|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 1, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "# 1. Using qtorch to tensor\n", |
| 10 | + "\n", |
| 11 | + "import torch\n", |
| 12 | + "from qtorch.quant import Quantizer, quantizer\n", |
| 13 | + "from qtorch import FloatingPoint" |
| 14 | + ] |
| 15 | + }, |
| 16 | + { |
| 17 | + "cell_type": "code", |
| 18 | + "execution_count": 2, |
| 19 | + "metadata": {}, |
| 20 | + "outputs": [ |
| 21 | + { |
| 22 | + "name": "stdout", |
| 23 | + "output_type": "stream", |
| 24 | + "text": [ |
| 25 | + "tensor([[0.9562, 0.8024, 0.3401],\n", |
| 26 | + " [0.8613, 0.9098, 0.8928],\n", |
| 27 | + " [0.9854, 0.6158, 0.6871]])\n" |
| 28 | + ] |
| 29 | + } |
| 30 | + ], |
| 31 | + "source": [ |
| 32 | + "random_input = torch.rand([3,3])\n", |
| 33 | + "print(random_input)" |
| 34 | + ] |
| 35 | + }, |
| 36 | + { |
| 37 | + "cell_type": "code", |
| 38 | + "execution_count": 3, |
| 39 | + "metadata": {}, |
| 40 | + "outputs": [ |
| 41 | + { |
| 42 | + "name": "stdout", |
| 43 | + "output_type": "stream", |
| 44 | + "text": [ |
| 45 | + "tensor([[ 255.0000, -255.0000],\n", |
| 46 | + " [ 1.4000, 1.6000]])\n" |
| 47 | + ] |
| 48 | + } |
| 49 | + ], |
| 50 | + "source": [ |
| 51 | + "constant_input = torch.tensor([[255., -255.],[1.4, 1.6]])\n", |
| 52 | + "print(constant_input)" |
| 53 | + ] |
| 54 | + }, |
| 55 | + { |
| 56 | + "cell_type": "code", |
| 57 | + "execution_count": 4, |
| 58 | + "metadata": {}, |
| 59 | + "outputs": [], |
| 60 | + "source": [ |
| 61 | + "# Set quantizer\n", |
| 62 | + "bit = FloatingPoint(exp=2, man=1)\n", |
| 63 | + "quant = quantizer(forward_number=bit, forward_rounding=\"nearest\")" |
| 64 | + ] |
| 65 | + }, |
| 66 | + { |
| 67 | + "cell_type": "code", |
| 68 | + "execution_count": 5, |
| 69 | + "metadata": {}, |
| 70 | + "outputs": [ |
| 71 | + { |
| 72 | + "name": "stdout", |
| 73 | + "output_type": "stream", |
| 74 | + "text": [ |
| 75 | + "tensor([[1.0000, 0.7500, 0.5000],\n", |
| 76 | + " [0.7500, 1.0000, 1.0000],\n", |
| 77 | + " [1.0000, 0.5000, 0.7500]])\n" |
| 78 | + ] |
| 79 | + } |
| 80 | + ], |
| 81 | + "source": [ |
| 82 | + "random_output = quant(random_input)\n", |
| 83 | + "print(random_output)" |
| 84 | + ] |
| 85 | + }, |
| 86 | + { |
| 87 | + "cell_type": "code", |
| 88 | + "execution_count": 6, |
| 89 | + "metadata": {}, |
| 90 | + "outputs": [ |
| 91 | + { |
| 92 | + "name": "stdout", |
| 93 | + "output_type": "stream", |
| 94 | + "text": [ |
| 95 | + "tensor([[ 3.0000, -3.0000],\n", |
| 96 | + " [ 1.5000, 1.5000]])\n" |
| 97 | + ] |
| 98 | + } |
| 99 | + ], |
| 100 | + "source": [ |
| 101 | + "constant_output = quant(constant_input)\n", |
| 102 | + "print(constant_output)" |
| 103 | + ] |
| 104 | + }, |
| 105 | + { |
| 106 | + "cell_type": "code", |
| 107 | + "execution_count": null, |
| 108 | + "metadata": {}, |
| 109 | + "outputs": [], |
| 110 | + "source": [] |
| 111 | + } |
| 112 | + ], |
| 113 | + "metadata": { |
| 114 | + "kernelspec": { |
| 115 | + "display_name": "Python 3", |
| 116 | + "language": "python", |
| 117 | + "name": "python3" |
| 118 | + }, |
| 119 | + "language_info": { |
| 120 | + "codemirror_mode": { |
| 121 | + "name": "ipython", |
| 122 | + "version": 3 |
| 123 | + }, |
| 124 | + "file_extension": ".py", |
| 125 | + "mimetype": "text/x-python", |
| 126 | + "name": "python", |
| 127 | + "nbconvert_exporter": "python", |
| 128 | + "pygments_lexer": "ipython3", |
| 129 | + "version": "3.7.9" |
| 130 | + } |
| 131 | + }, |
| 132 | + "nbformat": 4, |
| 133 | + "nbformat_minor": 4 |
| 134 | +} |
0 commit comments