-
Notifications
You must be signed in to change notification settings - Fork 1
/
equations.html
719 lines (706 loc) · 53.6 KB
/
equations.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="en">
<head>
<meta charset="utf-8" />
<title>Formulation of the (magneto)-hydrodynamics problem — Magic 6.3 documentation</title>
<link rel="stylesheet" href="_static/magic.css" type="text/css" />
<link rel="stylesheet" href="_static/pygments.css" type="text/css" />
<script type="text/javascript" id="documentation_options" data-url_root="./" src="_static/documentation_options.js"></script>
<script type="text/javascript" src="_static/jquery.js"></script>
<script type="text/javascript" src="_static/underscore.js"></script>
<script type="text/javascript" src="_static/doctools.js"></script>
<script type="text/javascript" src="_static/language_data.js"></script>
<script async="async" type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
<link rel="search" type="application/opensearchdescription+xml"
title="Search within Magic 6.3 documentation"
href="_static/opensearch.xml"/>
<link rel="shortcut icon" href="_static/favicon.ico"/>
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
<link rel="next" title="Numerical technique" href="numerics.html" />
<link rel="prev" title="Get MagIC and run it" href="install.html" />
<link href='http://fonts.googleapis.com/css?family=Open+Sans:300,400,700'
rel='stylesheet' type='text/css' />
<script src="https://ajax.googleapis.com/ajax/libs/jquery/1/jquery.js"></script>
<script src="galleria/galleria-1.4.2.min.js"></script>
<style type="text/css">
table.right { float: right; margin-left: 20px; }
table.right td { border: 1px solid #ccc; }
</style>
<script type="text/javascript">
// intelligent scrolling of the sidebar content
$(window).scroll(function() {
var sb = $('.sphinxsidebarwrapper');
var win = $(window);
var sbh = sb.height();
var offset = $('.sphinxsidebar').position()['top'];
var wintop = win.scrollTop();
var winbot = wintop + win.innerHeight();
var curtop = sb.position()['top'];
var curbot = curtop + sbh;
// does sidebar fit in window?
if (sbh < win.innerHeight()) {
// yes: easy case -- always keep at the top
sb.css('top', $u.min([$u.max([0, wintop - offset - 10]),
$(document).height() - sbh - 200]));
} else {
// no: only scroll if top/bottom edge of sidebar is at
// top/bottom edge of window
if (curtop > wintop && curbot > winbot) {
sb.css('top', $u.max([wintop - offset - 10, 0]));
} else if (curtop < wintop && curbot < winbot) {
sb.css('top', $u.min([winbot - sbh - offset - 20,
$(document).height() - sbh - 200]));
}
}
});
</script>
</head><body>
<div class="pageheader">
<ul>
<li><a href="index.html">Home</a></li>
<li><a href="install.html">Get it/Run it</a></li>
<li><a href="contribute.html">Contribute!</a></li>
<li><a href="numerics.html">Numerical methods</a></li>
<li><a href="contents.html">Contents</a></li>
</ul>
<div>
<a href="index.html">
<img src="_static/logo.png" alt="magic" height="120px" width="192px"/>
</a>
</div>
</div>
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
accesskey="I">index</a></li>
<li class="right" >
<a href="f-modindex.html" title="Fortran Module Index"
>fortran modules</a> |</li>
<li class="right" >
<a href="py-modindex.html" title="Python Module Index"
>modules</a> |</li>
<li class="right" >
<a href="numerics.html" title="Numerical technique"
accesskey="N">next</a> |</li>
<li class="right" >
<a href="install.html" title="Get MagIC and run it"
accesskey="P">previous</a> |</li>
<li class="nav-item nav-item-0"><a href="contents.html">Magic 6.3 documentation</a> »</li>
</ul>
</div>
<div class="document">
<div class="documentwrapper">
<div class="bodywrapper">
<div class="body" role="main">
<div class="section" id="formulation-of-the-magneto-hydrodynamics-problem">
<span id="secequations"></span><h1>Formulation of the (magneto)-hydrodynamics problem<a class="headerlink" href="#formulation-of-the-magneto-hydrodynamics-problem" title="Permalink to this headline">¶</a></h1>
<p>The general equations describing thermal convection and dynamo action of a
rotating compressible fluid are the starting point from which the Boussinesq or
the anelastic approximations are developed. In MagIC, we consider a spherical
shell rotating about the vertical <span class="math notranslate nohighlight">\(z\)</span> axis with a constant angular
velocity <span class="math notranslate nohighlight">\(\Omega\)</span>. Equations are solve in the corotating system.</p>
<p>The conservation of momentum is formulated by the Navier-Stokes equation</p>
<div class="math notranslate nohighlight" id="equation-eqns">
<span class="eqno">(1)<a class="headerlink" href="#equation-eqns" title="Permalink to this equation">¶</a></span>\[\rho\left(\dfrac{\partial \vec{u}}{\partial t}+ \vec{u}\cdot\vec{\nabla}\
\vec{u} \right) =-\vec{\nabla} p +
\dfrac{1}{\mu_0}(\vec{\nabla}\times\vec{B})\times\vec{B} +\rho
\vec{g}-2\rho\vec{\Omega}\times\vec{u}+ \vec{\nabla}\cdot\mathsf{S},\]</div>
<p>where <span class="math notranslate nohighlight">\(\vec{u}\)</span> is the velocity field, <span class="math notranslate nohighlight">\(\vec{B}\)</span> the magnetic field,
and <span class="math notranslate nohighlight">\(p\)</span> a modified pressure that includes centrifugal forces.
<span class="math notranslate nohighlight">\(\mathsf{S}\)</span> corresponds to the rate-of-strain tensor given by:</p>
<div class="math notranslate nohighlight">
\[\begin{split}\begin{aligned}
S_{ij} & = 2\nu\rho\left[e_{ij}-\dfrac{1}{3}\delta_{ij}\,\vec{\nabla}\cdot\vec{u} \right], \\
e_{ij} & =\dfrac{1}{2}\left(\dfrac{\partial u_i}{\partial x_j}+\dfrac{\partial
u_j}{\partial x_i}\right).
\end{aligned}\end{split}\]</div>
<p>Convection is driven by buoyancy forces acting on variations in density <span class="math notranslate nohighlight">\(\rho\)</span>.
These variations have a dynamical part formulated by the continuity equation
describing the conservation of mass:</p>
<div class="math notranslate nohighlight" id="equation-eqcontinuity">
<span class="eqno">(2)<a class="headerlink" href="#equation-eqcontinuity" title="Permalink to this equation">¶</a></span>\[\dfrac{\partial \rho}{\partial t} = - \vec{\nabla} \cdot \rho \vec{u}.\]</div>
<p>In addition an equation of state is required to formulate the thermodynamic
density changes. For example the relation</p>
<div class="math notranslate nohighlight" id="equation-eos1">
<span class="eqno">(3)<a class="headerlink" href="#equation-eos1" title="Permalink to this equation">¶</a></span>\[\dfrac{1}{\rho} \partial \rho = -\alpha \partial T + \beta \partial p - \delta \partial \xi\]</div>
<p>describes density variations caused by variations in temperature <span class="math notranslate nohighlight">\(T\)</span>,
pressure <span class="math notranslate nohighlight">\(p\)</span>, and composition <span class="math notranslate nohighlight">\(\xi\)</span>. The latter contribution needs
to be considered for describing the effects of light elements released from a
growing solid iron core in a so-called double diffusive approach.</p>
<p>To close the system we also have to formulate the dynamic changes of entropy,
pressure, and composition. The evolution equation for pressure can be derived
from the Navier-Stokes equation, as will be further discussed below. For
entropy variations we use the so-called energy or heat equation</p>
<div class="math notranslate nohighlight" id="equation-eqentropy">
<span class="eqno">(4)<a class="headerlink" href="#equation-eqentropy" title="Permalink to this equation">¶</a></span>\[\rho T\left(\dfrac{\partial s}{\partial t}+\vec{u}\cdot \vec{\nabla} s \right) =
\vec{\nabla}\cdot (k\vec{\nabla} T) + \Phi_\nu +\dfrac{\lambda}{\mu_0}\left(\vec{\nabla}\times\vec{B}\right)^2
+ \epsilon,\]</div>
<p>where <span class="math notranslate nohighlight">\(\Phi_\nu\)</span> corresponds to the viscous heating expressed by</p>
<div class="math notranslate nohighlight">
\[\Phi_\nu = 2\rho\left[e_{ij}e_{ji}-\dfrac{1}{3}\left(\vec{\nabla}\cdot\vec{u}\right)^2\right]\]</div>
<p>Note that we use here the summation convention over the indices <span class="math notranslate nohighlight">\(i\)</span> and
<span class="math notranslate nohighlight">\(j\)</span>. The second last term on the right hand side is the Ohmic heating due
to electric currents. The last term is a volumetric sink or source term that
can describe various effects, for example radiogenic heating, the mixing-in of
the light elements or, when radially dependent, potential variations in the
adiabatic gradient (see below).
For chemical composition, we finally use</p>
<div class="math notranslate nohighlight" id="equation-eqxi">
<span class="eqno">(5)<a class="headerlink" href="#equation-eqxi" title="Permalink to this equation">¶</a></span>\[\rho \left(\dfrac{\partial \xi}{\partial t}+\vec{u}\cdot \vec{\nabla} \xi \right) =
\vec{\nabla}\cdot(k_\xi \vec{\nabla} \xi) + \epsilon_\xi,\]</div>
<p>The induction equation is obtained from the Maxwell equations (ignoring
displacement current) and Ohm’s law (neglecting Hall effect):</p>
<div class="math notranslate nohighlight" id="equation-eqinduction">
<span class="eqno">(6)<a class="headerlink" href="#equation-eqinduction" title="Permalink to this equation">¶</a></span>\[\dfrac{\partial \vec{B}}{\partial t} = \vec{\nabla} \times \left( \vec{u}\times\vec{B}-\lambda\,\vec{\nabla}\times\vec{B}\right).\]</div>
<p>When the magnetic diffusivity <span class="math notranslate nohighlight">\(\lambda\)</span> is homogeneous this simplifies to
the commonly used form</p>
<div class="math notranslate nohighlight" id="equation-eqinduction2">
<span class="eqno">(7)<a class="headerlink" href="#equation-eqinduction2" title="Permalink to this equation">¶</a></span>\[\dfrac{\partial \vec{B}}{\partial t} = \vec{\nabla} \times \left( \vec{u}\times\vec{B} \right)
+ \lambda\,\vec{\Delta}\vec{B}.\]</div>
<p>The physical properties determining above equations are rotation rate
<span class="math notranslate nohighlight">\(\Omega\)</span>, the kinematic viscosity <span class="math notranslate nohighlight">\(\nu\)</span>, the magnetic permeability
<span class="math notranslate nohighlight">\(\mu_0\)</span>, gravity <span class="math notranslate nohighlight">\(\vec{g}\)</span>, thermal conductivity <span class="math notranslate nohighlight">\(k\)</span>, Fick’s
conductiviy <span class="math notranslate nohighlight">\(k_\xi\)</span>, magnetic diffusivity <span class="math notranslate nohighlight">\(\lambda\)</span>. The latter
connects to the electrical conductivity <span class="math notranslate nohighlight">\(\sigma\)</span> via <span class="math notranslate nohighlight">\(\lambda =
1/(\mu_0\sigma)\)</span>. The thermodynamics properties appearing in <a class="reference internal" href="#equation-eos1">(3)</a> are
the thermal expansivity at constant pressure (and composition)</p>
<div class="math notranslate nohighlight" id="equation-alpha">
<span class="eqno">(8)<a class="headerlink" href="#equation-alpha" title="Permalink to this equation">¶</a></span>\[\alpha = -\dfrac{1}{\rho}\left(\dfrac{\partial\rho}{\partial T}\right)_{p,\xi},\]</div>
<p>the compressibility at constant temperature</p>
<div class="math notranslate nohighlight">
\[\beta = \dfrac{1}{\rho}\left(\dfrac{\partial\rho}{\partial p}\right)_{T,\xi}\]</div>
<p>and an equivalent parameter <span class="math notranslate nohighlight">\(\delta\)</span> for the dependence of
density on composition:</p>
<div class="math notranslate nohighlight" id="equation-delta">
<span class="eqno">(9)<a class="headerlink" href="#equation-delta" title="Permalink to this equation">¶</a></span>\[\delta = -\dfrac{1}{\rho}\left(\dfrac{\partial\rho}{\partial \xi}\right)_{p,T},\]</div>
<div class="figure align-center" id="id1">
<a class="reference internal image-reference" href="_images/shell.png"><img alt="caption" src="_images/shell.png" style="width: 312.5px; height: 322.0px;" /></a>
<p class="caption"><span class="caption-text">Sketch of the spherical shell model and its system of coordinate.</span><a class="headerlink" href="#id1" title="Permalink to this image">¶</a></p>
</div>
<div class="section" id="the-reference-state">
<h2>The reference state<a class="headerlink" href="#the-reference-state" title="Permalink to this headline">¶</a></h2>
<p>The convective flow and the related processes including magnetic field generation constitute
only small disturbances around a background or reference state. In the following we denote the background
state with a tilde and the disturbance we are interested in with a prime.
Formally we will solve equations in first order of a smallness parameters <span class="math notranslate nohighlight">\(\epsilon\)</span> which
quantified the ratio of convective disturbances to background state:</p>
<div class="math notranslate nohighlight" id="equation-epsilon">
<span class="eqno">(10)<a class="headerlink" href="#equation-epsilon" title="Permalink to this equation">¶</a></span>\[\epsilon \sim \dfrac{T'}{\tilde{T}} \sim \dfrac{p'}{\tilde{p}} \sim \dfrac{\rho'}{\tilde{\rho}} \sim ... \ll 1 .\]</div>
<p>The background state is hydrostatic, i.e. obeys the simple force balance</p>
<div class="math notranslate nohighlight" id="equation-hydrostatic">
<span class="eqno">(11)<a class="headerlink" href="#equation-hydrostatic" title="Permalink to this equation">¶</a></span>\[\nabla \tilde{p} = \tilde{\rho} \tilde{\vec{g}}.\]</div>
<p>Convective motions are supposed to be strong enough to provide homogeneous entropy
(and composition). The reference state is thus adiabatic and its gradients can be
expressed in terms of the pressure gradient <a class="reference internal" href="#equation-hydrostatic">(11)</a>:</p>
<div class="math notranslate nohighlight" id="equation-nablat">
<span class="eqno">(12)<a class="headerlink" href="#equation-nablat" title="Permalink to this equation">¶</a></span>\[\dfrac{\nabla\tilde{T}}{\tilde{T}} = \dfrac{1}{\tilde{T}} \left(\dfrac{\partial T}{\partial p}\right)_s
\nabla p = \dfrac{\alpha}{c_p} \tilde{\vec{g}} ,\]</div>
<div class="math notranslate nohighlight" id="equation-nablarho">
<span class="eqno">(13)<a class="headerlink" href="#equation-nablarho" title="Permalink to this equation">¶</a></span>\[\dfrac{\nabla\tilde{\rho}}{\tilde{\rho}} = \dfrac{1}{\tilde{\rho}} \left(\dfrac{\partial \rho}{\partial p}\right)_s
\nabla p = \beta \tilde{\rho} \tilde{\vec{g}} .\]</div>
<p>The reference state obviously dependence only on radius.
Dimensionless numbers quantifying the temperature and density gradients are called dissipation number <span class="math notranslate nohighlight">\(Di\)</span> and
compressibility parameter <span class="math notranslate nohighlight">\(Co\)</span> respectively:</p>
<div class="math notranslate nohighlight">
\[Di = \dfrac{\alpha d}{c_p} \tilde{g},\]</div>
<p>and</p>
<div class="math notranslate nohighlight">
\[Co = d \beta \tilde{\rho} \tilde{g}.\]</div>
<p>Here <span class="math notranslate nohighlight">\(d\)</span> is a typical length scale, for example the shell thickness of the problem.
The dissipation number is something like an inverse temperature scale hight while the
compressibility parameters is an inverse density scale hight.
The ratio of both numbers also helps to quantify the relative impact of temperature and
pressure on density variations:</p>
<div class="math notranslate nohighlight" id="equation-deltarho">
<span class="eqno">(14)<a class="headerlink" href="#equation-deltarho" title="Permalink to this equation">¶</a></span>\[\dfrac{\alpha \nabla T}{\beta \nabla \rho} \approx \alpha \tilde{T} \dfrac{Di}{Co}.\]</div>
<p>As an example we demonstrate how to derive the first order continuity equation here.
Using <span class="math notranslate nohighlight">\(\rho=\tilde{\rho}+\rho'\)</span> in <a class="reference internal" href="#equation-eqcontinuity">(2)</a> leads to</p>
<div class="math notranslate nohighlight">
\[\dfrac{\partial \tilde{\rho}}{\partial t} + \dfrac{\partial \rho'}{\partial t}
= - \vec{\nabla} \cdot \left( \tilde{\rho} \vec{u} \right)
- \vec{\nabla} \cdot \left( \rho' \vec{u} \right).\]</div>
<p>The zero order term vanishes since the background density is considered static (or actually changing very slowly
on very long time scales). The second term in the right hand side is obviously of second order.
The ratio of the remaining two terms can be estimated to also be of first order in <span class="math notranslate nohighlight">\(\epsilon\)</span>, meaning
that the time derivative of <span class="math notranslate nohighlight">\(\rho\)</span> is actually also of second order:</p>
<div class="math notranslate nohighlight">
\[\dfrac{\left[\partial \rho /\partial t\right]}{\left[\vec{\nabla} \cdot \rho \vec{u}\right]} \approx
\dfrac{\rho'}{\tilde{\rho}}\approx\epsilon\;\;.\]</div>
<p>Square brackets denote order of magnitude estimates here.
We have used the fact that the reference state is
static and assume time scale of changes are comparable (or slower) <span class="math notranslate nohighlight">\(\rho'\)</span> than the time
scales represented by <span class="math notranslate nohighlight">\(u\)</span> and that length scales
associated to the gradient operator are not too small.
We can then neglect local variations in <span class="math notranslate nohighlight">\(\rho'\)</span> which means that sound waves are filtered out.
This first order continuity equation thus simply reads:</p>
<div class="math notranslate nohighlight" id="equation-eqcontiuity1">
<span class="eqno">(15)<a class="headerlink" href="#equation-eqcontiuity1" title="Permalink to this equation">¶</a></span>\[\vec{\nabla} \cdot \left( \tilde{\rho} \vec{u} \right) = 0.\]</div>
<p>This defines the so-called anelastic approximation where sound waves are filtered out by
neglecting the local time derivative of density. This approximation is justified when
typical velocities are sufficiently smaller than the speed of sound.</p>
</div>
<div class="section" id="boussinesq-approximation">
<h2>Boussinesq approximation<a class="headerlink" href="#boussinesq-approximation" title="Permalink to this headline">¶</a></h2>
<p>For Earth the dissipation number and the compressibility parameter
are around <span class="math notranslate nohighlight">\(0.2\)</span> when temperature and density jump over the whole liquid core
are considered. This motivates the so called Boussinesq approximation where <span class="math notranslate nohighlight">\(Di\)</span> and
<span class="math notranslate nohighlight">\(Co\)</span> are assumed to vanish. The continuity equation <a class="reference internal" href="#equation-eqcontinuity">(2)</a> then simplifies further:</p>
<div class="math notranslate nohighlight">
\[\dfrac{1}{\tilde{\rho}} \vec{\nabla} \cdot \tilde{\rho} \vec{u} = \dfrac{\vec{u}}{\tilde{\rho}} \cdot \nabla \tilde{\rho}
+ \nabla\cdot\vec{u} \approx \nabla\cdot\vec{u} = 0.\]</div>
<p>When using typical number for Earth, <a class="reference internal" href="#equation-deltarho">(14)</a> becomes <span class="math notranslate nohighlight">\(0.05\)</span> so that pressure effects on density may be neglected.
The first order Navier-Stokes equation (after to zero order hydrostatic reference solution has been subtracted) then reads:</p>
<div class="math notranslate nohighlight" id="equation-eqnsb">
<span class="eqno">(16)<a class="headerlink" href="#equation-eqnsb" title="Permalink to this equation">¶</a></span>\[\tilde{\rho}\left(\dfrac{\partial \vec{u}}{\partial t}+ \vec{u}\cdot\vec{\nabla}\
\vec{u} \right) =-\vec{\nabla} p' -2\rho\vec{\Omega}\times\vec{u}
+ \alpha \tilde{g}_o T' \dfrac{\vec{r}}{r_o}
+ \delta \tilde{g}_o \xi' \dfrac{\vec{r}}{r_o}
+ \dfrac{1}{\mu_0}(\vec{\nabla}\times\vec{B})\times\vec{B}
+ \tilde{\rho} \nu \Delta \vec{u}.\]</div>
<p>Here <span class="math notranslate nohighlight">\(u\)</span> and <span class="math notranslate nohighlight">\(B\)</span> are understood as first order disturbances and
<span class="math notranslate nohighlight">\(p'\)</span> is the first order non-hydrostatic pressure and <span class="math notranslate nohighlight">\(T'\)</span> the
super-adiabatic temperature and <span class="math notranslate nohighlight">\(\xi\)</span> the super-adiabatic chemical
composition. Above we have adopted a simplification of the buoyancy term. In
the Boussinesq limit with vanishing <span class="math notranslate nohighlight">\(Co\)</span> and a small density difference
between a solid inner and a liquid outer core a linear gravity dependence
provides a reasonable approximation:</p>
<div class="math notranslate nohighlight">
\[\tilde{\vec{g}} = \tilde{g}_o \dfrac{\vec{r}}{r_o},\]</div>
<p>where we have chosen the gravity <span class="math notranslate nohighlight">\(\tilde{g}_o\)</span> at the outer boundary
radius <span class="math notranslate nohighlight">\(r_o\)</span> as reference.</p>
<p>The first order energy equation becomes</p>
<div class="math notranslate nohighlight" id="equation-eqentropyb">
<span class="eqno">(17)<a class="headerlink" href="#equation-eqentropyb" title="Permalink to this equation">¶</a></span>\[\tilde{\rho}\left(\dfrac{\partial T'}{\partial t}+\vec{u}\cdot \vec{\nabla} T' \right) =
\kappa \Delta T' + \epsilon,\]</div>
<p>where we have assumed a homogeneous <span class="math notranslate nohighlight">\(k\)</span> and neglected viscous and Ohmic
heating which can be shown to scale with <span class="math notranslate nohighlight">\(Di\)</span> as we discuss below.
Furthermore, we have used the simple relation</p>
<div class="math notranslate nohighlight">
\[\partial s \approx \dfrac{\tilde{\rho} c_p}{\tilde{T}} \partial T,\]</div>
<p>defined the thermal diffusivity</p>
<div class="math notranslate nohighlight">
\[\kappa = \dfrac{k}{\tilde{\rho} c_p},\]</div>
<p>and adjusted the definition of <span class="math notranslate nohighlight">\(\epsilon\)</span>. Finally the first order equation
for chemical composition becomes</p>
<div class="math notranslate nohighlight" id="equation-eqcompb">
<span class="eqno">(18)<a class="headerlink" href="#equation-eqcompb" title="Permalink to this equation">¶</a></span>\[\tilde{\rho}\left(\dfrac{\partial \xi'}{\partial t}+\vec{u}\cdot \vec{\nabla} \xi' \right) =
\kappa_\xi \Delta \xi' + \epsilon_\xi,\]</div>
<p>where we have assumed a homogeneous <span class="math notranslate nohighlight">\(k_\xi\)</span> and adjusted the definition of <span class="math notranslate nohighlight">\(\epsilon_\xi\)</span>.</p>
<p>MagIC solves a dimensionless form of the differential equations. Time is scaled
in units of the viscous diffusion time <span class="math notranslate nohighlight">\(d^2/\nu\)</span>, length in units of the
shell thickness <span class="math notranslate nohighlight">\(d\)</span>, temperature in units of the temperature drop
<span class="math notranslate nohighlight">\(\Delta T=T_o-T_i\)</span> over the shell, composition in units of the composition
drop <span class="math notranslate nohighlight">\(\Delta \xi = \xi_o-\xi_i\)</span> over the shell and magnetic field in units
<span class="math notranslate nohighlight">\((\mu\lambda\tilde{\rho}\Omega)^{1/2}\)</span>. Technically the transition to
the dimensionless form is achieved by the substitution</p>
<div class="math notranslate nohighlight">
\[r\rightarrow r\;d ,\quad t\rightarrow (d^2/\nu)\;t ,\quad
T\rightarrow \Delta T\;T ,\quad \xi\rightarrow \Delta\xi\;\xi ,\quad
B\rightarrow \left(\mu\lambda\tilde{\rho}\Omega\right)^{1/2}B\]</div>
<p>where <span class="math notranslate nohighlight">\(r\)</span> stands for any length. The next step then is to collect the
physical properties as a few possible characteristic dimensionless numbers.
Note that many different scalings and combinations of dimensionless numbers are
possible. For the Navier-Stokes equation in the Boussinesq limit MagIC uses the
form:</p>
<div class="math notranslate nohighlight" id="equation-eqnsboussinesq">
<span class="eqno">(19)<a class="headerlink" href="#equation-eqnsboussinesq" title="Permalink to this equation">¶</a></span>\[\left(\dfrac{\partial \vec{u}}{\partial t}+ \vec{u}\cdot\vec{\nabla}\
\vec{u} \right) =-\vec{\nabla} p' -\dfrac{2}{E}\vec{e_z}\times\vec{u}
+ \dfrac{Ra}{Pr} T' \dfrac{\vec{r}}{r_o}
+ \dfrac{Ra_\xi}{Sc} \xi' \dfrac{\vec{r}}{r_o}
+ \dfrac{1}{E Pm}(\vec{\nabla}\times\vec{B})\times\vec{B}
+ \Delta \vec{u},\]</div>
<p>where <span class="math notranslate nohighlight">\(\vec{e}_z\)</span> is the unit vector in the direction of the rotation
axis and the meaning of the pressure disturbance <span class="math notranslate nohighlight">\(p'\)</span> has been adjusted
to the new dimensionless equation form.</p>
</div>
<div class="section" id="anelastic-approximation">
<h2>Anelastic approximation<a class="headerlink" href="#anelastic-approximation" title="Permalink to this headline">¶</a></h2>
<p>The anelastic approximation adopts the simplified continuity <a class="reference internal" href="#equation-eqcontiuity1">(15)</a>.
The background state can be specified in different ways, for example by
providing profiles based on internal models and/or ab initio simulations.
We will assume a polytropic ideal gas in the following.</p>
<div class="section" id="analytical-solution-in-the-limit-of-an-ideal-gas">
<h3>Analytical solution in the limit of an ideal gas<a class="headerlink" href="#analytical-solution-in-the-limit-of-an-ideal-gas" title="Permalink to this headline">¶</a></h3>
<p>In the limit of an ideal gas which follows
<span class="math notranslate nohighlight">\(\tilde{p}=\tilde{\rho}\tilde{T}\)</span> and has <span class="math notranslate nohighlight">\(\alpha=1/\tilde{T}\)</span>, one
directly gets:</p>
<div class="math notranslate nohighlight">
\[\begin{split}\begin{aligned}
\dfrac{d \tilde{T}}{dr} & = -Di\,\tilde{g}(r), \\
\tilde{\rho} & = \tilde{T}^{1/(\gamma-1)},
\end{aligned}\end{split}\]</div>
<p>where <span class="math notranslate nohighlight">\(\gamma=c_p/c_v\)</span>. Note that we have moved to a dimensionless
formulations here, where all quantities have been normalized with their outer boundary values
and <span class="math notranslate nohighlight">\(Di\)</span> refers to the respective outer boundary value.
If we in addition make the assumption of a
centrally-condensed mass in the center of the spherical shell of radius
<span class="math notranslate nohighlight">\(r\in[r_i,r_o]\)</span>, i.e. <span class="math notranslate nohighlight">\(g\propto, 1/r^2\)</span>, this leads to</p>
<div class="math notranslate nohighlight">
\[\begin{split}\begin{aligned}
\tilde{T}(r) & =Di\frac{r_o^2}{r}+(1-Di\,r_o), \\
\tilde{\rho}(r) & = \tilde{T}^m, \\
Di & = \dfrac{r_i}{r_o}\left(\exp\dfrac{N_\rho}{m}-1\right),
\end{aligned}\end{split}\]</div>
<p>where <span class="math notranslate nohighlight">\(N_\rho=\ln(\tilde{\rho}_i/\tilde{\rho}_o)\)</span> is the number of density scale heights of the reference
state and <span class="math notranslate nohighlight">\(m=1/(\gamma-1)\)</span> is the polytropic index.</p>
<div class="admonition warning">
<p class="admonition-title">Warning</p>
<ul class="simple">
<li><p>The relationship between <span class="math notranslate nohighlight">\(N_\rho\)</span> and the dissipation number
<span class="math notranslate nohighlight">\(Di\)</span> directly depends on the gravity profile. The formula above
is only valid when <span class="math notranslate nohighlight">\(g\propto 1/r^2\)</span>.</p></li>
<li><p>In this formulation, when you change the polytropic index <span class="math notranslate nohighlight">\(m\)</span>, you
also change the nature of the fluid you’re modelling since you accordingly
modify <span class="math notranslate nohighlight">\(\gamma=c_p/c_v\)</span>.</p></li>
</ul>
</div>
</div>
<div class="section" id="anelastic-mhd-equations">
<h3>Anelastic MHD equations<a class="headerlink" href="#anelastic-mhd-equations" title="Permalink to this headline">¶</a></h3>
<p>In the most general formulation, all physical properties defining the
background state may vary with depth. Specific reference values must then be
chosen to provide a unique dimensionless formulations and we typically chose
outer boundary values here. The exception is the magnetic diffusivity where we
adopt the inner boundary value instead. The motivation is twofold: (i) it
allows an easier control of the possible continuous conductivity value in the
inner core; (ii) it is a more natural choice when modelling gas giants planets
which exhibit a strong electrical conductivity decay in the outer layer.</p>
<p>The time scale is then the viscous diffusion time <span class="math notranslate nohighlight">\(d^2/\nu_o\)</span> where
<span class="math notranslate nohighlight">\(\nu_o\)</span> is the kinematic viscosity at the outer boundary. Magnetic field
is expressed in units of <span class="math notranslate nohighlight">\((\rho_o\mu_0\lambda_i\Omega)^{1/2}\)</span>, where
<span class="math notranslate nohighlight">\(\rho_o\)</span> is the density at the outer boundary and <span class="math notranslate nohighlight">\(\lambda_i\)</span> is
the magnetic diffusivity at the <strong>inner</strong> boundary.</p>
<p>This leads to the following sets of dimensionless equations:</p>
<div class="math notranslate nohighlight" id="equation-eqnsnd">
<span class="eqno">(20)<a class="headerlink" href="#equation-eqnsnd" title="Permalink to this equation">¶</a></span>\[\left(\dfrac{\partial \vec{u}}{\partial t}+\vec{u}\cdot\vec{\nabla}\vec{u}\right)
= -\vec{\nabla}\left({\dfrac{p'}{\tilde{\rho}}}\right) - \dfrac{2}{E}\vec{e_z}\times\vec{u}
+ \dfrac{Ra}{Pr}\tilde{g} \,s'\,\vec{e_r}
+ \dfrac{Ra_\xi}{Sc}\tilde{g} \,\xi'\,\vec{e_r}
+\dfrac{1}{Pm\,E \,\tilde{\rho}}\left(\vec{\nabla}\times \vec{B}
\right)\times \vec{B}+ \dfrac{1}{\tilde{\rho}} \vec{\nabla}\cdot \mathsf{S},\]</div>
<div class="math notranslate nohighlight" id="equation-eqcontnd">
<span class="eqno">(21)<a class="headerlink" href="#equation-eqcontnd" title="Permalink to this equation">¶</a></span>\[\vec{\nabla}\cdot\tilde{\rho}\vec{u}=0,\]</div>
<div class="math notranslate nohighlight" id="equation-eqmagnd">
<span class="eqno">(22)<a class="headerlink" href="#equation-eqmagnd" title="Permalink to this equation">¶</a></span>\[\vec{\nabla}\cdot\vec{B}=0,\]</div>
<div class="math notranslate nohighlight" id="equation-eqcompnd">
<span class="eqno">(23)<a class="headerlink" href="#equation-eqcompnd" title="Permalink to this equation">¶</a></span>\[\tilde{\rho}\left(\dfrac{\partial \xi'}{\partial t} +
\vec{u}\cdot\vec{\nabla} \xi'\right) =
\dfrac{1}{Sc}\vec{\nabla}\cdot\left(\kappa_\xi(r)\tilde{\rho}\vec{\nabla} \xi'\right)\]</div>
<div class="math notranslate nohighlight" id="equation-eqindnd">
<span class="eqno">(24)<a class="headerlink" href="#equation-eqindnd" title="Permalink to this equation">¶</a></span>\[\dfrac{\partial \vec{B}}{\partial t} = \vec{\nabla} \times \left( \vec{u}\times\vec{B}\right)-\dfrac{1}{Pm}\vec{\nabla}\times\left(\lambda(r)\,\vec{\nabla}\times\vec{B}\right).\]</div>
<p>Here <span class="math notranslate nohighlight">\(\tilde{g}\)</span> and <span class="math notranslate nohighlight">\(\tilde{\rho}\)</span> are
the normalized radial gravity and density profiles that reach one at the outer boundary.</p>
</div>
<div class="section" id="entropy-equation-and-turbulent-diffusion">
<h3>Entropy equation and turbulent diffusion<a class="headerlink" href="#entropy-equation-and-turbulent-diffusion" title="Permalink to this headline">¶</a></h3>
<p>The entropy equation usually requires an additional assumption in most of the
existing anelastic approximations. Indeed, if one simply expands Eq.
<a class="reference internal" href="#equation-eqentropy">(4)</a> with the classical temperature diffusion an operator of the
form:</p>
<div class="math notranslate nohighlight">
\[\epsilon\,\vec{\nabla}\cdot \left( K \vec{\nabla} T'\right)+\vec{\nabla}\cdot \left( K \vec{\nabla} \tilde{T}\right),\]</div>
<p>will remain the right-hand side of the equation. At first glance, there seems
to be a <span class="math notranslate nohighlight">\(1/\epsilon\)</span> factor between the first term and the second one,
which would suggest to keep only the second term in this expansion. However,
for astrophysical objects which exhibit strong convective driving (and hence
large Rayleigh numbers), the diffusion of the adiabatic background is actually
very small and may be comparable or even smaller in magnitude than the <span class="math notranslate nohighlight">\(\epsilon\)</span>
terms representing the usual convective perturbations. For the Earth core for instance,
if one assumes that the typical temperature fluctuations are of the order of 1 mK and
the temperature contrast between the inner and outer core is of the order of 1000 K, then
<span class="math notranslate nohighlight">\(\epsilon \sim 10^{-6}\)</span>. The ratio of the two terms can thus be estimated as</p>
<div class="math notranslate nohighlight" id="equation-eqepsratio">
<span class="eqno">(25)<a class="headerlink" href="#equation-eqepsratio" title="Permalink to this equation">¶</a></span>\[\epsilon \dfrac{T'/\delta^2}{T/d^2},\]</div>
<p>where <span class="math notranslate nohighlight">\(d\)</span> is the thickness of the inner core and <span class="math notranslate nohighlight">\(\delta\)</span> is the typical thermal
boundary layer thickness. This ratio is exactly one when <span class="math notranslate nohighlight">\(\delta =1\text{ m}\)</span>, a
plausible value for the Earth inner core.</p>
<p>In numerical simulations however, the over-estimated diffusivities restrict the
computational capabilities to much lower Rayleigh numbers. As a consequence,
the actual boundary layers in a global DNS will be much thicker and the ratio
<a class="reference internal" href="#equation-eqepsratio">(25)</a> will be much smaller than unity. The second terms will thus
effectively acts as a radial-dependent heat source or sink that will drive or
hinder convection. This is one of the physical motivation to rather introduce a
<strong>turbulent diffusivity</strong> that will be approximated by</p>
<div class="math notranslate nohighlight">
\[\kappa \tilde{\rho}\tilde{T} \vec{\nabla} s,\]</div>
<p>where <span class="math notranslate nohighlight">\(\kappa\)</span> is the turbulent diffusivity. <strong>Entropy diffusion is assumed to dominate
over temperature diffusion in turbulent flows</strong>.</p>
<p>The choice of the entropy scale to non-dimensionalize Eq. <a class="reference internal" href="#equation-eqentropy">(4)</a> also
depends on the nature of the boundary conditions: it can be simply the entropy
contrast over the layer <span class="math notranslate nohighlight">\(\Delta s\)</span> when the entropy is held constant at
both boundaries, or <span class="math notranslate nohighlight">\(d\,(ds /dr)\)</span> when flux-based boundary conditions are
employed. We will restrict to the first option in the following, but keep in
mind that depending on your setup, the entropy reference scale (and thus the
Rayleigh number definition) might change.</p>
<div class="math notranslate nohighlight" id="equation-eqentropynd">
<span class="eqno">(26)<a class="headerlink" href="#equation-eqentropynd" title="Permalink to this equation">¶</a></span>\[\tilde{\rho}\tilde{T}\left(\dfrac{\partial s'}{\partial t} +
\vec{u}\cdot\vec{\nabla} s'\right) =
\dfrac{1}{Pr}\vec{\nabla}\cdot\left(\kappa(r)\tilde{\rho}\tilde{T}\vec{\nabla} s'\right) +
\dfrac{Pr\,Di}{Ra}\Phi_\nu +
\dfrac{Pr\,Di}{Pm^2\,E\,Ra}\lambda(r)\left(\vec{\nabla}
\times\vec{B}\right)^2,\]</div>
<p>A comparison with <a class="reference internal" href="#equation-eqnsnd">(20)</a> reveals meaning of the different non-dimensional
numbers that scale viscous and Ohmic heating. The fraction <span class="math notranslate nohighlight">\(Pr/Ra\)</span> simply
expresses the ratio of entropy and flow in the Navier-Stokes equation, while
the additional factor <span class="math notranslate nohighlight">\(1/E Pm\)</span> reflects the scale difference of magnetic
field and flow. Then remaining dissipation number <span class="math notranslate nohighlight">\(Di\)</span> then expresses
the relative importance of viscous and Ohmic heating compared to buoyancy and
Lorentz force in the Navier-Stokes equation. For small <span class="math notranslate nohighlight">\(Di\)</span> both heating
terms can be neglected compared to entropy changes due to advection, an limit
that is used in the Boussinesq approximation.</p>
</div>
</div>
<div class="section" id="dimensionless-control-parameters">
<h2>Dimensionless control parameters<a class="headerlink" href="#dimensionless-control-parameters" title="Permalink to this headline">¶</a></h2>
<p>The equations <a class="reference internal" href="#equation-eqnsnd">(20)</a>-<a class="reference internal" href="#equation-eqentropynd">(26)</a> are governed by four dimensionless numbers: the
Ekman number</p>
<div class="math notranslate nohighlight" id="equation-eqekman">
<span class="eqno">(27)<a class="headerlink" href="#equation-eqekman" title="Permalink to this equation">¶</a></span>\[E = \frac{\nu}{\Omega d^2},\]</div>
<p>the thermal Rayleigh number</p>
<div class="math notranslate nohighlight" id="equation-eqrayleigh">
<span class="eqno">(28)<a class="headerlink" href="#equation-eqrayleigh" title="Permalink to this equation">¶</a></span>\[Ra = \frac{\alpha_o g_o T_o d^3 \Delta s}{c_p \kappa_o \nu_o},\]</div>
<p>the compositional Rayleigh number</p>
<div class="math notranslate nohighlight" id="equation-eqrayleighxi">
<span class="eqno">(29)<a class="headerlink" href="#equation-eqrayleighxi" title="Permalink to this equation">¶</a></span>\[Ra_\xi = \frac{\delta_o g_o d^3 \Delta \xi}{\kappa_\xi \nu_o},\]</div>
<p>the Prandtl number</p>
<div class="math notranslate nohighlight" id="equation-eqprandtl">
<span class="eqno">(30)<a class="headerlink" href="#equation-eqprandtl" title="Permalink to this equation">¶</a></span>\[Pr = \frac{\nu_o}{\kappa_o},\]</div>
<p>the Schmidt number</p>
<div class="math notranslate nohighlight" id="equation-eqschmidt">
<span class="eqno">(31)<a class="headerlink" href="#equation-eqschmidt" title="Permalink to this equation">¶</a></span>\[Sc = \frac{\nu_o}{\kappa_\xi},\]</div>
<p>and the magnetic Prandtl number</p>
<div class="math notranslate nohighlight" id="equation-eqmaprandtl">
<span class="eqno">(32)<a class="headerlink" href="#equation-eqmaprandtl" title="Permalink to this equation">¶</a></span>\[Pm = \frac{\nu_o}{\lambda_i}.\]</div>
<p>In addition to these four numbers, the reference state is controlled by the geometry of
the spherical shell given by its radius ratio</p>
<div class="math notranslate nohighlight" id="equation-eqradratio">
<span class="eqno">(33)<a class="headerlink" href="#equation-eqradratio" title="Permalink to this equation">¶</a></span>\[\eta = \frac{r_i}{r_o},\]</div>
<p>and the background density and temperature profiles, either controlled by <span class="math notranslate nohighlight">\(Di\)</span> or
by <span class="math notranslate nohighlight">\(N_\rho\)</span> and <span class="math notranslate nohighlight">\(m\)</span>.</p>
<p>In the Boussinesq approximation all physical properties are assumed to
be homogeneous and we can drop the sub-indices <span class="math notranslate nohighlight">\(o\)</span> and <span class="math notranslate nohighlight">\(i\)</span>
except for gravity.
Moreover, the Rayleigh number can be expressed in terms of the temperature
jump across the shell:</p>
<div class="math notranslate nohighlight" id="equation-eqrayleighboussinesq">
<span class="eqno">(34)<a class="headerlink" href="#equation-eqrayleighboussinesq" title="Permalink to this equation">¶</a></span>\[Ra = \frac{\alpha g_o d^3 \Delta T}{\kappa \nu}.\]</div>
<div class="admonition seealso">
<p class="admonition-title">See also</p>
<p>In MagIC, those control parameters can be adjusted in the
<a class="reference internal" href="inputNamelists/physNamelist.html#secphysnml"><span class="std std-ref">&phys_param</span></a> section of the input namelist.</p>
</div>
<p>Variants of the non-dimensional equations and control parameters result from
different choices for the fundamental scales. For the length scale often
<span class="math notranslate nohighlight">\(r_o\)</span> is chosen instead of <span class="math notranslate nohighlight">\(d\)</span>. Other natural scales for time are the
magnetic or the thermal diffusion time, or the rotation period.
There are also different options for scaling the magnetic field strength.
The prefactor of two, which is retained in the
Coriolis term in <a class="reference internal" href="#equation-eqnsnd">(20)</a>, is often incorporated into the definition of the
Ekman number.</p>
<div class="admonition seealso">
<p class="admonition-title">See also</p>
<p>Those references timescales and length scales can be adjusted by
several input parameters in the <a class="reference internal" href="inputNamelists/controlNamelist.html#seccontrolnml"><span class="std std-ref">&control</span></a> section
of the input namelist.</p>
</div>
<div class="section" id="usual-diagnostic-quantities">
<h3>Usual diagnostic quantities<a class="headerlink" href="#usual-diagnostic-quantities" title="Permalink to this headline">¶</a></h3>
<p>Characteristic properties of the solution are usually expressed in terms
of non-dimensional diagnostic parameters.
In the context of the geodynamo for instance, the two
most important ones are the magnetic Reynolds number <span class="math notranslate nohighlight">\(Rm\)</span> and
the Elsasser number <span class="math notranslate nohighlight">\(\Lambda\)</span>. Usually the rms-values of the velocity
<span class="math notranslate nohighlight">\(u_{rms}\)</span> and of the magnetic field <span class="math notranslate nohighlight">\(B_{rms}\)</span> inside the spherical shell
are taken as characteristic values. The magnetic Reynolds number</p>
<div class="math notranslate nohighlight">
\[Rm = \frac{u_{rms}d}{\lambda_i}\]</div>
<p>can be considered as a measure for the flow velocity and describes
the ratio of advection of the magnetic field to magnetic diffusion.
Other characteristic non-dimensional numbers related to the flow velocity are
the (hydrodynamic) Reynolds number</p>
<div class="math notranslate nohighlight">
\[Re = \frac{u_{rms} d}{\nu_o},\]</div>
<p>which measures the ratio of inertial forces to viscous forces,
and the Rossby number</p>
<div class="math notranslate nohighlight">
\[Ro = \frac{u_{rms}}{\Omega d} ,\]</div>
<p>a measure for the ratio of inertial to Coriolis forces.</p>
<div class="math notranslate nohighlight">
\[\Lambda = \frac{B_{rms}^2}{\mu_0\lambda_i\rho_o\Omega}\]</div>
<p>measures the ratio of Lorentz to Coriolis forces and is
equivalent to the square of the non-dimensional magnetic field strength
in the scaling chosen here.</p>
<div class="admonition seealso">
<p class="admonition-title">See also</p>
<p>The time-evolution of these diagnostic quantities are stored in
the <a class="reference internal" href="outputFiles/outTimeSeriesStd.html#secparfile"><span class="std std-ref">par.TAG</span></a> file produced during the run of MagIC.</p>
</div>
</div>
</div>
<div class="section" id="boundary-conditions-and-treatment-of-inner-core">
<h2>Boundary conditions and treatment of inner core<a class="headerlink" href="#boundary-conditions-and-treatment-of-inner-core" title="Permalink to this headline">¶</a></h2>
<div class="section" id="mechanical-conditions">
<h3>Mechanical conditions<a class="headerlink" href="#mechanical-conditions" title="Permalink to this headline">¶</a></h3>
<p>In its simplest form, when modelling the geodynamo, the fluid shell is treated
as a container with rigid, impenetrable, and co-rotating walls. This implies
that within the rotating frame of reference all velocity components vanish at
<span class="math notranslate nohighlight">\(r_o\)</span> and <span class="math notranslate nohighlight">\(r_i\)</span>. In case of modelling the free surface of a gas
giant planets or a star, it is preferable to rather replace the condition of
zero horizontal velocity by one of vanishing viscous shear stresses (the
so-called free-slip condition).</p>
<p>Furthermore, even in case of modelling the liquid iron core of a terrestrial
planet, there is no a priori reason why the inner core should necessarily
co-rotate with the mantle. Some models for instance allow for differential
rotation of the inner core and mantle with respect to the reference frame. The
change of rotation rate is determined from the net torque. Viscous,
electromagnetic, and torques due to gravitational coupling between density
heterogeneities in the mantle and in the inner core contribute.</p>
<div class="admonition seealso">
<p class="admonition-title">See also</p>
<p>The mechanical boundary conditions can be adjusted with the
parameters <a class="reference internal" href="inputNamelists/physNamelist.html#secmechanicalbcs"><span class="std std-ref">ktopv</span></a> and
<a class="reference internal" href="inputNamelists/physNamelist.html#secmechanicalbcs"><span class="std std-ref">kbotv</span></a> in the <a class="reference internal" href="inputNamelists/physNamelist.html#secphysnml"><span class="std std-ref">&phys_param</span></a>
section of the input namelist.</p>
</div>
</div>
<div class="section" id="magnetic-boundary-conditions-and-inner-core-conductivity">
<h3>Magnetic boundary conditions and inner core conductivity<a class="headerlink" href="#magnetic-boundary-conditions-and-inner-core-conductivity" title="Permalink to this headline">¶</a></h3>
<p>When assuming that the fluid shell is surrounded by electrically insulating regions
(inner core and external part),
the magnetic field inside the fluid shell matches continuously
to a potential field in both the exterior and the interior regions. Alternative
magnetic boundary conditions (like cancellation of the horizontal component of the field
) are also possible.</p>
<p>Depending on the physical problem you want to model, treating the inner core as an
insulator is not realistic either, and it might instead be more appropriate to
assume that it has the same electrical conductivity as
the fluid shell. In this case, an equation equivalent to <a class="reference internal" href="#equation-eqindnd">(24)</a> must
be solved for the inner core, where the velocity field simply
describes the solid body rotation of the inner core with respect to the reference frame.
At the inner core boundary a continuity condition for the magnetic field and the
horizontal component of the electrical field apply.</p>
<div class="admonition seealso">
<p class="admonition-title">See also</p>
<p>The magnetic boundary conditions can be adjusted with the parameters
<a class="reference internal" href="inputNamelists/physNamelist.html#secmagneticbcs"><span class="std std-ref">ktopb</span></a> and <a class="reference internal" href="inputNamelists/physNamelist.html#secmagneticbcs"><span class="std std-ref">kbotb</span></a>
in the <a class="reference internal" href="inputNamelists/physNamelist.html#secphysnml"><span class="std std-ref">&phys_param</span></a> section of the input namelist.</p>
</div>
</div>
<div class="section" id="thermal-boundary-conditions-and-distribution-of-buoyancy-sources">
<h3>Thermal boundary conditions and distribution of buoyancy sources<a class="headerlink" href="#thermal-boundary-conditions-and-distribution-of-buoyancy-sources" title="Permalink to this headline">¶</a></h3>
<p>In many dynamo models, convection is simply driven by an imposed fixed
super-adiabatic entropy contrast between the inner and outer boundaries. This
approximation is however not necessarily the best choice, since for instance,
in the present Earth, convection is thought to be driven by a combination of
thermal and compositional buoyancy. Sources of heat are the release of latent
heat of inner core solidification and the secular cooling of the outer and
inner core, which can effectively be treated like a heat source. The heat loss
from the core is controlled by the convecting mantle, which effectively imposes
a condition of fixed heat flux at the core-mantle boundary on the dynamo. The
heat flux is in that case spatially and temporally variable.</p>
<div class="admonition seealso">
<p class="admonition-title">See also</p>
<p>The thermal boundary conditions can be adjusted with the parameters
<a class="reference internal" href="inputNamelists/physNamelist.html#secthermalbcs"><span class="std std-ref">ktops</span></a> and <a class="reference internal" href="inputNamelists/physNamelist.html#secthermalbcs"><span class="std std-ref">kbots</span></a>
in the <a class="reference internal" href="inputNamelists/physNamelist.html#secphysnml"><span class="std std-ref">&phys_param</span></a> section of the input namelist.</p>
</div>
</div>
<div class="section" id="chemical-composition-boundary-conditions">
<h3>Chemical composition boundary conditions<a class="headerlink" href="#chemical-composition-boundary-conditions" title="Permalink to this headline">¶</a></h3>
<p>They are treated in a very similar manner as the thermal boundary conditions</p>
<div class="admonition seealso">
<p class="admonition-title">See also</p>
<p>The boundary conditions for composition can be adjusted with the parameters
<a class="reference internal" href="inputNamelists/physNamelist.html#seccompbcs"><span class="std std-ref">ktopxi</span></a> and <a class="reference internal" href="inputNamelists/physNamelist.html#seccompbcs"><span class="std std-ref">kbotxi</span></a>
in the <a class="reference internal" href="inputNamelists/physNamelist.html#secphysnml"><span class="std std-ref">&phys_param</span></a> section of the input namelist.</p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="sphinxsidebar" role="navigation" aria-label="main navigation">
<div class="sphinxsidebarwrapper">
<h3><a href="contents.html">Table of Contents</a></h3>
<ul>
<li><a class="reference internal" href="#">Formulation of the (magneto)-hydrodynamics problem</a><ul>
<li><a class="reference internal" href="#the-reference-state">The reference state</a></li>
<li><a class="reference internal" href="#boussinesq-approximation">Boussinesq approximation</a></li>
<li><a class="reference internal" href="#anelastic-approximation">Anelastic approximation</a><ul>
<li><a class="reference internal" href="#analytical-solution-in-the-limit-of-an-ideal-gas">Analytical solution in the limit of an ideal gas</a></li>
<li><a class="reference internal" href="#anelastic-mhd-equations">Anelastic MHD equations</a></li>
<li><a class="reference internal" href="#entropy-equation-and-turbulent-diffusion">Entropy equation and turbulent diffusion</a></li>
</ul>
</li>
<li><a class="reference internal" href="#dimensionless-control-parameters">Dimensionless control parameters</a><ul>
<li><a class="reference internal" href="#usual-diagnostic-quantities">Usual diagnostic quantities</a></li>
</ul>
</li>
<li><a class="reference internal" href="#boundary-conditions-and-treatment-of-inner-core">Boundary conditions and treatment of inner core</a><ul>
<li><a class="reference internal" href="#mechanical-conditions">Mechanical conditions</a></li>
<li><a class="reference internal" href="#magnetic-boundary-conditions-and-inner-core-conductivity">Magnetic boundary conditions and inner core conductivity</a></li>
<li><a class="reference internal" href="#thermal-boundary-conditions-and-distribution-of-buoyancy-sources">Thermal boundary conditions and distribution of buoyancy sources</a></li>
<li><a class="reference internal" href="#chemical-composition-boundary-conditions">Chemical composition boundary conditions</a></li>
</ul>
</li>
</ul>
</li>
</ul>
<h4>Previous topic</h4>
<p class="topless"><a href="install.html"
title="previous chapter">Get MagIC and run it</a></p>
<h4>Next topic</h4>
<p class="topless"><a href="numerics.html"
title="next chapter">Numerical technique</a></p>
<div role="note" aria-label="source link">
<h3>This Page</h3>
<ul class="this-page-menu">
<li><a href="_sources/equations.rst.txt"
rel="nofollow">Show Source</a></li>
</ul>
</div>
<div id="searchbox" style="display: none" role="search">
<h3 id="searchlabel">Quick search</h3>
<div class="searchformwrapper">
<form class="search" action="search.html" method="get">
<input type="text" name="q" aria-labelledby="searchlabel" />
<input type="submit" value="Go" />
</form>
</div>
</div>
<script type="text/javascript">$('#searchbox').show(0);</script>
</div>
</div>
<div class="clearer"></div>
</div>
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
>index</a></li>
<li class="right" >
<a href="f-modindex.html" title="Fortran Module Index"
>fortran modules</a> |</li>
<li class="right" >
<a href="py-modindex.html" title="Python Module Index"
>modules</a> |</li>
<li class="right" >
<a href="numerics.html" title="Numerical technique"
>next</a> |</li>
<li class="right" >
<a href="install.html" title="Get MagIC and run it"
>previous</a> |</li>
<li class="nav-item nav-item-0"><a href="contents.html">Magic 6.3 documentation</a> »</li>
</ul>
</div>
<div class="footer" role="contentinfo">
© Copyright 2023, Thomas Gastine, Johannes Wicht, Ankit Barik, Lùcia Duarte.
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 2.3.1.
</div>
</body>
</html>