm{amb}}$
\end{quote}
Modified conduction thermal resistance:
\begin{quote}
$R'_{\mathrm{th},\mathrm{rad}} = \frac{1}{h'_\mathrm{rad}\cdot A}$
\end{quote}
$N$ thermal resistances in series:
\begin{quote}
$R_{\mathrm{th},\mathrm{tot}} = \sum_{i=1}^N R_{\mathrm{th},i}$
\end{quote}
$N$ thermal resistances in parallel:
\begin{quote}
$\frac{1}{R_{\mathrm{th},\mathrm{tot}}} = \sum_{i=1}^N \frac{1}{R_{\mathrm{th},i}}$
\end{quote}
Effective normal thermal conductivity of a PCB ($t$: total thickness, $t_\mathrm{e}$: total thickness of epoxy layers, $t_\mathrm{c}$: total thickness of copper layers, $k_\mathrm{e}$: thermal conductivity of epoxy, $k_\mathrm{c}$: thermal conductivity of copper):
\begin{quote}
$k_\mathrm{n} = \frac{t}{\frac{t_\mathrm{e}}{k_\mathrm{e}} + \frac{t_\mathrm{c}}{k_\mathrm{c}}}$
\end{quote}
Effective planar thermal conductivity of a PCB:
\begin{quote}
$k_\mathrm{p} = \frac{k_\mathrm{e} t_\mathrm{e} + k_\mathrm{c} t_\mathrm{c}}{t}$
\end{quote}
Heat spreading:
\begin{itemize}
\item $A_1$: heat source area, $A_2$: heat spreader area
\item $k$: thermal conductivity of heat spreader material
\item $t$: heat spreader thickness
\item $h_\mathrm{eff}$: effective heat transfer coefficient
\item $r_1=\sqrt{\frac{A_1}{\pi}}$, $r_2=\sqrt{\frac{A_2}{\pi}}$
\item $\varepsilon=\frac{r_1}{r_2}$
\item $\tau=\frac{t}{r_2}$
\item $Bi = \frac {h_\mathrm{eff}\cdot r_2}{k}$
\item $\lambda = \pi + \frac{1}{\varepsilon\sqrt{\pi}}$
\item $\phi = \frac{\tanh(\lambda\tau)+\frac{\lambda}{Bi}}{1 + \frac{\lambda}{Bi} \tanh(\lambda\tau)}$
\item $R_{\mathrm{th},\mathrm{sp}} = \frac{(1-\varepsilon)\phi}{\pi k r_1}$
\end{itemize}
\newpage
\large{\textbf{Heat Sinks}}
Heat sink parameters:
\begin{itemize}
\item $A_\mathrm{c}$: cross sectional area of one fin ($[A_\mathrm{c}]=\mathrm{m}^2$)
\item $P$: perimeter of fin cross-section ($[P]=\mathrm{m}$)
\item $c$: fin length
\item $k$: thermal conductivity of heatsink material
\item $A_\mathrm{b}$: base plate area
\item $n_\mathrm{f}$: number of fins
\end{itemize}
Thermal resistance of heat sink (with \emph{adiabatic approximation}):
\begin{itemize}
\item Corrected fin length: $c_\mathrm{c} = c + \frac{A_\mathrm{c}}{P}$
\item $a = \sqrt{\frac{h P}{k A_\mathrm{c}}}$, $[a]=\frac{1}{\mathrm{m}}$
\item Fin efficiency: $\eta_\mathrm{f} = \frac{\tanh(a\cdot c_\mathrm{c})}{a\cdot c_\mathrm{c}}$
\item Fin surface area: $A_\mathrm{f} = P\cdot c_\mathrm{c}$
\item Total heat sink area: $A_\mathrm{tot} = n_\mathrm{f} A_\mathrm{f} + A_\mathrm{b} - n_\mathrm{f} A_\mathrm{c}$
\item Heat sink efficiency: $\eta_\mathrm{hs} = 1-\frac{n_\mathrm{f} A_\mathrm{f}}{A_\mathrm{tot}} (1-\eta_\mathrm{f})$
\item $\Rightarrow\,R_{\mathrm{hs},\mathrm{conv}} = \frac{1}{\eta_\mathrm{hs} A_\mathrm{tot} h}$
\end{itemize}
Caloric thermal resistance ($c_\mathrm{p}$: specific heat of fluid, $[c_\mathrm{p}] = \frac{\mathrm{J}}{\mathrm{kg}\cdot\mathrm{K}}$, $\dot V$: volume flow rate, $[\dot V]=\frac{\mathrm{m}^3}{\mathrm{s}}$, $\varrho$: density, $[\varrho]=\frac{\mathrm{kg}}{\mathrm{m}^3}$):
\begin{itemize}
\item Flow cross section: $A_\mathrm{flow}$
\item Air speed: $U_\mathrm{air}$, $[U]=\frac{\mathrm{m}}{\mathrm{s}}$
\item Volume flow rate: $\dot V = U_\mathrm{air}\cdot A_\mathrm{flow}$
\item Mass flow rate: $\dot m = \dot V\cdot\varrho$
\item $\Rightarrow\,R_{\mathrm{hs},\mathrm{cal}} = \frac{1}{2 \dot m c_\mathrm{p}} = \frac{1}{2 \dot V \varrho c_\mathrm{p}}$
\end{itemize}
Effective heat transfer coefficient (for spreading resistance):
\begin{quote}
$h_\mathrm{eff} = \frac{1}{\left(R_{\mathrm{hs},\mathrm{conv}} + R_{\mathrm{hs},\mathrm{cal}}\right)\cdot A_\mathrm{b}}$
\end{quote}
Linear fit for fan curve ($p_\mathrm{max}$: maximum pressure when fan is completely blocked, $[p_\mathrm{max}]=\mathrm{Pa}$, $\dot V_\mathrm{max}$: maximum volume flow rate when fan is unobstructed, $[\dot V_\mathrm{max}]=\frac{\mathrm{m}^3}{\mathrm{s}}$):
\begin{quote}
$\Delta p_\mathrm{fan}\left(\dot V\right) = p_\mathrm{max} - \frac{p_\mathrm{max}}{\dot V_\mathrm{max}}\cdot \dot V$
\end{quote}
Heat sink parameters:
\begin{itemize}
\item $c$: fin length
\item $s$: fin spacing
\item $n_\mathrm{f}$: number of fins
\item $n=n_\mathrm{f}-1$: number of channels
\item $L$: length of heatsink (in flow direction)
\end{itemize}
Hydraulic diameter:
\begin{quote}
$d_\mathrm{h} = \frac{2 sc}{s+c}$
\end{quote}
Fan pressure drop with laminar flow ($\varrho$: air density):
\begin{quote}
$\Delta p_\mathrm{lam}\left(\dot V\right) = 1.5\, \frac{32 \varrho \nu L}{n(sc) d_\mathrm{h}^2}\cdot \dot V$
\end{quote}
Fan operating point (laminar flow):
\begin{quote}
$\Delta p_\mathrm{fan}\left(\dot V\right) = \Delta p_\mathrm{lam}\,\,\curvearrowright\, \dot V\,\,\curvearrowright\,p$
\end{quote}
Reynolds number ($\nu$: kinematic viscosity, $[\nu]=\frac{\mathrm{m}^2}{\mathrm{s}}$):
\begin{quote}
$Re = \frac{2 \dot V}{n(s+c)\nu}$
\end{quote}
\newpage
Flow type:
\begin{itemize}
\item $Re<2300$: laminar flow
\item $Re>2300$: turbulent flow
\end{itemize}
Nusselt number ($Pr$: Prandtl's number, $[Pr]=1$, $[Nu]=1$):
\begin{itemize}
\item $X = \frac{L}{d_\mathrm{h} Re_\mathrm{lam} Pr}$
\item $Nu_\mathrm{lam} = \frac{3.657\left[\tanh\left(2.264\cdot X^{\nicefrac{1}{3}} + 1.7\cdot X^{\nicefrac{2}{3}}\right)\right]^{-1} + \frac{0.0499}{X}\tanh(X)}{\tanh\left[2.432\cdot Pr^{\nicefrac{1}{6}}\cdot X^{\nicefrac{1}{6}}\right]}$
\end{itemize}
Heat transfer coefficient of the heatsink ($k_\mathrm{air}$: thermal conductivity of air):
\begin{quote}
$h = \frac{Nu_\mathrm{lam}\cdot k_\mathrm{air}}{d_\mathrm{h}}$
\end{quote}
\end{document}