-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathload_datasets.py
36 lines (32 loc) · 1.16 KB
/
load_datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import pandas as pd
def load_cancer():
names = ['id'] + ['fut' + str(i) for i in range(1, 10)] + ['malignant']
df = pd.read_csv('data/cancer/breast-cancer-wisconsin.data.cleaned', sep=',', names=names)
df.drop(columns=['id'], inplace=True)
df['malignant'] = df['malignant'] == 4
return df
def load_wine():
df1 = pd.read_csv('data/wine/winequality-red.csv', sep=';')
# df1.insert(0, 'type', 1)
df2 = pd.read_csv('data/wine/winequality-white.csv', sep=';')
# df2.insert(0, 'type', 2)
df1['red'] = 1
df2['red'] = 0
df = df1.append(df2, ignore_index=True)
# df = df1
# df['quality'] = df['quality'] > 5
return df
def load_mushroom():
names = ['classification'] + [f'f{i}' for i in range(1,23)]
df = pd.read_csv('data/mushroom/agaricus-lepiota.data', names=names)
df.drop(columns=['f11'], inplace=True)
# df.drop(columns=[f'f{i}' for i in range(6,23)], inplace=True)
df = df.astype("category")
for col in df:
df[col] = df[col].cat.codes
df['classification'] = df.pop('classification')
return df
if __name__=='__main__':
# print(load_cancer())
print(load_wine())
# print(load_mushroom())