From b704465348820dd0b17efbf771ec2b7a94775280 Mon Sep 17 00:00:00 2001 From: alimanfoo Date: Wed, 4 Dec 2024 16:06:15 +0000 Subject: [PATCH] deploy: f5e40ca72b5a7a3f289a38645b4e86ccdf78a23d --- latest/.doctrees/environment.pickle | Bin 373154 -> 373178 bytes .../malariagen_data.af1.Af1.gene_cnv.doctree | Bin 36758 -> 37195 bytes ..._data.af1.Af1.gene_cnv_frequencies.doctree | Bin 41532 -> 46463 bytes ....Af1.gene_cnv_frequencies_advanced.doctree | Bin 46085 -> 57230 bytes .../malariagen_data.ag3.Ag3.gene_cnv.doctree | Bin 36758 -> 37195 bytes ..._data.ag3.Ag3.gene_cnv_frequencies.doctree | Bin 41532 -> 46463 bytes ....Ag3.gene_cnv_frequencies_advanced.doctree | Bin 46085 -> 57230 bytes .../malariagen_data.af1.Af1.gene_cnv.html | 44 ++++++++----- ...gen_data.af1.Af1.gene_cnv_frequencies.html | 60 +++++++++++------- ...af1.Af1.gene_cnv_frequencies_advanced.html | 60 ++++++++++++------ .../malariagen_data.ag3.Ag3.gene_cnv.html | 44 ++++++++----- ...gen_data.ag3.Ag3.gene_cnv_frequencies.html | 60 +++++++++++------- ...ag3.Ag3.gene_cnv_frequencies_advanced.html | 60 ++++++++++++------ latest/searchindex.js | 2 +- 14 files changed, 215 insertions(+), 115 deletions(-) diff --git a/latest/.doctrees/environment.pickle b/latest/.doctrees/environment.pickle index b1366d4d8c7f2446513c6bffa678334453d88d3d..3e9b243a6ea76810e713e2836178f38ee6582571 100644 GIT binary patch delta 38253 zcmZsEcVJXS_qMaUH=CYp3XmR1NT`9(J4^2ndhb0z3Pm~zP1w+a100G#D1vkp;o2xF zSg9%^Dn(JT&=eG*)|a*=d@3zhBHKvs3*@=Pn8+9 zedMuOLDXc8C@b%Dw#ki+4XWNrbX=8dgi*gehM(NhI*u}OMIfD>VHilCE{9i*rJNq3 z_Nuia-ezqwBAxy`D9Tbc8KIWN_2^tj)aFh-Bb=hzi8y(zbs!yn6XoAMC}KG$Us>2Y zm^S62#KO)2@|y}ttLE5{vbB7@Vi}oHH(YjV6-iy&h$LAwEJQYKQ<|Lfg`Yf?9YurR z6qRWI0pzhDElK87GOXjXN6C#H;$=?tAWC>sl%%;cQ2d~pMkF;|gW~gBg;Lj+5KT_? zK-#<6@R3Cw;;3+>k)$L;MQx1$8JrbNo!f}IGP4HD&@PMWIXI(ON-Q!Gxq0#M4wRQ$ z2GW)jDl@yhGuB@^$NACfj%Z2IFh2@jWcX1TmxyEOpdaFm2y#LCs&2u9j1Xz97e{AX zT0&`KS4$8b8z2Ix*&3AMOhn54EreaZ*hsMuIiW)`UD7IAFjSR=b*CE|J=N;Z{g*}`zQ-CcAd#F!hCg*_iHcl3D8gAY>dFJ{V=44MtFLU@ zs0NuWP-xZNMoD=fEt!rL8V+QhOgYsJA9|20{C$ij<3?wt%ba#)scKW3rClOk_591d z!{uMC;#GgrS&Ohyd^^KoS=?B)Cb40HJX;+)Qp1RpLt7H_fqPpDLIF^nzL~~cw zNtRa|1klyBHiKr*5EW?LJoFMPBOPlid?+WtYLnN}})8W=Kha)7&+Y8avPM>dA54JD(wK5~B>gND9|{B8|Z<{(*~ zbylaV2Sf=uzFj%0GD4K5JFkjBn1YejmCAgdf`} zzb0uiykqRkjbi1X3IVEj>GV;|CRI@9(zj=qQ&>mm;LnEkO zB4qr10^)^rY%c3GkCmaVeOEO$Lg@Y35PbexJ%*Dpydz|OvpPP;=&WJGr)U#*b`u1D z?26USqmqjZl>PJlWkAcaboqoWn5^TG#h^y2Z1-^L`w|3tBwNMyrTh}M2zj?voD7{& zLJk;eSJ}!d)$DRmjTFjnYJnNZ79l)ZRUh51V|WZsEIiA}2~ZlgWK{+l2E}j2Nb8ru z=Dm!PUD13|N=~fLdKE!cHrhhiFr?5Ki?A!bg2l8`!_O^tWu|0k-8lLXc9xE9wfIn6 zHN%%RH<>E;z`OyCcCMRLU-b2@Gu=hYm}XiS=Mto5jnka{^?@oFHgmSsoa4 zbv~vE&oH6F9m0@X(wjiZl31Y~at6#Fsu)bu<_mw(RLwv+Q!xTIi%=+qnrD1velI)Q z61uv>2)0fbK2dIJoZy)^e5h(!=vF{Q9&BOM@jr{dOswszWmGscn#Xj!vgvf?C2I*x zN6!kupeaikMV3@4b$J%%0`?X zm;I+3!Is5MJwq{u(howhk5&!UCW?iytPf1}kBy)Qe|5apG8*c)-8#vtv zC|0X|GHSZY#*dbjHlm7!?2zd>i88-uqDYjRde)WijR}zhMn%c|+J?-?2#`V3{4G1J z^8GnVSJZ07COh=+`PK_gRSVng3zxouLdNo*J)H{|+@T5?BjqI-f$5p}pEFNO1! zY2*FHmg4@U&1heC6-s{bk?LA#z{OD1trom78*+WaB|mvZ#f> zJewXSk6`)mT5gDJoD;_C=8%{Agor8f$b>|teKM|ZfV|NsM82J+!u6U#p6cZ<9}EbQ zd3~G8?fuKi-}(kw{#Gqyn^(MvFUs_Ojbv1h5cxDaOcwS_kRQ(|jR74mobuSDL>}5Q zzJIVF`D7BBJ3{yulTS6sryQ>&!)4Ymf6G4>`E(K{=QLk=wtt{lqC&6EM(Bp#QS!>v zFdibYa^L`exq2k4Qat6)g*Dmdve=8|T3xD<9497ae4i;gw|Kuplu)3r;T6DQ%N;cumCF|<1?ewkie?a zS1ujtFVbKXQsuFc4om?&!u4z%42AHQi)Mz%M_r>RXDO!s_h6p}jH)in_0|2QmPkiN zg~{GsL*$iFHRQHTHCWUv)v2q${C)%vlPJ7o*kt3;VVJp;LA0#al@4u0wx_5H{dA`v z8!z&ds_?>1zj%a8V+aOOca?$id)z!ow(ssQc5^yjWBba)^zdR8N`>W4rOPXfFlD*J zp;f7}N{ixVb{p53C(vM7lm!zGWqv!WuBffNk)p+lfWhu4ccb?j!>SG%Z>PQ7TDH=K(4tg$MTw0HEo&aardfV6 zR%IazJA|-p7P(w3m>(rxu=>E{uyqboYf3q2Lacmeyvm$BOFo}st(XJls4si=V%bD- zj1tN&?|>ra^$o-FC`HY@jbT|+>m2S~PlQZb3Oldn&Q8J-#@(ouny zvOdgsr%6$2)rh669|nWJXa=#SvRCNH;aS5cJYTCg+)WQ6yhR7AnKlL)rty~mA7!&I zpf6IVH-cIJPb+>7}tUsfbEQhIg**un5v^)%ByO?Xp zuQV-k%&S zWqENL)C1!MZ)n!6oC)Yn9!^@KSFyYh^CM&hJ(l=&-j}ZKx7lUS9u=7d z%Ww1j@!G}XN57HyDl1%X23uiN2T?+>9xv80o0V=|o#QJP&5pu52*y6Y2o+c9dD1Z} zmDj=nbZ0ESzQoS)7i%#cD!&rSlpc_|eG}a;6L#8IgwDglRsM|?-sw4xTA6|To? z5!>hrZhf}%+g_*~1g}YQ*4+BCK9&fmC%<=7LXKgVH|F|_^01l}=}Zm0+Mhjvk4P{P z^1`eTIcq3KjF#Cj1+5XMx#))pIMMym?#Bz?ypC9EPg)#0a9H-xtij`k51g1iFlX?@ zQ7dMyD3@vBW%yBksHOS`jMUQn1f$vf_=F#m`EimTB=O@1enj)*Cw{!ZkL&!X$B*CnF`XYb`4P{LJN$^_$6bExstuNBnq`A5ZzQlOL8m8=g7NY=0br=OR+QP`e$cIq`qXI@H z8O>)D&1f{EI7aIkB{G`AD2dTjMk$Q;SYOC{A+tQgSoW;M=x?q}6-F zM!gyJWYmw*entZsy~bz=qm_(?GkS^9C`OeSjbW6-D2vfxM!AgYGMZ@1!?Om%$?O@z zXc{BQXeOhkjPe;}GMdZiRYor{>cGgwXau9hjJh&f#;7-=ml^ppTFEGi(P~CPKzW(# z7~0r#1EZ~sHZkhMXe*=TjJ7js#b_s^l8p8+YR+gsqclbb7=D$DqfZ#EX7o8DJEPN#A{m`yRFTnFjM_80z-S<&ZyC*CbcsCb8SKy1+Zs0qaKV(FtRd=Vlt3vaL%080NBPZAP;g)nhb~QA0*^7&#f$WYmn& z8b&P{HD=U?Q8`BK8TDe+iP0)XT^PO2s5_$xjCuj(W%gy*mpvCT8o(%v(O^a+84Y8! zfYC@sgBWEp5{$+%dV^68qY{iJFlxx?MMg~+O=Yy5(F{gKjPmjrwqrPlQ97gfjFvK5 z$fy~kMT{JbmNJTAw46~OqZN#T84;u5jMg&h%xFEM@r;TXEo8KX(PCx)wlN&ao;w)5 z!e}?6WsLSQ@@4b}qkmab4l)|Res3{q%jjK34>N)w&q#jQDAr7 z-F|OEIUhA!7uc^a-=|n*74}WYe#Iv1m=iP`r`Q`mX%?YaWuMnoOrEz3>p#^(JWT6b%PJ9bi7{3E3hA2sOgI;@J!4R z703&R0((+#%}T2Ax$t75!2a$M&6cRJYITpPuocYm z?0j+%qYdiuhuL`u>&c2=Tx9g(Kn@LTNQis)mJL4k7Bi|omXtR zVoh9{wNh-sJv>hP8H#Oh_niuBqga_Sn(fl*R%yn|qyl^1Zq2%>uzjCuR$Z}H zrM|y6ArHk@RWxrSD44d0ms2k(R!W7%zM_7rdMMVsf@W65 zUY44TRjk4T%?!m(_xVAkYoyq+cNNQ1Yp(+P(SRRSU;`DnDO)pBu^B&UR;XA^$!jX+ zM#U1_YnH9pj=I-XSgvA^HflCYu>||CDr}-+$3|+FH%HO)do``8m`~(yD(V`=PGxG= zSg}QCG%Kgr(SJ1SrC9j|zpHes6r1{?X0IzY{IX^f6#M6)W_@*Uza9REO1MY`#%|Os zOR@F$H5;keM;mXbmFf>iKWW zw%dv}QGwBccNE*M*jF<&D^hIc8=AFKOd5ZxnCXiBo3GhY#ai6ateIlHX8xsOIut8^ zRWqywdH$Qx_O1#HRDs#wYZk27n}hGEu;Gf)Wz9M(c5VFMDvTG11@^@?|50qAV&8nJ z*nSTp3}@%v6ao9s4!kU7T6OGXf{BFb^ArL zwu&{F^i;*XHKlokKAu8~07ono^;8gWW8$GvA2S;UCNC;TV#`0-|&|$imHn}x`?76J_^NEDpLESj!l)si`-_* zBa8fVPm&TpDC=a|>7L5)T zEmgX>L%}$G#5H1cNH#fAQ(o9vLF`9O(y?QSr#!bkS;;WYtb%>Xjhm8{_;Q{}Veqr| z)_sO*xKSM;6=E4QRpqb@GT~Pl+lTz@z)zXDrL0nlt|~TqO!QU=&A?GEcZ0Bd??FL8 zm4!{oVXJ!fQP1V-*-Dkfs#OwP^_3j43-#XSZ%KQmB_Z!&T`JAd-NE9a zJhm@YbbH3Dt30^%Rh1tPle}jolzN7CE5ySjRh1PEUQKLM&t&zitxA7cwd^1_B!xG( z#A|gd0h;wt4tBD*mSa8T$}#(^h(^!)cpB>cKSQK}$4maZGtGPS6rwaeE;hQ68W$p4 z<<8?F_Zga{5NpLm)fU!@ISRQ)hN$Vq*63m}MjAgu48#0CFSAK@EK~N3fzvWq+{=h zpY7BWgGC!0vGkb`n>|C0X99{*@mM5*&rt9)G~9#aFB_62gd|_W@L&-wL`Y@q`|xup zKjq)M^}t!C(y*z!W|ozg-}bZoYmp9^IzTZ%1@c&G%ZV%xlq$$UyX)bg9V_b?^&Fzw z#{yjEsi|zfP7j*|tuIwLy>O}Mo0VkCcoJFW=_qSG9^!zKNq>II69;j0c2ltYX=7RW z_^==LKTxjx=CH~gTOQd*%3B^=WX_Rt*xLZX-UdHA;#p2MJ}Pm@=*y!g#3B+mC#dB5vQ6NkYXceX@R#wnazy7skPWq@CydEvKaz=h~+b2V*Rb`R1@{T1<_W9IFqmU6uEFZGDT~DGco7)#BkbG!ykR?f0{M<u zLqoZ&w-24FZYe2OpLNo}vYuLpe&s9opR>v6bG_uB_uS=a&+e4sgF{dtG}38_l)b)i z(sW-WRH6v|DpX$nVhG(uUuyxthaR*>+t+^Sl+G`8laPFXyzsr!pGNY`S5EoyMWs5e z<+Sro%BYIePeLH0JLh}KlTX|gxO3i@stiDxYrl5N^UyWbC!rUHP`5HjaBLei@9H7=?d~``g8b-IrX@@c{l+OPUdCD6EK3df;2S4ZV1-cSB@}L{&?pWgO+`rAS%jQU}^o35vb((qgOwa-Y^zL0OmkQ{U=t zedo9XuLjZ4HIQSKD^99ZlN%Q8&IUp9=#~C-i#4X|F-syMkC2!DP$H=%<9~2cOf32g z*-*({mUwye2d9j^>h2)+9kCB8(ECTH?1s+HKVYdQZ-Ly^!z-FAPZ`H7hJ5i_FPQ=H z-1)>(hGO1BZBlSn z04Z>sU}}BJQd%B_|K2J%U&&sw?)3pw2}42+Xzlgg^**vPQ~}+bNDaQlxLNwEQ`UkK zsnNtTa{QJd@BEoWGv-0{xm|02#DM(xHz&P~0m;Kl$+qq9z2uRb%CJP!onJ7n?)=_a zuKofiPd|pe;)K&~Lzg!E;gp|4PdIHn=t4 z-tH;C{O5VKC*J8LTYZfPk=80Q{!b@8QR6kz8bcw`(D?oEicj|BaO|%TsuypKlx_cV z%Cu{2d86rRBkZc5`m3w__Dh}bvA=w2V+s!FPrvJwbKcj3h&H6)l*^O5J*3~iS|(If z+ZsU$RUp>a?>VLQw$^j@PN1jltwFNu-%i;C8n>jjwT*lVvh|F+b%+y4(G9F&QvTzV zIZxd!$|JlHYK zDF2#r=YLMR7|qS*$tLl^C|Vc=2FXU#uf44$<@XPqa@>7nF7R^G`(bx_FBakXR$H|E z<6$3J;wH-`oCb}sCdze>oHFozo}LON-A-DSZEYZLK6c8}5MaiW8FDqIuG>#$%Pla% zn0dH7yG%$o$ZrPv@a)rM%SzkI7?^{?kL)BJ&ue9;jC^b9m6P!baRMU`8rqEF1ehI- zM9s40_zOy?IOA&(PKv}Vi%CcoK&LHOtLEN#?lI6Ry3uDfF{V*I-LZHVp`FBKd=Em=t5+|cpvih7d=S^xXV>u z=WF1LV)lgJ%N*XAplxVu~4+dUW2O;*~A?ic%h=D~V&{8%l`ovhhFe(W7Fu zT4;%jC zaHr@tJdMSfo48$;QZyqLnI+zJtE{uNEsjdW!E4OtNi?Xvts3oOwgGlYDJ9xgf!f8x ztIuhq8Eh*ar%G8ZBu_0*dPoYs{0a&YWYydZMKrMm;J|n z$Ww@0U_D4nO?Q%RJ!OdTRhT(X;3vWf(p|S33?Vy*6Mh>{rD6r ze!vpGsuuqH4(G&tDgL@GkoH$cerf!o0@bKb9c!Re6K^VDDb(N=`s)UJy~}F+n=PLI zxypy~|AOQSY9i$+UP17(6xj}u78u>HAK23AP%Y6}?LcRKZpW7ND16$>{E1OzMt?Gz z%;*WDaf||d@rYnlijg`YR+f<;`&DCgqkW9tWVD0P`-~D9oo4hVqwg5)Wb`W|bwKQIMw{5r;)h2q zMj?#q0Oe)IGTg$RP^)Q8PyK8D%gU&8R=4^^7tZO<^>d(NsqB80}%SoKY;J z4UE(Qv0aQ_WWTo=eori}9Z1MtjbSd!7JjFK63V3f{i1fxcb zx-x3Vs5hftjQkl5XB5R~Jfk2+d5mm~7Bkw)XbmIYQqA1PXt_E^bbw(i_B_U@B%@P| znlt*AQ5vJ`j6xaRV>FYI2*g935DR9sf&F3_b!SwLQ9h%Zj5;xD%4jvCPC$A3gjhfJ zjAYNzj4CpEkx_d_a~Ta}RLE!sqxFp1Fxtsz7bBCAIw5wPQ8)HG$EZ4^%Z#cr`hyYg zeP#Ze$FLMbBM6V(jKUbDGD=_+&ZrWjZH($NN@moOQEf(D8NJMC5Tk>P#xYU{#HKL{ zV7~>7dN5kS$g0i}ZDKfm=N5u=Ta{DSew zW>kVvE~6wyvlvxnG?7t5MrsE#vn|7#?Aepi8b-qyHD;8{s2rnNjCwIz#Ap?x)r?+e z^eUqXjNV|>m(fv1ix{0`l*Q;Gqmhh$31<7ZfZ<*C9K`5_5Ih8}!@IT*ddD4x+WMim+PDlM$TP@NEK!Ds*n zcVX0)(LhG(gxFX{VeB`RQ42;dF&e{2G8)3Dh|xMmdl=1S^bVs0Mjtb(!sx3|wtp^$ zKd|R!Mz{-C5A0uMak4B340% zS*nScVr5?k)te{M%`cjZUYeWrTMLJwgQ|WelFiv2L@%4>N0y5UW<(e9i$!rWpu70a zolCD*L=CfIZ?Q)QQQM88x*6L~^mJ$S^Hx#Id}pv|DnrLBm94`KH$A4p&sASF@ zB`&-9sl6iAlw-sbH@Chas+wP93A>N3O1rm2BeUEj;pfh8%e$hyIcADDuH&1|>7u|& zeQVjW@pafiZS(L?_x)S2~kXRM}QP+yCDSN?}li5 zSvN$pYy0RN(Bf8ZUo`fn&X>^6(&h(8#Aqw|mO^8zydOb(KM<|x-%@C7)Q2KfFm!kG zoa5q8i{`3@`#u&qnww}LStw|pHT&7u^Rcw=B`8SM`?d)4hf`vaU>;`9IwQ6Udhf2t z_Iy=Oql@Pt-%kGs2NixT!p#<62$x_UW?ubL>=E?SB}=w?VR3(UFHN<-MvBibTawK! zUyGT7p@RnfBVy#<+TrHFZ^T4Fz1Lf_@e!mtP5Ks*A8$luRQ5l7D_#`L!)SUk-f3_f zNT9jwdrm@;mhAuQD}E-;DuJ@nu88G=p~F0TRU8tubcHS3^Ig9rrC&oi1uG%B_18q6 zVCbMcvc%xuiX+YbKXVDm$I%q*1k9s^6Ugz`>tdE*h`QagMZ8=shN3P&L(JdAP(gzS zqfegi4W!a%f1repLr_Ak8)A-N=rBLMDYgqb_X{M7*T?xZ;x~^V7vAA&fQL~&;Um43(DWJoIOg9TkZ;W<&_8az73)Fd*sJpU>#YykIW6Q?Zq8G_|*pownu%JxvFe-e2&c;7hn`u@Hy0gJw zR*w8^e#cb^D1Dm02T#D?6|^5*OcZ89-P1dMdlQ zgk^$Y9!5w0wnUpvN?FjG4y!GjKNj;|%s6^vMGu~fwoDfcQRQ{E2>y@nQk3{QdVOsy zmvZz~bg0*6O>f$>4GH}cxCMX?y3-fmP?1pIjzet^BK7e^PF+6}BGO;6)t*ieeN+ZL zk~#)zUoDBN2$f78v2$(BiimYmmWtT%q>YKmnDB|>AhP)DR%pwQr2p^+|v z_MCy8s9m0mOj-l6xVMOEP)0=*7qS-Oe6ONqp@y0J1Ry*rvU z9NqDJKZ#zef((|9^(bFNRqhnyHSvN9TZgRB~L+%>u@IEVT6LB<=NgLv@q5ZW_GQ|d7P}~ z>3rU=ayGE^r;#;1o&SCVmMplt^YO3v==`*u);XTtt^Txow z2YD;K)|*~s=&k0c+l<4W6v-_t3k35p^KeVcE<-x68{j&x<=y!#?z;{#|R?VF6)&3jl1F!4-=#lF(hvQN<8XV3w> zD@LJxECcE9vruQ*$C8DRvylIynU)x{az7sJWhZ;Y?B1g5PjOSwu>AvAW`J6EP24&F z30wY!-YWAEdZ7&E3_-(YJ@BaQ_d_^C@Gye;h&J$II*DoON!I8*Y%{sirb$_m9Bz<4f zqpfr1S@H$*Fv7Ycn(xcvdl?*N^Ox9y-8h0q^KQR;Co`UgFGRh*JBo&%TgavcP?d&z zEdM)uCGYmBT`j%m8AOK`Bl#nXN6KZEu+D>r(b1nQ3Hqv~4QC+q$4gmR z^ADl?GliBFlx3pG1q~P@)wd9ZLnb7mUj@Rsrd`~X zfDW2@M#Si=y42l5YQ~zlhtu8IgaVZ@Vr9Sv@Id-)GaHS4mZ^fFgVvA22;qCa%oVS* zKDpAMKlmIvjiyzBI>x`rLnb;M8gu#@KDY7}8daP5n4cYFc}4%>o}G&C9+#ruO~~P` zo1PBp@fLRwxEcfrd>5OIuapWTS1g*C`VLq1t&^y#XUn-C^*-Yf(7N|nK;Rw$;aU!} z{SmI#oz+_UOX=zwh~&p(mX`!W2kj5xalgQbHTQqO6+Kj+b1%MOO(%|9`q26YkVdl; ztd@WdI`$Gzhq&kC(8p|61Af$%nninl^3><$Pq{wex;}i(hlv}MuyT0oH;9hMfZEIE z9q-X({th9YKg9(A>H^$1fkc=a&v4zgd~TbgcfadikEi#~L3WK!qYcV1RsMqO0geMc zLxZsXx6Bvx#S;|7>r|cWyX(;u@->njd5XfOe{I1M8W1^P35{gYW}R1_&ORx7m;Y%b)Gc= zJ+tO-$Yf-s83cI!vt4RtwtHi*=7Xn@AQmq+xS0ipXC12WkHw0?b;1`d zQf6xXtrQA2khnvDryHjkR@f@=Fv1chnsOQ#ab{b)72Uu6CaSJiynfaZwB{Dt_n9Au z)V%{6m=R!wBt||!B#)87frgT_GzbNBdWgsmf~@F2KzIKYg;=2khZ+~_@QHUy(dP~% z*y=>z)ehqXfI5NF$CC|>0P|)z7yD{|Gz2eRlWFk)^vakL)?7$%0D9$SNv_N13%D-s z(-QsYy@ja5vS{47Mg0o&OHwqhma&^PVyzeue@ye#+794uxhCN5RcBGd zP&#@KBAt`SB5h>i)wtMki*Q;{28}rXHtKSmV#wcV>e|D;)FU7QhfHzdJ&VVAffq~eoIJ5~7%=|`t? z`Xjzb&&!DC$3JLVb=06yfJfoJimy?pKgDFvdh=wRF*18rL@j-tfUX!se<&Y8?X)l>h~;M z>=R%%XvEz#eLAYEbWk5TiKBi_R5p7CTKtKVV*t8Us;FM5Ijbq>v^o(Bg~I!FX>D^v zuA1cOdY=~DFW~Os#P?yEM_O`{tv1xnbAn|M#o0ZhsBs(aH}Gc@rQO6$L74cq{*EMS z8{Bimr90KR=}9-GgB9~QxLT5hT{i0 z#Q+_2PJB{3;Jk*two~*|juFuSrqYt~InV;52@+v*7Fp+@DM5^S3J1xWY z*N{g&IjyxC(xMyG37diRuo}{h>BB+*beMS4T_fnPW)Qsl&`l(z4nP4vHiyvV0BepA z4=L{fj*Y52iaOiO>VvE>!e%Sv>pqzijZZd6@@i}3{mu|8*5H5+dd;w5`o`s#Ccg2a zz`YOEU{mLJM$yhk(1jZ#cn|}fXLr@+_M&` zJI1;kUrdgRF!TGd)`Nn64TLSqw$7ukgHY|)@L%qNp@RliwZ-tAkJRsHM4p<7hV!8!%Pq(VA`XX3!|0LFlBT-0n`$-czKN*SkL?cm?DOSAj z06GX?t90-2B~Fi<2h$_0o6J(vxVYRbXbxU0)GoK@1kwoVmyIms46Z4lyQT^0?oV06 zW^vLr4|qW6j#tN$M$=0V(ZEaj-0^_A;An&1d)FJPv>MGG{E~(vO6z&s?g_d?+e{W-Lc3Z$v;veqD}IEH7Ir{{eQ_ zJ-1K!m`f!W)cwANzj^7DI6W0X8&@J_$A3|3z$)k?LtQ_!h^%u3RsRR;YWL}?82We( zVkg{3In~#)q5`T_QG|JR9gnu{Ay8aQ8Pwd4>{;{3b0TaAnSP%3K7N;V4?K(pRmBNAzKBbPu1MmQj2is9e`$R=k%2I!t_R!sqLSJ0TrzsX8@Q?znXz&D;gy>^jbk1VkUb zhJ#=3YrOpEvvg?3_>Va64rf`fJ!#d6v+19pQJ;U|nU=19!nuIs!{%#N98(`3V!rYj z55(Y1q{Wf4Jo;=bDieCjiq}g(cf@7QL(Pk)St2>NAvz^ooLDPCH_oB}`(GZZ^*RSJ zGsm)bH@=rQ#tpHDzT|XfWlyKzXxjklSk)u2yz`s{+?|9kl{Hf@a2m%+R0>M<{ODU5 z>U0qWK0OK9y?c?@W`OEFGUE9Sw-h%HO?c%ymdX4m-L7Is-bS+V4I~*PUi2LikFjTm8r)0}nIt;s;A#<{X5=)0pQd-B>#PrAH?D zzwn?2$6{$LA8Oi!L9M2+?!R&sNB)c|{vYS?vVTWC`~8A?e)l`C4FEBr^~9Ou#CoZE zP4K}D&Y*7qM2k-*73jz{);(@z#Sf7=J|?O2enY9$ab!N>K4%8#HUYRQ8z$iC_sHCH3NV%$ zJw#n@UPASEKIDN7s0X&ZIw@FYPqLf+A9DfcKSnYXP?KJKiWDDyg7b+#KDE{1lln00o9}vYbFHSFtk6;LuEV%8hcTnIi4Er4&`#d!%UQe4`F9BiWM=Q zGP`1{mi;c2Dk-^nUjaN^6t6c#3 zyaK)bIobxznZ6!nV)}W0Y%-GmiA63mHlRgA;%r!c0jkd^5xDs-&P-0QVPGzt&WTG}>(0vman_IhcS1h}ejg1Y3F@DT~G2T5FNt30TbI=%Po0OqQ)D702Sbjy-r z!+Zg#UWH>Qv63x{)OWB;shl`I4^_r7%@uTDwx^{dE7)MIz{5=8EynjHV-%Cye%ssYYeMdG@U#WZt7&E1Xpi4_^wzV{{S)7PHjp-1V&Sq z)8OAAMRf8pevTry^5YL{-C!FUmU>I7YBUiogQN@>&tZ?y%1Hz z2eRg5_D3n5T#!N109I2#t)_?_LAP_rJ)2Zu8$ejkeQo52DA)S||D0)5%q7&thbrxWqI6M=jwtgJXYY zsSTUo^?yK~%Kkk&y-Z&h+IrD@*F4JKWjWg$@GukhX1k!M?ntASLO7gUk(#bV5xaYO zqVHYFx(lv#*BnH)LP5u0RIl*Gjy|tmgJioVLr%7}JUIY5OnhD`f_yXdkVqsPh|Z#e zU04TrbGq{ewoKsa6Ii&qSrbcnE^yRb=&V{sKRYp9b2Ca9Fb_JvX*0_YP<@c#anHYw zU^CloWquYQdO%$FAhe>Zx5 z{(2A{{uW<=f_HIRK=(>nU*+jfH^L#z^Se1|$|H1@I*+Y>Gz4d~1L^C%sCevSWYBb< z4Ij<`v1zy48e<|3G^FZ!$Va8Y8SY4W@CKq+-T+CCIAFuu9U#h6Z+H0R4>Rx}H*)oG zq(LKVQ;Lb`bw_z*`m)J&1b4Sj-yrIzzoGSho9nnYL!C%bD@xojs?LV@r9GXYdY`>( z!|Oeue!W+BjhYh7TuG5o2 zs34BP$5Hi*NYb~dM+G-trRs zs(I-WiyKgjTm8xg;rp1w+;)Z2E%^p@^c=7+MLT~$!s!=L(GoxMTmz`*Nz=T>^IvKi zRPz5gfq&s=qzg`h0Gs{7`Uj}B!E>XluX*!2x3Xp->)>y;xsvI}1=*_=IPd zz544H$>uk>j5Mws;f&1^{bp>yH}o_B2lam!S*)pdnBDqiW6Wv%&#tg>&C7>#q+v+5Y2- zSubPY;(rCE($TB<5;W+cEe%IcuEMewJ+cjR!xB$yeKn-HPi>n5S5A5zXNB;W*>M;x zZ;!4%_JydvGT#`jk{*0$%oFP04%#`?{~WXnQ~z+#&Zhp`pq)kis{xz{9D9Vr|6~Bi zPqPf|bkRqd*Ul8}Ow|tmKLGNK)z04*9Qy@*QB%I`4Xm_gPVJC(s%eK0{UZvW z_=mGXJA1WLUpp=GsZqPN;Tf zYKPC>BeM;fb=OY5b~exF9tf}c5?KIX7A9Y7qFYT<-&g*3NM4bk@#z?eLLw zv}Lh&hHB>({xG$HJXEo*UhGvbw#|!e_hPSku^nD)rx)AxjG@;HGj~6u%F3~>cyscvFToHMlqIGm^rf; zEzEq+iyii2|9Y|iyx0RT_Rxzx@?wvRv%JhF#cAeKFZM!2aajm2X7OSzy;v(R*4m4; z@nU%|dC>)4Y@ruB?!``cv5&l%C9-(6tzOLL#hiIww22pM>cyIQvF2W^g%@k-#ael> z)?TblB=rCJxNqwf*v^Z!_hKEqSVu3`$&0P_Vr#tE+DNQAo)`bMSKtLN7FMEoMZ>*V zgcpnSVkNxTLN^8AuNUj*#rk`(0bXpN7aQco25Xk* z7XA>gz^z{FRWG*9i~Z=uu6ePayx7lPtV}806?wWZlH63YWG`0Mi=}w6R4-P}i;ePP zqrKQx57YDCs~)QKa+??1?!{j7VmrLpPA|60i|zJed!8{h|LuK7dH(y$i{15N_q^EO zUaVSFaqX_|#cFu5oac<^zue~(Y`hoS>&5nYvHf1`h8Mf(#cp}A+r=2>zdOZfVdkG+ z>@P2N*NffrVt;$Ff4tazFZOS7mY4ZoahmzSi#_yW&7+G8xP=#M>BZ)FvAJICh!@K{ z>P3%vvG={$2VSg3jIK;&rLr}>SS>F$-iz%n&L%B3b4wW0g;+v2OBzeXNOnq@D@qxo zMF|UX?!Q9W2RK{~oXHd(ZOj(qD6YBTr2J(3Sn1EvMq~P>Hhw1c?dC=~?RO>Kh~ob( zqfTuMJB@0Oz#TD0fBYPnJ=WMLGH81&itR#IS{XHUicxU}Uxu_k4!K8DLOg8S^SZRqyG)QbK9NZrNca{NO~rVv!HE$ImKx{uQY-)$4+G94>7P z7jM$}4n_rC@W2!!ieAJIE{mO1x1&)_`%dqOr0QRU;!=<|{O93pGSVV;qhGm+pyJs;YY`8kOnSEC^yv zPa_H?)xagK^lML#!m*h7|1ly-G(Z~2N=kxt}&xHE?k#_3mG+kMMJVTP<;PsXt<@q@(G^IO;OM(+j9t zJoR}A=X+W0@Z;y_1{hU!$$wNcs)!tFGSH}`J-9PHC-yz^985a~{!gnS=}c#2RhOPt zhlp#?xEh8_gpgwhezCpkV9$s@nTCRKbU#)|npqPOn{tf$x+D(7uWLur(=_CiNi@V$ zUyRx)oZ|J-Kl>aq6v403pS6ssq5~}->K>!dj-7jIIf9-JEvCzygAs_IU0dN+m#);X z4&>gOejBEBnG%1qgi__Y$ljm&4%dAgO3F;({CD8M>cc!~qi9cEV-hYlYBS=0i=gTC zi~x(xN_$5bb#=?Q+dL<;gUC4oYTR(7k*)*ZsexvP)-Fj)>Z9O3^zO*w)&a>%(d&uO zz51g({uqMz`N{@HGQE}q&HZ?kk-#RS9*)aAY=FVuoW?bTlSWq>!fJ%l=*(i)E{e}C z(<_ajcr)qqOwTCB!Q_y}7;{f8)M$*S@4t=Vf|eSAbd5*&lE%hJT+0(P7GvhQ_V*cU zgsrMR%>E7EUS9?7shg~aUY*XOB9GYGUj_0RUS$F0li=QjiBa5jPm z(#B@SOfiF}s%6xxKMKPHHAd{BvMr3^mWLKv+`3mcmpE33i4Xsg$#vN{9Cg7@aE3>^b(_Ck_QzX`-w6ELa|8Z4 zPD;%(%F^Cps7jR%0Ai)5ZO2V>g}6J(xvnWx3U;vi3kgDv+h^r)RN7Pk@ee76uc zn%!*=8)~K3OG9&2sbjmMR9qGpN>$py7A_o%R{zk!_*^uiJspitMFXC%rcW3K$dl;Ctaz!p(=nO@k#dFh8F_9;uMPd$5LAjQi zR@%_j7$Mg1B$Fo^^Ng}wl%tZ}jozXc<#soQQuJ6%-amFnH@?mjK~-H3Sh_IJ5vylC zGl8dwDs*fpMhyQXyr&!b@|-b7ETSbnk#81V?+MF1l3uR_nJQVd?`}i|<_sO|>EZ=E zNlX`msBUj#0&S?udes|kd4nf}>GbO`cq~anQ7SdMMg2ZztZ2xy0Es4S`=57vJmpoj zxy3vRH@;AZepvGqvE^^7b12#0Xd>G29I%L1^J?JpbOV<(4mHy71DU?h+P9P{SHlFQ z3SBz@6I3&{{n^;Ug~cCpf;G-~4x29)vJKA@i`iD!)P?pNiWS^Yw%X&wD{P>Lie+qv>pv4jJ>kn1ITzO> zQ@`QHi(&xVTDS6?9E(|cjt%#-ZZrHmozs@B@KEu9_KYy*;`CtpNX$Jg*pN=3*9Jls zFr9f~2)#QBi?VfWBa3Sr@0sV1Hp0YQHks)HL&ZX`G zbE$j4Tv+H$FD zwp{9pEtk4o%cXACa;aOjTJ}|mChxqt)a_X=b#s=}c_|r=7`%PN#JGq0_W!`d{nbbNR%u*WUZ==Q?NYwf65Cn2HTb#m1vz zV^OhjsMr`(Tx$R-Huw}9c#6%9#^yz1gH5sd(AXeTY`;Lro;uLjxKeCPDK?%I8%v6f zBgMv$V&g}#v7^|yQEbd8HeM7OS7#Ne&y0-`#m0wXV?(j|%h;GuY&L6o7JF(XrUH|GHW8*oov7FdAPHYG#HhdEs zx`_?j#D;8Q!!@y?n%FQ+Y%Vc2JQEw5iOn6x_M3fdG$uA*7#oF&y)V>h&E^SXLocym zm)MX?Y+f)n)DjzJi4C#DMpt4ZE3x^%*oaDO&M!8S5*tN{&GW@ZPhuk{v8Qe?HewPh zEomzLdEJuK=f&poV(*arxROtl!4t;=%%ausd9OI zUFC_gtR|40y~I@X1NRxpx_HL6JurG zk|leo*vV4qTq_bqxQy+_GruOk-AjcyQ<$}nmQPq3l&$;dO{ZG(z9@6{(R`(&gm!ht z>dH_-z6p$d;y+`y9l#$4XcsDQ8nr5fhaSMk z>Flb2>(_Kd{&)a~03XQATG{|JzN!|PHNwHGmEoh5BP-@na%!wMdo}&AyuVLJam&;s zzn242c#t-^vsBzvE*agFbz<}QB*01^If!O{B$gY*F11P-9IzjUV#DjFnJqz;$#`(QESUSz} z-#S|BbZVws(V<=3jyLn@0-7x)J>)t!RCL?QM@qIOjI##hGf)Sdd==l3Lk;*GtgOe( zEUY(E{H1!@>^!H!UyPUS5!i*bf(7zp8Lg)h*yM|j&^ykM=6fJd*J32q-1dk4ii{jV zSG!dFhjK~l(XQsEsL4IuJ*ue>V*{kAS73<42LH)XS_#Yh%cJO*zEZr;<>n!+75L26Q>3ssFT6uyt|z)qt~`h}1ODIvCoYHc-(7FDMy| zU3F2j2E$Tv44-YdtDOc*dXTYH%4Ljcox5J;p|FGwz=%<^*zel6rLhq^WTO1Ok=_W* zkjy3&N|mxEj7oysY(nGuwCr5DFN9wv$&Ih-%~EunHaP7nT_}?~OqwcH$-xBq>^L@T zfl3y~o{3Ao@n=qx1b%Q@J2I=*^QNx2~n&+lz%BpBZ z5xsKzu!#Uw}$}+K*MpLGua=^wKA(62TG-a zpLX2{8}wc~hV~6f>A<)AH7V+V4uS#N+JSa$&^nHVO%2BHDf;y+mKhOx&&|_3tzkL0 z2kR|rOQy@n9!hle4dg|_rVHa%=8DRsc<-mns^Q%dyD0ck%)8{7{y+rMJjhDJaHAF9O?tCQT*w9?TJ4eu*y>%#8UOHBT_ zos_$$X%lSJ>D`p?&eL4U6}p^3SpIh~F*5d{E62N`oHT;R3rYJ`RIp$pjMuG)Q2Pma z*iEaQn<|_Z6{?9UWoIDVB^77rRp8wR&QQM7q%p3V+Uoh!4uDQB{p zs<8({0nPKG=E;j*Q+ae475+$5^JPUJQq#8J zR4cC@8&YG1yyX?LtR5YEx|bF?`c34mik3D*)^sUs++Jvn%QDtW@3GIP6s!g!d0`twTuB($uPIV|0V-^gioulYgMQ8YI55esEJT&8Mk{%{{E}{D zq}qw^qIHtr2VMJpY3_r@Xplek(HciXnDAQF$&BQ!p5*syo9wuV1=THs7g3~D0++Cy z6E$z7LfRVfj=c-LT6>AoT_bEtg*^0ATN)Em{CeJ#N0(4fp=4ghV16N0mubDLVNc%W z3jMUm#=s=Y=&1yXHxqYHuV4{x*Gz*Ia;^sRbhjli+26U}QNbI zykrj0n`&|I7@$H&zi7Sx$m2eED0aeUgrME%o5s)=&Y3=U?%bL8W_I%Ox8Zxf4Yw5>}nVua?<9djiv?$iF(~S&)%$_yk974Dfn%Rje0+6 z_{;q6(XyF2jcki$onN%d`c_;HExuOv8A( z^n!5ElJ+8A#w8h4y29|4S9&#;9a}|F%3xb1`B(h}T3g-lk(*mYQ*n0@M!DUEA&_5fMX$8N%D1+8}en?CI0#_-Oc~>=R97 z;oxwYo)|-MPEnO+I8kzXTf5AiX;-OaNxKkw^E7Im;S}NWNDAt)PXx<{N#0(@q@1zi z=E%J6iLyA^i!Ptig#^>iSt3mKOO2-B7$ZzBYV9qZiSblcA}Y(h-4p0Yq7g>TOGN^e zoD{yYdSa9;?G+}c_l=^$DI!*G>`+6-O!ty~Q)|ey`Cjtaf&iJ?ptF3`R0$zaUW4Zw zZJNllZ8&8hJy?lsc65zW0`GI!2$pF*8gQ+fQ;Sjo?_R!iG2ZYZ#}V`z%YjPTTfF7W zMySFrqmq2kyFE)Er5SWR(&jHWLn*SdEWz~QDUrb5GPiw%m(gzOq?}YrT_tL5=x0~` zwf&kcgu797hC?Q$INTY@(=7tz(@F7E9Az=A5W4J>Sd-RvLzh9yQL=bMC5SGDwarJa z&GnP(yT!12R+Eo9s3K`yso;K2kOf@~Dn1CMy41A}U6}&Gl@?gMD5$>(fwD<& zw7vXQ*6J%-E5ZR%5N7M`BptiM&eAqLZ(uSckq%O#slRZQ3 zZcv|=z9pJrU^JjBr=SMh>b$v?y*944wwurpb*)R+o1(6J8q_p$W=xte9Uas{c5c^( zTM2dbvgYJXr-CA=Idol1Jt#wjQ2H4REN)%;>y|JoY-|Kz&?HdWS|gaIJGFf2Qig#> zcDEVwO2?LRag%t89R|hzv{4E*TqWvpN3`QMQc4e_vOLxs8p#0B|Mjr-`6n=EQxA5jZl#2$2 z$wv*l$*9gzY>q0^Q_B%2Xd9HdS|Th|XCsu(tP`!|hHeS6cTNNqw#RTQcA^`{w1}s? z{uq?#PbxfR^`T!kAnoQGpt7J4~h^IF53QWuC+l+Z{G&ysaUj2xIA&B_%(g?kJe1)UTDdgx|g z=>Aa;f<12ax3Q5ypVy_*Q^J>Go4}5-k7q!IMrZq=zpEb4ksAD2IKT+Wzr+8So9f@Il9m-h0OgfGD$1)Lg3goX0f?M0|%D7L% zIK4E{VyD2V7Q1D2nhZ&6svI~+K3lrX}`*iyIY@lBKuW5R{JPpS%2E}85@^x?6)yH z<#C9bHy(#nmj3;FiGlJ?cAPBh7zL^L$X)$?#a7v7GW&Sbx^5ywUKkP~|LtF2ES33F z;;48$r1km~U$Iy&9#xA?V3>S;fUm5bA0*c;bGWA-FZp1ZuZWa^1G~y|qYyMI0z)lE z>5@3~VX*8q#8>`3JxCrM93cyaIOM&hx&fHw<<5LxS!I5ZH1i#5etT?b zS#*6>8D+h~W<s^5&%4a^27fv5|fC{MVy}B~Tti*t2s~{#0BOI`;E4U-bL#!L=wj zA9g8qDcYA6!N$c`t{WC5BHS4S%ddt7%i6<(<)fK#Jewl_;r?Qf%D?S2OW=Ei7BY9yFDs#sA$}_`j%Znoe#8c3X+U1jF#Xf2+ zFVBr*>jzUGDMlk+qTA@(E0i-{wp)k_WYiT$WZ)b|aad4=$`%W_Cop+0!?XY$5hT|x zii26i%C2BJOu_XzA#&chAbC5pgAg(`tCvXRrfuj^u@d{Z5_IXLB|zTFijd8w1!c4eqg|5_)24RkUW*+a4(nba>q!Fn=wtq0Zyh2FxCRz z^4|r%qK9lZE>Xsf4ZsLwX=$UYIzmXLhu7PL%cJO)gE>L6=VS+Bgv&C-&y<%Z)}qp1 zEg=;uwguTW7n_tkvA}i6BjYNIld64+CZz<+$O2zWLp5wr6+bz+AP5SYnw2OE$5#_; zc>M6%I6z(;A0UTM3X*N}9PXLUw?a_`s&=ddt6Eg_U#3(vu8Nga)K^YYLq0;5P6!c8 z)CdS}i?@iXi+$ysu|cp&5xkbMTc(ebkxQz|jEN29;CUz%mLWFD8X#X;79p=qY$Wp3 z=)fErE&E`MF30G=Kx<)*Woswz!*G4D#6cy!F_T}N9E@QHNEgf}x)3YPx zpOckJu>SMB?F&QXD+-}ZwRn+TiF22qqXz$Gw-b9{=sG}(rAunb1CvAL7lYY;IjC%t z2$Z)b`-+hmW3^=TlyI?K-svC5D-A~l8O?;X9V}mlYOWjQka0~S6FQEkF9&Rg~$7J(jf@T#RUn_qc5uccTC1%M>B z8ordb8>`SE`RVe|FgCVn!h-a*WY#o0zc6~UeYN~$k-rwygkOZ1&Y`?)3u5aku&y2) zCy#XqV$&+;LW)NRJHUPLf)gy_ptG=IT|#8m^eA}>y3{r=0*iPb8P~DmD&la{VbSMt5sWp`f)fy8d{b3(Wzs$~@_EU^U1g9W}~q7qL!oR zPvmzeZy7WQ18;6KX&Y6oe8sAasu%!?*5Wsu;0fb$#!Y`bcc-aV;Z-}B0-lB)=T4lA z9P7*UWG^Lz zP-HM(YmY6cj5QlqICG{=o6`ll<68Qwscl37%c+%EC{qg)DQg_o(Xga232i20o*ZX5 zSIhB-oveEL;>I_Ck`~WXok-^%%UFddbp7zA~-17n@Rfen5~K1Nffd zP{y}Q&rHVq6Tlq90E(>dh_y<+uw?mQNuu;ZFJiC} zz7_HSJS+J)K_~=R^J5f0zTrncKfdF~RDRs#$G@m(_RoxB`Ei>co%vD5kDmPaogeG@ zagQIX`0+PCLiq77KYaM{A3qNB!%|?wvoS-1Q5{C!jQkn-G3v`Gkdd8H2&0XR!Wgw< zRGCo_qew<|8AUUSU=+t_E~9uxI~mnv^rZEP0+h+HI(sHE8pJ4>QGG@Y7@c6$m{C(k z%^2-w)RIvxMr{~nF>1#sicv>KPciDks5PVRj7Br+#i(FB!*qs681-i~jnN=R#Aqm^ z07fGi2}YTW5*dwVw2#p^M#YRKGV)?HnNbd-97g|fC+0J%!hSPs1$dS)oXwv77|mnU zmC-^*%^4Lky2pu^GCIJ1D;V`)O!qoY8qkCZqQlJ2F`CUt z7HM!t+v85IODY{oE{(cj#rP)2juFPu>ZqX+QFzcBMYN?jQ--B>oc0peyNORSXuuXG2F$TO&P^8YQbnIqt=X$GfHFhfV1hq zs4e?-X4IZhH%7x5^<)&ys1Ktj81-Wm%4i^?XBZ6uD#$*_a5#ImVwAzCHltCD{1}a8 zw1LqCMoEma8Ce-kWmJz*9;300rZWm;G>g$9Mspb*VzhwKL`DS#47)L0!l(tK<&0J^ zTFGbtqg9O37_DVAnbCSi-i$UfvN0k?y%}v|6whb}BPXL0Mo%+(no%`n|MoFlz@7&f zbz*dw(LzQ?8HF=?o>38_lZ=8Hy~JoQqgNO`-e$C#(YuTa z9&wTj4EM9=B}VHQU19VrqfZ#sVDveo7)D<)YRTvtqs@$NFq*>Xdq&xeeq{6~mvM{H z81}ovs3xOdjdpl8VE6}n&S!L=(O^ao7_DXWkWm*#Pk7;RjFFYmeaq7?uC^Au2#+HB z4&#t5ueO((t&8kGyz#tZDJrZ+`xA-{RIK+w&9*8QRrduI)BJN2Pv zofQ+mYt~b-SL`pTbn6v+qJ?IwcoY}e_x08^LZeq~!-}<9rdeaf*8cm7 z3ag{oFI`_%%wMs@U7Gb(Y|{hH?236OzouetWGybT2aeISoeDhiwq`+!b*uBbidt8( zeQPy~P^?3lW^)y@H#)6i?o`ZpO0y>w>vvbP>WX#hTdHCX0xKx8ubQW6eHFOH|BMPe zq1cMpBHM3H^hQq7)HEF$$y71o+rfjzZ{ zrlVD0%@;Hqub3_LtcrR>v6a^}o2FQ$zu!_}q*%+0bBYBh)~@3_iV4Lo6=;^ISlLIK z?NhAaxqX0phJ2vHnk#m*Am*Z?yh16m&po5r0TsBZ%Ow@oL$M={%Zi05W~=d`Vp6f} zrJ5xu7V)=cnTlN+e?`UIqS)oFnr%|dl2q`K3OuRkTP2z`RP5m+&3qNB()u$MbB$u> zw`kT!F=6>!h3UaOzK>?hRM-&TFI3obiVaB6Y>8rrW_?kh0{biKvtI}Da;M1d|E^{o z6pOKZsbY>$?1{>n~KeqFI%inaYhvssFr8t{z@tEAYolQo;5*!?4#%~tIFzcm}D zSV;N}m5!HGMfSaCm=$=bbybml#0?#osscZ{rx`D=&=s}6RS9{CRb;QzjP9qV74L*y~+1o1xhA2Q=HISa!fo6*Eq;zWJIB)nSWnsj!0MiY_>(DX-Cr?A=p; zQGsn$Saqjn?G+nerrB`CrdGMFVn!?W@*&NhP;A95%|aFHWZY3PpHb}lnwlNdL#9_- zO;35?`rsMC59a8Ma7d4xx*s@!ibyF-a?GF``*M3Fz6|ZTwLa~$e{#0QD z6zlbhW@(DO5O+_7P1f^Y%e9(%tH57k@2fzYVp9%i)?2ZN+JC9Ac*Q!M*37Bc{S|+! zu%{I>>pW1bnqo1}X|_PIk7oX(!a9Lr{)<}tuc8Z8V7+R>;9(f9SRiS}i^n2+sh35C z1uOPsbItZDcJLj|cp+J2Kikx*Vy3IGXE$rsNU?TzHA`kzU_aKurlPJ^fpG^l+uR@FLt*zcFY>W!qHC?lsiluMWtbtkg)av3h&9Dvq>#ij1MRMKNJ|8HTl{Cc8BeMe~f!K6J z`()tm0Bk(E(IENjYf0GJ<}yyGm}s4)DHorFO-3}xQcDrp@nj82PX*%m3d`dul$79` zH)d4*ytx~Tvs-gxWd19v!Sc6#y5UEVVFP*Mr5e(FIuILyTu6XR$k_YS(#H0m3+z); zC@ych#j6~O9Bwgh?)7~p5qo;S?y9+ApB60^bsmbUO8Xx5{YbnTxsI-h@i35C@PXhN>Dt@x^h4p!Ajp$m#i1+2}+A(Vpd_^nbY0`e;?s6Dlfe zeW>o1XH>lpYSK#S%J>snSNuG+VMBSVl2j%vS*t=Use0vTEKmb%D)MuYD)f-M&nCM2 zY|3G8d2eSl+np9lIOg7D%YetiNmCj%+0|fq`4ooOGd|dBafzb08^i-738yNYMe(#M zu$p=;(R>iRJ z9+h{M*sn@iS1z1q6|bSh8l%P9(w$ChE{`^)+%MZD6w99$S++BtWirMcD2Kd`5xtvt zA=ui^S9uSX$){^uve#;-i*}A_=e|7tdTlxQw8S}_Tc_Wm6E$&y?@DQ3`TM`|vdfwN z^2+b=)OMvMk|th&G5F_98a*3`^Gj`iwuZ_}XJR(ot1S1uktU~o5Kkoom7g~ye}XN_ zj&G)sS3Trb_%FxwrkP*BG<^Zzc}?Kk`fM>xu>+KyT_BI1W4DG}^Qf|X@2xc1`P+C| z|J-6aIRw7!eR+=-_=Y zpL#cqriY?7*LPS|ZPXc^IMa^BarXs$?qP;(|-xr#J+UK zPMMLG80mK*jY0!4ak_lG0;?xLyI>ZO14yz;g`~+|Cf)wqvf$nX`3V5^-H=uQr7++#eEnh z-?==1_NQ{$ALhxSw{**7>1A)3@{u<^*U?g4R=EPfUU9W8`6C~>^U46(3<|N%j&|v& zgD9yIvS$^M$shU3oR0%2_6M}$=0|DtXA%dos_4i*2p&s*27K4fM}nYF(&cw$y7}8b z8ARuj5yFyJtxo=QIN2>Ce#1ABGV3!OLi==pymrAAq4d)rayk%m{%2`&<$sVh6ZmfU zydPcQDyb6IeV#6BeXNy8mi_E4qrVtUQ|jvAy7K)m(x`70Fjg`S=R-f$<&-be=(9RX zlj7vvFEiy2KdL6Skw?EulPf*~xnPN-!>bW@z|}OWQ4Mj;tE=TJpOt47K#Mk6qUFCH+L3Y^+BD24q4jB zPrpf%gD$m}g9wDoR9hX0EbonQZwE=T_B(qvT49TF=y-%gV+{~W)m#M)do zxRWLezEDEwEWZTtK~YMhkwj+P?JM^^bm=@dU|j$Xc=(j1QE~mp6%UZB%ZA9qU$W7O zlpo-97yuj zwmi~<|L~$$YvQoA{2hJOSSx?4kjoj&`)+$tR0bM)!&opWX zrI8=}=_J3($Wpb4Ee#?Wa_hZ*vRj#}S+(zvl#TvjX+)Cjh;u~W+=mAI;nFFtM#f)5 z$jT-twwf(+b1!Rxto(NxWx9ql`&4Gj{{}p7)j~9w{+2T9L7I$yUzHrWc^IVj$AdJQ zn1bNo3~RDn@ej;eJQzkQha1xS-+|P=fs)5`3W2T1tPo0hR$-SZ4`;~^@3LN$dxXiD zw*sZ{C{6bI(IdbQ^TuGAi5Z~&x$@Y4GV#9=@)k@ahIS-HEwIMRAOFMa$rn}qHi;+1 z6a1GwK^`xy&b5!+lp{vTZD&|VRUSCUz06vh8Viv|-^ZfXWh<@8^fsvcQqWHHo(*{ofq6~aV{JlX z4P+6H*>^J^JN+fmhqmvthS4K<%jgfAD5=oJgVu0b?=dG3KvM<6e`|IMUx1ShEvwhJ4Y42+Z(w$2v z>X9ExU;17J@A-TXGxlfIgh(p6YW1U+zZP-SJOKF}3UTEJ|7g0xUY%JxP|rw84-|u` zYY-^w6jNVX7lh;BJX?@=5K5Z(14i`E)~<8{jJ`sJseUlxrUZ+0`TRQ-s_|Mds?q0d zB~s)SB8G3mR7P?CK$12GvO0Rx6*m1pYgO9LUdN!CP`w!>z1946wOuN#nm2hiPGjAR zM^4_q>2a;R=O&0TbeK&fW}!KH??y6e z;zLM%7yuq9D#^W?&>?S3o7~TFRKGS3O@94LFdeFe94?%7jg(8ZA=q`b@JOpI`pbgv zlp3k%UbJJYEtKxoh6Eb21TZ_h@TORS4xdR)-m zm$eUSbdG%*U02PEqi*%Y5Ng651S1?tU)K`@se~7VismJvIUBF))c@gx6?rG&pi(uA zwZeZRiGAevzlGAtB;?r}i)e@}lGdDt-lW$@jY2WvbzRx$eUDLj9$wUtCs}?!VLv~dxALMsjnL4l zcmLP>HhVvLt%5f#Zw%}Bo>gGfATfP*5A|x%1O**M>N^i?sq{e;(O2#8X1{00tkNBy z&a%H_l)~s&Mgti=VziZ!pEn*&7*%1klu->viy1Xw)P_-8Mv;tqG8)BbD5HEv;~7n5 zG~JueNvIQ8h3py2o@*F&X0(k_Pe#u&TF>YOMynW|VHCpX14cfKzGQTm(T|K8Gy0QJ z9Yz)(Jp362G3pCckR8R)&YpD`ZDiDhQ9DK*7zHs(XH=KbNJbHivKh@~G@H>*M#~sI z$!I;J>Wp?W8pP-jqxy_qVswJP@MpipuqmSt8SQ3tjZrN|zc9*T^f#j@Mqa*nJjE!K zQENtVj7Bp`Vl^X^%I)OEdQ6c*+WmJ_>F{3?_h+Mkb??jLtIJ&ge3unT)<>l*{NA zqoa)eDqz@)p%H+`EJhASl^De`n!qTL(QHP|8I5Dqnb9yt{TU5ml*K5O(Nspw7|mm( z4q!dWXb$^rWR#)K>Fj1Wi9MfVWH5S#(Mm?=8O>w#F{2%fZZNViy30tN!1|ZbboTQJ z#A61da7Mcr#WRXyl)`8zqt=Yn4qtY6hUx^?U`A~@cr2s#jPe-`XS9e>G^16Fo?x_v zQ7EHl7(K)2c}52roo3XE(ff>QGy0s7AEO@v+5T-{_&a+hF?u2h4=bYpM)ep)G8)UM z7NbB$jTkLr)Q-_1M!gwLWHg*nH%1c~wO}-p(F#UO7!3d_$X>@VjXk$Bn#||`BX348 zGO{sxlTmL*ml(w}y2{AO=x0VxGrG^H8Y5dU9t#+SFzUo8hS5Ss^%#Y#!Pbmn5qoxG z6wIg}qrHqW8L1OkQy8VQ-&{tG7_DHG%t$g?&8UQtI)HVA(SG)OnbA5%Z!>z9(MQ2- z|7tM&hCO2#-C@*{(LanfGx83>V+x~6jItS3XQWPGB{LeseyteQWYmpO14e@w&1W=* z(O^b-jMg%0zK~%ThDD5yF(O91ua&)*QDyc!4m5MMZAR{x>G}+{`A!=VE@%Z=Ld>$Z zB3VHP{aYw%n1kAhepU{0m@jt}D>bCsPl~$cqORfxn+l@tYw$Lt#^UJ_kgzOTF@ZoBe5^|~lR>$0u6_@W&~ z=iU%qC~2}a!AyNq)DjFs%t>cOb*qNk-xg0<6eKhx!JP80m~O#0Lu+pNhwv#hv>wv` zbwR8a3`3~i3QJWJKlv>ZRPa5=eEfZ!e!UEFM*N6a(5_H(@KRDJ1HTT^UGX#A% z3N;HppG+_Pg?ulKwj`Jde~W2?VF(4T!eb@1 zl6`vJrA+3_;g;!wxx;K*g$r&y8*Qn$y)vG@oa>gsPmz}Sg1Lh()V4;N_=)s#LH)n6 zE~&Wn5<(|qP)N%gkU+Iqt~p=`wb^S6!!IO5%=hBhulM)p>5AJk^mTQlx^UCoqVDlr zHE@S{F@dYLWB}UF3abjcThlU`atFeeE~;gLt^&fA{)T;N{2JSAUB@z0(A-f-QDJK* zi6+)V8RJJI)kpO#D`6r=L*!GFEU*@PTcYJG-tujqk+ixM+K`ySq6G}0;4plWUpLfF z!HaNPOpjlX`1e$nZ<7KjojdV3dT+5?-zGNV#Ne)eSvNF@ip$WZih^F>i-P!v=(KAVjIVzePWx(4ml&{R#k*QzRI?jOY~9CQ(+%CYN#IHx zRjI7A#fLt>X02=v?ZGuos)PWz8EDBvkalv_n^9mhFNl8Y4$*E(q>{3 z>okIm!Q4ui23YO4e}cAUpp?vTZd(TT2cWAz@N;}0GcSu}`pSE#V1>QAsU|5jWw- zbWU=?qP9u1>1toJxWyXFGQkjidd?DO-d$_K3gXx}wBu&6Wg{IJkH+p=Z&@Q4hM29T z<#|EQoX7H0yQrTzhhTj@^ve&MK7^1;HG=)}4CpM2ZJ7Zo#~?leG!lVGb;@92Io; zIn=GnviPI>g-psMeYIf%yu+#pFWtQaif^|)k!vp538YG zE{zMo7BfD^zJ$_lR!1dsUgC}bbZIlLi11NYnwj-q<~IE?jRo*{H=4S(uI(7dVg6)ccvz0Q3&y$NbtanE`L&1ecuc~ELuAsB|x!bj-DvPQTLXa8_0 z&gXA%x}Sc)V(`#e%W7KmlY1pG{4G{NaNL)%))H%?EU4h=+cvHoZ+mCZ@jJ*H=S=4a zEC>61Wl1snzsEw`^NQB!B3kz<#C!V!=LD#fxf*57LWB9nBJ;(IEWj(Xpm`}b+tTNk z(a`Lu6?X&BZ3!t9(%(6dOBO*7U zK#wyB6!;h9`QIj#So9a07{Cw{CT72&d*cvWtyn6YO_)H}$0PC&|FS9rhL}+0gP2Z# zwp6m?>nm?m)0s+^k=U(YOzF4FwMbYog@NleF5hQj-nUpWNMq+~leBj80#tm1VSQ2n zg%Iozt`8btnbwtHRWaReMT@^{fGVkVj6VAiLbH6VU8$h4yPt0OSRq(&=)+!HsJb4- zT>kH zY~oH9bXVo8P%YQdjFDt~4Y@xXX~laMpnlPlrO82NuPAPF{0)c^%`2ejZz0DkF>Y<$bzaj3z zdRz|u;aXssxI_kT)^$#x9T*f#=n!rK(xdOiWGe;(xPz*`iyB=@Ga}5qRIbbiEtS=Z zzdt0bPqzb(hV>w!U~@;4+WJK>$h%E1XwxP{&qC-!C{4|v`n*gPy44jWZb(LngS%N_$Qq;~DNmq$*N#hb z!+LPqCh2Ie>txLoy3o(v!s1?5OzGeb@{h&VJ1*r3*ODF6htqxZGScB4zd~-M@mXB7-{`d?A`ItSd~)2mLwuzKuwZiDfDEBzKWr2JyfESJpI? zZ}W_#EPTWU=obiX}I=!^D#NDM8g^82`ii?YC_*)8Tk*{c zFob@*j!QP;n$#z}7lxRfr*hJ(-WUP@d+vw^Z{3S^`RASq z_&ic&+BF>sdVl2}HGVT#O5nIEVA34=T`O8&80MA=GxJ zt*VJjq|hn1KF4ws^ZOdg{mQ+bTECN}0`8y;oaEsfrlRy4SWXF7y|62C$I+QZl+z6v z-`Hctk{vL_#F8DKQoeoCmRs>e*a-S)C8`?rEZejhMNoe%pYVB*+!FbAKWF=ATg#I2 zBV!r#RT}c{d&r6<44_)VaOc`hTxIpDL4Mf~1_pU5^*n(l?wjK7rI${y$pzO#oo^X7 z%#kOpB?d)xM8%cb;n-O`9e4!^t8_v!m0o4t1Jt@_;-*Wd5Efe8)sn*>xz?Sz_v(+en%(+->>qJc|tcagxdu(*%+}_b!)k;xm;lk`Kd0)5Z7Eo}-^*EVaDA z=>XOA5k_$*Fx}ymCd9N{+hUQj0HkUzPo=3X8%Pej{m$;902sZJp3-X*Ef^lA+ z0w?OisouvZ?!Qp?Ag7NxEx1~~gt{*N@-o|e%Hyfv2Z$beR`LAZgwK&d&P~Yw%I9pJ z0YhjDid8nRUE@mjD%LuoPU=;r z-@ifrw>P+jnR$aN0cm^!<+gF8zeD`2SD%4Wx@dqr5FY@JI#>q2k8YFrn!;4X=~E z-_vlNo!RT5b%&sZAEU)8PaISnL%E+=66nEy)@GFQf$(#D+6!BiqqE<{j^!qceiabk ziNZ}6ZHGCkwm!Ib+gl!+X_zkv8#>^V2;_)4wh_H=wRNSpA|c3THXEi@K)gN~HoO8p zd>PeJg2WNXVEWUJm>XY1uc*m&l(!9n1g{{-O9vpx|9or^Wa~RfjG_Pdz$Ap>j~tGb zxpP?MZ-Ws4$MoFKrXq%!Jpws({tjLAG@7~-5;+^pWdVlJbsw1042KP3ykD$~XiZDP zknvaR5%W%%4Z|DIHK}EW+3dKn*Y!c`wQw7{sKXoRqOwZ3!25g^qziZx6H}uI8_YN$ z8XsvZ!IzDFuDM2?-^0<(3G~-K6fiH^hUFJvi0Kz=dj=6Zq88BQ74)DZ!r!UJjRJI4 zfUf{Io$=hL`5!?sasID8Jy!$e{_}}jCnIaxVE@4#CT2yv1fCj#m^cTzk+SfiLd(0L zt_{`<++oHf+K%I8{Uf)8-KRsxk?*H&;ohvz^#E7Gjip^B?oVDXrLYiY4@LWU9f9_# zGo%wKa~SI1w4rS&KHd&PK94ro;#?Qx+093dSZ{7D!o2Qz#5Aa>Z5(B8cWd~TrZ#-0 z0e6^U8kUC62U3b1r!F!#{oAvEOAcZ}Q~iZQtK+Hp5%<8|+L1dAyhiy|eKxaC zXZCz^l*`_^Pql{7%&zF2=SD*q-*mNMBm%0BW4I9+SGe273y7xDP0a^#RqgX9ybKKK7tJz%)L7GK5E3mb|0&)K{-QN#~)}>gqdFs zwPBkJT&*=?)jtR@ONQI9@a}OBrQ!hYYHE5PWwp#;tpp4)FJ;;e;9cdGyH{|&)|-4s z+eXl(+wP7p8qHM$SEemiUY+l4wj9fH*zzLs#fjY_T45sJ3*$Lozz{;d)nxR7P;>J{ zju@E?m)s}Qkw)^cmgv_czC#kJh)6W6~>u$#4) zuq-w-g#h`jL={(lPPxl6WK!4+;yAI4%_E>*yO&>?Zsx4ua(6^P9_nbWI|Fr?xe~2j zi5w!L+ynNnm8>t|>eE1^SyIIMeeNIE+^G`d$a65gwHoQBJkrV+YNoDXL4ms`PzdVd zwJfN)KcU6tXQSy(F=RXWXUH~tJ=-I{UobZQ+hBVZjlTgcR0|uA{WEDNTQYD5!IH(|A3Ic`;u6fL-Ag!!kvYhLUzEvx zHhT#5$wezq?cweN3^B2_yj4)87>ioc6HaT7qlYo*yPx)P-vhdrVTIx5&i&kNwmoPW z)I}ZSu0k&#gdh&@b+@eMAx;Ob*R-yC-u+B`B}19k`KXfn)ORJi^BmGXoR2CEJ8H{E zar0eDZQ`;`XlvC5?&vrbUWpth5dGyw?&dE#VZ&<_xH?yW&qKId-b^^j<;*E|HOPH{ z9G`dLA^np5U%};-7DrgHJ(UH*JMpd7Lz#^$Joh5)jIbS8RC22gE(yK%YtVXS#dv$&XnE;I5asg*mvUSbaZh|0yS|_Kkkk z8|0QSGfzobr+cUM<KVh4F7@E z5ghaCP1`mM?+$48|2yGdnc{zj;3GP_g|O~tW!^eN2>cnwO!>vO4r^v_bg*Y){0^Wp zO}c}`ult~rKfc510QF=;Navu^BiLS7uaJAnxVCZ!YFnNS|85|fj{b%$HtvKzSN)x{ z0CZ)63ts(cXTA|c>NE0>f9M9|LoM2>erAwKwYH(`;rCfP0o6ufnELlaCOU40*c^a* z;}-~X=}rJ5uKLGTRWQVs`oFeuE|~PlHbO(%_MdGJU3p}yY~Pe|oPPjE>tii#sHC;U zzG;^+S|@b~W4TbjX6O;3e#+3pp?=5E!=`@3(8HpB!2pMUz5r*bb{1==jdminGfF%8 z+L@{y{*?mK#cI}BJ3Y0tUOTJ!G%MnSXvar8hqcpKJ9V_?SyLQ8SNa@PAl!y){dWcHfSeFJ67$~ z)6Q7!1iCtQk*0^VGf_L;w9`U6E3`8}J89aPtQ~Ld*tFAIJMr3aYUgR~RMXA^?R0XD zzlEBHYo|y%!P?oY9X`$u0i|o!NIS{eS*;yDzm6#THCv~hXSGv9J2Bd6sU4hDAId4F zXqv4ZKA{fJF`CuXP6O@C*Un(=tkq5z?Htn%pF&6S%JhTX=pbG+>v|jS3enyC)5rKx zh!pzT&qz~Nw>Z11s0=?Qt{i_2TTO-Bhu? z9_$$pw$Fn->%sPWumc|Kpa(lt&R}(mvk#Y3W@R4iR}c1^2m9TF{o%p>^kDZq*!{<> z00sW_n1Zzkt=JVUJy&R$r77H7Ze!Cv!Ve|fOKJ=g;e z_Kyeq*MmK*$O^I_RixSfd9WwKD#}85FpCH4?7_Ntu&y4gn+Gdc;X$ADU@JY?Sr7J> z2RrA%ER`x&+v>q=9xScEgSPWv?LAlr57yCxb@E`HJy;hH*42Y`s|5XjJnp-D1orS? zJv~@257yg*_3>a^JlIwbwyhFY9gmCu#3S%i59SE3SkX`q7Usb!d9ZK~w$jDAD?8%^ zE8yZaE%FFl<-yK-uy;JzyB_R45B9zX^R28Kq094QR#0BNzeiwz2MhFIK^`pFgN1l7 zhX)JwU}1_CxLaSzBXF1p8}7kIc(9QkEW?9kdax`HHcGPsm+(h>1n%`<&v>wX9_)q( z`__Yf=fS@BVAZSWt|-ub5$~d!C3vtJ9;~JZtL4FJd$5TfY?24t>t=fXd&W(bUheZ? z&w8-^9_)YzJLtg_|CN^WSsjl;^+SJlO9Z><6gi>r3V}`eSb6}s;YRnc(DZjIkM0wHJrkc{$z<)iPWB7Yd zY|?wi#!=aeDK^U3CEC#GC=?w@Eu)ROw5=ijAKt>Q?nIBGjb2jPgRji`L zJ&l$XqOY!Iw4x!IsNa*lj2gNUkJ=a!{39s0IDF`KFQcvw`?4k~h=1A~EDlrO-bMrM zd$%Qg@rx!L=u>us=NDFM(ze|B)`7@ z6CtR)>~=V@<`G!hHJE}Lp&3DRw{L}ZR}IqtZ`xhyy0p8dF-Am?+0SUBOV4cuIh6mf z$6fqfT3^e^r!8$Egfsn(I32fbZKIxelA;Gx?0fYKo5YT2RCU@hz-XtVwyI;K;U<~n zf#p4vh;rVmgYLf98s|3Ekp(3@)jj+J7jW*Uh)Ms7o+9xlkG?G252q6)Rna&;6A(Ff8( z*1!@vlx4K0td?jien=1_`cY70dvB9AgM-9AuBqW43w_nzm?jFTPX|nn zRmtptQM8Ar!89uC4HaG95vH~41mxbWDjKc)Fn=`^FHq}F#yHDJEA8!MWQpx$bT%f7 znLKAs!lnsk$F4f|>?pJzXI0&;Kgv^P6CKvP8)RS7xf0#&0>Sp;S+ubZY1P$eBxX^5 zS7R|vY>(nQ#Gva{@krEIOyK!+wwO&fyP?tJXli$3lo-a-WC5)li1?Ti2jXNProK@$ zBmo{*;|yG0#cfI)1jWMH$3V9j{4(U$Fg0gmRt$gihngOO9q zfkrRv%{T{QWIe%Fd#VU!E1gT;O%V)}JW3p7`#V{*Vmmuj)Mk@9AIG@o4*}c2W^=ws zqP|0o>B7o3v#GAxqYe-W4h9AAf3PgKMD^I5y1L3a3|&(@2Ql6oX3T~4iA^>->cm@z zQA-1GT#YDEBQgmahxr*w>BAHJHdZJ?kOl3+IT%!B*N)<7He#$^Is?;Db&0uS4L`AvEz@$Gu7FX>7e#D-8tIxry(9R4O-ACh0IbnWv6t=6 z7~GdkB`u8RI#SRC%o6ErZJao=21C<8`+wOMDy06Czz(SSrQvYF4e!&Tm@4jAja+sYfF z?j{bVtGUJ`!apDjpbPjHk~BQe7>Bzo&g4Olj#0~eW3J^sls?~>g1yW5X+}@=J=v+& z=uWjncd9Ksr`o}Dstr7++P`zEd&ivW&M~LDZ_KIg8gr_9#+>SoF{ip-%&GS6oa$OJ zr@B(isjd@qs;k7DYRAs0t`Ku(ALjRIr@A}LsqPJPsyoA+>b@|ix+=`6t_gFhE5e-W zdN8ND8qBG#1#_xhI;YyCbE>Proa!1dr@8{nsrKib>VGdf)vaGnb>o*)-S*|gO<#DQ zcB*T>oa%}%r@G$Dsjl{Ns%yQR>Pj!Cy3Wg~uJUrKTfCg=1}~?&z00X??sBT#IH$U? z%c*Yba;lrUoN6b|nO&lq+D|>ZswZ~g3Q#=n!a3C@oHM(J3J6nAsh$bynW>(<{pM6R zZaLN7n^WDiQ{7MHRCiN3)xA_sy^H2ln`ln8 zhvroGP&w5dR8DpOlvCY3>2GN-yG%Bil1a;od0 zoa$;Qr@9u(sjh@_s_USf>MAIwx(3Rru7Gl?>z|zJU#R?FRo5CERgs063FmeqgbZfE zSL9K+r4oU#uwa?xu|NorNa6;80yj)VCqoA{iUO%o@=myUO_D)R%!E9M5JCt6{Xx~T zyviS2wN{yI`D1r$7s!@B+%3z6s{OHA1?YGB-aG2g>C@f!bl=mb`|EqoH@0DYvJK;t zZP=b{Fg+RjmrrB1p?IFU=~yu(Q>gA$3ndJI8+H%Q-=SOBtBA2IclXy;*R8l*Zc{?8sGu8ttmNfg+X;uYWHi$<@$`E9{cdn0li8G^=XO&Bx9o!a&63C?erK*>L-KEaL@N#SU z@*zygMV`}+hkeY!b||(%Dwgs<8)e3j&pN~F*sx@laUOa!zDW{RJ*}&Fc?XQ=F|O&L z?SQm@@1QN#gVIriueG4T`Bvy)PRWJ8^_#*%0pUCUWf+^1gcq(y+V-*f`lyu(Xl zR4j3TF&O_C--y9=KhIAeqXO%ow2AYDF4&VvR+LS^k}w_J$2U7r+FO&9c#ow#^L={3 zlDHkL%Cb&~uWq5_RCk(QmGTjppG+rJP!^FTaXna;rZy4?t+a$^-zkz$9Lb(~U!org z{m~blfxx3b$dmb$5^H;7TADX+&q|F;#$rI*oR9S+%iIqboW_{$!y^7v?BEH>(3=Ao z+{dtheLTt31Q=Y_MXi9r-*o|n__^Riv@sN%Upj4&)iwus_?DEvEq#40Mw`iLUnHe) z5RTaDlhWI!G?sAy{CDa``s|G3%oH->jVuq#ql23@ZaLJ186v_hqA$R zzP|?wJDtLmo(e6fpmWEIOX_GBAtphs54S+ZkVrC$%X=uBDq0c z)!(qM7q9mz-r5U)EZ+@uCVH$vkL|OkW|#?5ol?9c>}-~IdTFU8!AN=;`%d7dw745P z3E*=8$hy1_on`XnK6sT^IIW*{sToprz1wHuc?9yBty>OWIycPs>+q<_etJ@kNJ(Cp z3+hGB?1#Ck-yiVw40FidR|F@liuyl%De`+ z;i?nRZ5wx-z+NSXIK9`^CTj=KW9lHK19s0J#EeP+lrDobBI6&#Ez(rJG>EZm<)27Gsc*G5wX%f)N&- z7~-$^{8?C%#E|LRp4y**i2nX^{Fl-wo-1)>`hV_vDIBHc{x;Bgj$)I{<-d%=jh^Sn Q&ruH0|HW6%(e|Vt0JF}es{jB1 diff --git a/latest/.doctrees/generated/malariagen_data.af1.Af1.gene_cnv.doctree b/latest/.doctrees/generated/malariagen_data.af1.Af1.gene_cnv.doctree index 21c0f1c2417435f269453cce7654cc094791a909..8eb46b9ebec84d257ecfe08d4a0ca4cd7f057032 100644 GIT binary patch literal 37195 zcmeHQ4Ui;PUBA2ip55EaCAouexzGfY+pX-*T?CC>1?0FS1s*vgq$F^xL+?z_cF)aB zPr7^Vc9UETYD})u2*^+xOA-*#LZndeqadZ0AZpOk5(=!c{Gb9V7Jd|3X!(i1|9k!M z`s+VEvwIiNq-rnI-S7S0|NX!Fz1QzOH1+ORzH^uO&)?_vOsl(D)fXX|)@U(H*P}{6#A6S#7r()Sq#Ux@Xzl zsJc02PMb4pgC%p$pYklPZ77fY>pOZ|cPxFw=)Squ&^^7XH*c<dhSPhqYIa6=zu8W)aJ=N7a^4Dym--|ES_4--IXi}NJKjY~e^k`u2GY^>y z=C$U8dDy@2sA+eMqfWouHJqd8ZRhOKxcjTr`_lvDt@MMvm)LaYf_WF*hTlc(a&#qmeCJ9O%V*{FbTys4~dq8_IO%v&H^>v~QJ@&SG z=xg;(y+{97?!4A=y))xrtSKOO_j_$)ER+?kTCJ|FXs+G?M9nok_jp9@>y3N+Mz=1I zsX0mJX}fD^FW2aQQ9YD%wnAPM7O2@hvSzfk0_E`1XSG2m>@16yW)ukr^_W~A6UPMo12NhnO)Z1-+9qc+23MHx`%YqwGZKYmR zO12o31tX3?S*&x$5voSkU(+2&2Q$`fyN$dar}QMc|g8;isfekQ%NhtZ&Jmhd!_N;J66U-%AY$ z4rU+!#y=+*oaXLq z=zu~F$2VdwzlG!SEOA+~c$S*Ta@Ra#zL{A012HSjHF#1<*Oh`U1QZtPSj9m~2~O#!6c5y}lYTD!V?>5FD~^}BVi4?msACH>vU!)Ea- zZt?A0i@j`%Z;M)t5{R1gqKX6Gtwn8VN?Y&c+B%xrPP3o@TZWO$Q|e`x_gK07DA zg`UxEz#rE(k(DYs6r_6x{Rt4E^y*iOd!>pCZv#fNVRv+^JMj1PwvZp<1_C+a&y)yK z15w1&oejeq$X5J$%8YwP-D+C(!9{-#0i$C#`jkjsl?pBN0zjc`>$pTaO$zccu<#>L zkS8M+7RcrgnO=M-qjw}3g8i`=_JK&`4=Bv}GY0mjGO(mvrKtT116xe(uY}Y_qMVkR zq!9eC46>TsE7CMS6^qjRbV7)S(lSy~}kE5M=rsT zl*1DEV{u_vglT<{r?prw6#nK0nbxoK$i@5}O7o|A7=tO%JEYEHD-&!d-+YSu^XNU%{jjsZ#<8b0XnUQ^uE4Ls%B z;P^{;v03aJ*qqp`TwO+0!r-7z`>dR}OM*_g;iVt&QEm>IDN1|U=A6x|4C0?uJ*$H9ov z`EU%zuO{Z)BmF54zCFtS zng?eoAF3k%!h>IC6&WhUnMpQ^vb<0NQoa-q@Zj5%;){83mh!9=Cu!w|;skHz(MyOi z>jY&RV|u<+@MWXfP^q8ddza6Uv?`^k_uC%U{j~c=vTy!X zZok*F9k1qgbjQ25Z_|ppiPiCodS;(Y6cLB3S9ekqe+EvOYj$t7>bLL9K2 z&d(fM??9z8Db~;M;Q8Jn03WIxzr=&*D@Onxr&tv^Gc9}t>BW+n^(3j3;gfvBicpKP zsU1lfep3ozD4)K-lbg?{0DNdX_%aWkFX6J3|1%HHQl6D!+T3?dv2n757QgC!j{?v*6ZKK zw$gey-I3w0UXqZKrlL;8u6{}N+}ujkjL*M1uV(1`^B=}BV2x!#K@4~!DwT-=XL;~^ z4-tS5^=(@`c)peg;BgF?SC;w)oXv3`R7lBw9^;!<Qo#CmP>zTkck5aa;t`cpx|j7 z32tP$P!I{ON2M~6;H5lxzLN;Rhq|{{@!i%2!8sm0U(RJI{}CRXrF?iW_;DV+gdle;7)XYs+(&*e zC~G6X$oDRvcM`l*F!%(E&jy3CUHE;riGpAdbRiK8Ch(C~=oZEA*a?1tZDX8JAPGpx zQcZ!poRv|HSgFAaHyYmC6K; z|K`E-9ZCQ`)D_OpaDl%-qXO_aaICAJC^G8hT`kwein zAOpf3%Kw{ra`T;106sJneK!xDuQ_EYzmo@NDbI$Y)F9&-9()Wb($_DSOo}#7F3XFd zQoO)}Z%>Mk@!%}wSt(|g3_i}omylyNquAb(!B*CI^5@+@%#+TtJM7TC9YHnP=sHjbTjQC-mdY1V^!QZ(J@GSE)q4`N3ek{&k zrqKK`o^+P&S2Q<73wk%&I)y?_1waPUuNqW%8OGxxhyXfDdvafH}c@D zau20^g9m3R&yiv>vF-EVV@Pp3iS1BcT;$1Rc`;OqKf!}n#EJ)U%y?OD#GV*KZM@DhC4$rwLWzyFRWm(`M?`u%S_ILqjvluuRID9KWu zBgLebx{3!MLyFt+QVOH|;5kpwR_|M*rGpPhd!+l9BYO|Y{?t;GD}Y`7(3IHwlhh-cN_!?rfg zOr-2*N~(&VD4vPDrf}!T%xvL;S~Tom@@Cw}Ut{}NFmw1(R4Oxb_&Yp!zRd>ULtXo4 zdGLI74#4A?!%5nMQ!***@8!doSzqRxR0LUaZcjEa^6=0X1^<(~c=Dne%FX}byT);| zlyg{^=K?Y79Lg%h3)m(KoPz{UI)_QxkTobi_pod$ z+VM~Q1~!%P9^&@O9oeGp0D0JvJNezVV$XqNZrw)R$S_b5$*nqVXpODBv8Uv~uh5pS z*aQuGln;{o=uWfy5u&dX*v%LF5;ptow%jvzLET##&^6Dl*C1if9kewNufFq6jkY(AzUUvLW~^EdmR2qLAnXAu zec1n2-Juwt?`;MBg{cZ6hZQ;dIw!Xsk!`5=m!YMYZBLEFwvSV3$*X{Sl4Y@xC@hmk)VhE=k(vMH z{{#KSj%&|cif%sh&`;+Z>N5|$=UFh-Scm>-Bps3wEi}DpsM8;yK9|jq!9GoGL zq`@k=OzLC~s`dUvEi&`>indxmi~mJR`AG0N9Gw+GPCWEdv9k_rpFReHPZVc9=Afh(%L9NdyMCbXPyDo{WVCg## z9P?#O)7G;qFxcI*NI}f$SC7Q$q=7C%__qt;7r(}510U6rDl>|KlA;wE=*Lw94Zk9X zp^C4Z5u7rXN)PZdp*vgReZbie=b^#eOq^9dkKjPy$j&6gR^;X(cQp_Ln~U_uIud@wY8#cwC(lqqJlGg>^9C+3SSnIwwwR) zdSJu(4`XpQM-pe!mahPd*M&HfwtO(3kD)OaJ&uX;Mj|S(W}>9LH9vMjNc)>dsIc#E zDw<+xJUo&#k`})oD)K`@MMklBswEX`6pJTyEVB51?pMDsdHFeO#^zVFU@xQN8a{)= z2t)^Gnnh98YGSBCo^hsyXPjxqX5BCvhi61y5sPyniHNB<=NT zFz87kjHJEZP>Knm`Iamlll;pgksMev(OKS_Z`qE3V0mNLk9+yak$Rc5k^>OTZwbMS zVkJ~digOezAtflVl6!s>`}oQ47-1Roy&mi$$jhQpy5#L}{q&hL>L%T1P$={=wTh_`gGoMY$>IbMAqj^)!_)9$w$6pI_yIgH^^ z0*o9v=n_T%F=B^|`z)-NM#05NQdR9WP382zzH4ZG9Ea(&x2OSv4eE=6dYGrnql-it zU6Usp;cUx}jSRuH?n5vaqkYyye zQY9;yk{S*-MXT*CO)!X#J>-cZ3MxnN>H->$fe5_91Xo95EV#uj5N&8p3uleWUdR1X zA#NTDf%9YSZiB-(HXKCKfj2IUK*VsBh}9UjIDtW197`FFCaWrMY#{p*L&F$l4$hv` z&YM=y-%Kj#ad^M$eV%J--LH+`Xb@E+Qt{&E)jgjI}@@?dKNCo~&qynS7jZiI_K#cM>LTN|A+lYU+x=0c) zB(w}L_f>(`f??rAdh|_XRd1oyEb=h#rRBF&DSudR)`5(4sPNw7HAzy@Sc;)ZHUE zmtlELtX-o?vaMi}EYPiBB@(kLYUXvp635^@C%TRm{QgmdDb_=6Mm54o_#-gFCqY{{ zBOc74CML;m3l>RMFj$NUH%wjA@PBsc9Cm~kYv;tv9sH18x5VUK;dEQH`ZDZe(2$~K z?}#WKeP(+JeD{Tx4V@&ub=zHod2A0Pmh1aQ>T}YvmeJ=YM4v~oEUG0r6>E8@*JiBA zsYMmU--{*MN?H}w3iU8yRX8qNF6xaoW$e&(Y;9or|DeckNXR<7b;V(|e|Chd&p?+pAbu z=WOBOLhvxW-j5QrBoEhaRA^t<4)2BK2#MN*F?txGlPjiQAtLf2b0OP39|LG@-LZ76 z7F;ERT*YbP;*VCluGYKf6i=pzikr_Ft* z{W}fHwXUiqu5ADl0eJY&!Rvjxa>P^TX6K&(10e0^3E2fTf4{M5fr}Ue?z{2b zsfMxM-$3=n^SaZ8dZ7fym^-*L2XWL5>Jrf>Mxtw2g=#lQ3H`ag*IfOsRk5P{+T_EU z;W)Na!`N=4ZD513X(APi&Ha6n^9st8KpFUlQ%_P5t*aJcd5aP^rXj3-ZSp~?vVR5j z!3CpCu&9kb4g9@ry}Qweg@EG?T<I!4CXS+sCttqsmj^jow*P;VifQ8v}S6@fY7*RPBnhMNr0iAK-HH6)v_}-vct!cH< zxwV0Rkba>N%*%^4(ngoi8W8!sqo0SUcK?qLc&Ujc4U)Bo z>n4)NIs`B64O|v1MCr5r9-3GLbu!_XZr~!c2bom22^|Rh!jrvu?K|EfPhq zPTh=3&m|D&!d6A4D--x)ef|I@cOZ=wJVC64->KVu@+t^Sb-PWA;vfk`o|%)u{da*; z4-Z}k8xreoY7mACwUG@*?k913KDsR=KOd~CgQjhev!LNJ8_^OCA$*EYbE^Lfro-8k literal 36758 zcmeHQdypK*S=UMTzSHSpTfvs)jL$eaRqpmqk{#QM6>^pnUNs1xos*`tmy1)MVd-r4ddu-@qPkv+r`!CqyHgv;UDX8VLWtTO#8H|?g zl3&*>ulZDS&xe{9nlr(eqn>qb-zjO$U;}EDbi*t=n$AGsFj-ggH>!D&<_0)n|*;`n|A4;@`iY4nzlUk$k z;Dg!UoZ_ z6yo=grPlec(X!u29+uS7vZGa~jvtJ8YL#9!^)32NeNw+s z-=yyf&duv~U7L4&%hH_rv$nH5pA3JFMnBhB^>o{6SBwF;^BnPcqK~6`T3M)^r3MkB z;J6^bO@}x7OZtXj$gs-ViogTT9{tT2uzoWreGC3>#ouoH?V-VgevZM0JOi>BRuwD^ z-b(!w^qD=%OfrfT21;GSXv%w z!J8?1Q*;fG+w&b!woW`cykSEmNeoj*t3omlD35xp4Gg2OXj!&LBs}SQj&fdkv=vK| z?80%@ie87!j;al6E|eTGT(2(}rvxAm`VCX-3(BlgC=^c3D!U)D6#N$=Y*!Rd*A&R4 z1{El23OEMwD=3FlOIgwsRVmq)XH*pu)LGOc;wYd5#>N57RBWdXmC(wHX)J5X^dr2* zg#(Ycp6YlP<{r_k@`dR=vx@B~Mj3))R1D2g(6t(N$01cT#vR4=OS+=E{H;cdy{`8FCD~Q31kThM3d=P9<6ul=~~nZm61Z zM%z8B_^zh-Fei?=O1&`HoK~!&nvy2Bp_PmZtEegvpQ`4;K-6t#RdJ1TU>9fe?)?i3 z%2DGUfOj-{5uybY72vL}x*Wl?hNmlNtwG8m&|o+Q1IOi(6k{+DT*#WI8!iLSF;{)h z24E9iv!RuNQd#2w8RB7GKFo4{b&e3LslZpDYjahBs)Xn%gc%3f2ECAq4EzGnfkN!I zcxMSfNZ=|{;EDnJEut6?Q-rg(BOEwp+bVP9Ik;Rv3!Nb`j1(2XILut++=8+QU54^R z=EfrfN45dNrd2h^Wo83rDAWh#tZtM-%BiK2*6>_L04{Ek7%=O>y$}dqWw8pw#nIpZ zEV3d)87Od~Bs|9&j5f1#qKi;%d$rtx3N2e)RILFgp45 zwMHi`-g92H?1rwHnpLxfT+DmYRj6=3><5UKp?A8jp2^DB-5V11umIV+3ub z=4cd@L=;U55~`k-QFWB4%1Js(U1X`LpVS{B(tRKyoqh_@6~}8k!wW$txZ=Ss!el&wc0F!}3I$a)llV2fLB=2h3Dki4K}Jqn??Xgvz)7=^?^2%jp)zDe{; zwSmMhwa$ufk$n$cu{PPWQMsTjN+K+ zF^OUxZ6C!116ETN13(H_&Ldn|VWHEtEJUGB8@^TYd^WKYgdrF>5Os@RNsk|q_1MVv z_zQ85@fuB$2cbgzJD|jUDMDYLko9#o+t!o|fM!C1@;fz4lN&t_46u>!4C%645ftY)yWv5GZG6kxRl^O;TdQmx4< z@Fj(2u(fq{uNh3BI$wS;O3h2b80I5&yX@0C<~5nQNM$e0l2#9}*%a1=p*+70@p>N0 z^WjLmf`OB<+@2H$^cBf~ekG%mq#*?M^AXsXTAN@z1+af70V^)m3Utz66o@p$$C4rw z>q0^q{mVOyJkrI0{wk8qZ4 z!`#~?IM=S11Mh-)`gc-n+u16w!Wy+q(EDd+ZB9Oh_5>2tC6}YMx62`~fvNY)A-Bgl z%hZuD?h&~9J~{MmxcVn4u1=-57OoH@m*r@;CrU>~uF4^=fss$hA-Bgl%g8|rTLmtD zOb)ttE>478Wc~DIS_MMqI+)sT$Z>8@=qx$XKBo499CA0*NL#8a=U{4ImgCx9Cq42a>(s*&T=m6X8uzSym#jP0Nl*j#y4tWhsy;Tmm7pCU8 znf-F;-Ej2^xEX=md?u^!2nJ3GcJ)3v+G`;9d*zVZlUu+!U++tD$ZNp)VL9aXIA`^K zh%KxLl>VR`cJBf*8G10@(UoywPsx#PPwFf|T3pyC<&e7}$5nG-Uy$S4UMxC_@{4lF z?djXmg?&v9xjoKV&ShQL-^+pb&b%Lh3;PfG7}^u4BU1-9NuA>wn7Ty{xjoKVrslY? zU2^E%aP`W%u-SO2VOB7#d*x`af!sePhuogriHK~%X|D)t_B&pqtsRv^Z;y8Z9j=@m zxNLFiCoco!d|Dg*Lhfj<&dMRTr}c*5P4ObRX<#2;HH-Z8g0Qq1y#7Oc-Y$}nA8HyT zdiR7>(t-guvt?0xoSI}-KJ%6DX(@QUty*iTGei2N%-Uv>Bi5;JA=CL zbNouW{9|dC!GN7**&k7pol(DI!7x8ICU!PRCr_jP_(Rg=U(3718Lo=zn;s6I;-Ff( z``{YaZ!~PjE4p=@ynWcW>5Td%Y);g^E@IUWC%0wJ$!1tNDOQPwmo7|(`CaKS^QEx% z&uHW?)n3H^Vi9Y@x$jHi*Zu;pTLrxqvM%i98)7d~mQ4)G;;!01wD#4RPaK7Q_;kI< zgw)~X48N|;s~Yhw|7F6zAC-=|4gVB0>XLu^r0}Ku3w!CFfA5s{)d&AL3Vrdf?FsV? z|E|le8ZofV+k}HZEgf|m4!*a04pyb`r5p@eI2@vmQpA=8(^MfyONqq7@Iq@IYh)?gwwc~>`aYwQiRJa^U`0gr?C z6Q6>yTQ_p+pE1z~h3lU&y>UNd3N2f9F*fhOUG4Yewn3Qqv*Rh@nLF_;nVw#b?dh;x z?ir-o7c)jP|LDVC%5l#(nj!Ekc{U-+5>^AgEeGBWVOqA12!5{{Xb~+s+W3E$qnmHz zvxLsy3*9gzoAc(cHg%2plpMGe^BgXw&Pmp8lmqXBiv<6QadAP8u9OzSf_*+0-ysJs zRhN$PcSH_cig}icnSJf|%fWZU$F!MR+rD-r+yc$>O_U|aTT1gRSz1igc{%WIh;lVe z)JNs$N<~B2YcWv*q4PKAzA8s|ZG?VV z4qQs;1arxD=&SM$q}V4NwAm4TZ4JOX%HS|Q6z=skdOfM+S6amuIV;CmMi;kNADLHVd<|mj-%=vH0JCI_Z zbkN3}f9XmB|LWxdp3l^m*8sdDQ(u(>mol}Z_PizsewDSSBP}LJuAo!CK@MCh+#NBW zkpu6Qi|LT|ZF1m!aB(dmZAV(XM~<$P7J?PY53Nqffv=5=6*+Jz=2>0LICxJEz8gNK z+mKF#9v>bRhM7fL(zN2tICr4K*A{~YMi*n#nLU+XcPvyX+nCEaY zZKA#*2i^x4*J7dsLg#z*f0CoSHbVcG9JrLw3FeY8ZE#fTCZ*UX9kdD4wqHr$%H;u` z&(y*ifOpiMyXC-TOs)N#a2oE!?RZ!}ZnA#dWc|1a?xO4ELdozb$+`lq-^j}Ea$P^K z)uRF>hp*lv^=7qSgpbOc@aErBKU3p4Kwuc;q{74!o-RrAKwU9l}Lv7rJx^sdK=i(aqA)vAm=pk&UONz4db?|_(4Ar;f*b0Jk_0CXzGsDLG{ipBAanEOC2s}%kK@xLeWA1X)pbFT8=^sHwClM;%Vg-gX`<~Skfr6oBQKiZSjapzUae9y@795 z!^`cX8`=ekcdL}?204Ck6KXRUr+eRVl_ZiEHPe^p4@+-~#O-{WaD_i^jI8*k$uEwd z6qC*XbkVa*MIh+8&DtkG)2Ky!S^X2Zz>-zs?We@{Gke%Y{fG2jd<+=VJLzBu`|y>g z6`-UnV!|dd~VE*az35+7h0Z;sM{{m4WZMqzokbES zH*US}$bs8#yX(%oZrgYJ9Ddw&=fdrGP46N6)N#@qB@#$G*djFB>Q(WCBW7;4tpAeZ4yp2<#R}Msy)^GDf zD!(1eSYBR|RwaI!YVV4qaR@T{5=xj*jwkXaNEw&M+GkNK(wGwq5WIB>>Pv!l1TW-M z?v=-$*>~iX$9^qO|L`u+z_?B?I>?}BwUA(StB1n8;(IM3M;47`5-j3gXP(?lkf7j3 znF>dWa6@}F7kYlZrRQ`Ko>pQ1Z>qhsM(9GqcLWb#QF{Rz?>`QT&MNeacnQ0a=xHm_ zgwUrY!(ZZTBRw6)DE^I&LO$Ssp#jI*O|7_g%lrD9R4cLxUuS*Q{ucj>ls@=Qc!dGw zb5run-FTeGj@LvoDo;#87de^5`}Qs@EZjG@_!FTMh`iQ#ZoAlzoScqY-t+FcMKaC8 z^F7n2NRr1@>=Kw78F(T6UDWgb0{j<~_o&O9+HPpgHl?JloAr@q* zC&Mg=VKhiFAZ1?ED1xK_P*JN$Y=AhLvUPH><47K+GJnr=B2Ihi3bGm=M9R97ZTjcV z8OCmw`KDz1NY1*--rVCm%ZP-PcdM?wdpg&uq;KpA%}Tm3VbfAiY)S`uG#U8-V^eJ( z{udkd&9Eg2ogy>RQktO9=m~|;f>6KRTacf9!|)2)|Iy2h3^X(romU?FrAT;QdF+>4 z#RqRi0YVMvwHQx)s3%^ewRS7S;Zd|lj^*@?WWw4HMIq^Uf?9DQ>P2fw^xA3d=R~cI zZcu{umW>i7Y=Zhy0Vd0of)lgbD9t3Lqf|XiJh=upGT9(Stw&yD#0RA1Gl;QCk6{!X zq+X=CWEI&ak%km=PP526ubTE!{D2gVwuwx%`LRL%{Y{}Z=f6x;>e-&ynAYm;AnmU* zHm0?DDowvgty_x|B!06eBtpHWp1arUCl?u4-#AQ!dcUD?O1SX{J#izg+1EfMewT?v zFPcrQxFGeS*(84LH2ZY!g;`MTifOB&ZXZX+;WLq+brqw6#TcIR8B01m=d+@%lr*hO z+K%MGY@w$x&V+g<9i+Fphbz>?Hg6NUzuXhu)2etKXz>!Gds-E@w2U{>#Y}mE#;ZM{ z5h^3~-Mup2(I?d-?E7w?jPmuKMwu4!9U%5=jM%*hIkn;}>P5(jv5An&TYim#(|Gz# z6X|FH*k4Lo2II5`z|zsuHKgI>zonFt((O6Lwi?C(CtAr)pwmLKWKnzMI6o{GaV&mL zIPjJUVB76Hl`UuA61RxL|LZX){40z)3Mj)lVQS&v0ch?4WrgK(F5HXF3#$3IbOV{pUEiS9^>5mZ2SgL{tmRqAX8EE zRC+KGja!QoB<}ACiBP4f=k8Vd?ln^s4smTjlJUO3r}3thdnbtgK1TFjl$%;{RwarS zsg|B7Q!TyLMGU^Ji@wr|O|2qTNGUe5;IR{`f>sMf2^M<3N<*3C$UjH+WhdWn)OT@t zPPdrh>G+0WU39zLx^o&{A5?o1Lk>o;yNd6uwPr1#N0wb%e75X4!zybl$j>)o+0oCb zsCW)LoX#p+r7e~nl|}Uk67>fg;2}{V-y(hoGe|r2$?Wg~Axrrj z*?~E=vX}kQe$`ybIwO!>s9R(<19c1ZM|F$5ZkiwZCT>*Wa1?0Yei;?U!$;pS@wA!t%9qsAGQ9;V zL!5oV_6opQxb#?fc`?|G8xK8fTo+f6D7xOf7))V(!Dt|XcD;^|#}Cmi)GSj8U?4+PuTc@-0D01!mes2g7M=+@oAR6}bd+gVH!sbmQ; zOOaF~_z~Un8t#Glc@(>a#wrZ1Rj{2ZH0nC4$q+!zB6jV;9uMpoMfu#V3%7xuQ%I0;jR z2Css-x~AbcQE*)ewU&z-a?qMZwOl5<3-m4q+XymN86c}>h1;}C!6psf;h4V^jB;xN z^@SwDry0-*2t84KgbMlZ zncB0^@!B)=k3#?KqJKU}|D4A^elSLLnI9y#!D?S(H7~JRI5>4Pl@kDX#k=))aR@ZA zU=Ua&;s={WmNO(amkbCFjRJ`A64LCb9v`h(!s|hIAR_f8+l-}%RlT;QFs?n8f;blS z${KA?!DlBonozmxT49B6;45Kw*cv(+*a<9;nw*>PJR^r_Z5`!Lfl!Y(k3)yp`dtys oa3MCl!`S?!iYMY?#`y`uDw%$nB&|xu0w*6}Awy%rcNYr(3-eDC0ssI2 diff --git a/latest/.doctrees/generated/malariagen_data.af1.Af1.gene_cnv_frequencies.doctree b/latest/.doctrees/generated/malariagen_data.af1.Af1.gene_cnv_frequencies.doctree index f263190e6379dfae20977175e7a03bdadee9b249..5a5355f14bddac7953b7d6b940b469e674b2bb5f 100644 GIT binary patch literal 46463 zcmeHQ36LCDd0rj6s~xRYmTU{#vh22vtyS1V0^1}CP#775BU>0_KtWco2J#&oPoEcX*K#? z&2$Iv9_+h+aPMH&o3hnYj@7pt+Q1t_iiU11Yktu*_k0 zeO#Z=Cyx(i^(k-MHQbIC`Q$Bj)sAW#>au3uS#PSYx}dfWEZl%UywUEgH_Vkg>n&S5 z+1Jd50RjmMNSp7_R*A$Yz*rh!i~z=B0B;+}T21s+)WIF-JG`m-u+sV_Z^EzZ5pQ$H zFtx#v{*vm|RM)kQrM?Rih$owjrbG3gY;;t|!AtxeH`T8EwWZnbg%3+=X)PP`V|ntRrtFae|zz_ zj~D@7+9V)I8Z0!-WeD1PA<>d7X?CA78;U(fnbOrz%jUj;HKUJH^Ru}n>Qu|ogE6V$C9c>>@zjfM+~V=23aS(gQa z|95K#6~lA^b723R(p6XSX$4BWtkqY@J(vw7Xmu<#0<(YN`NQ%YjmQre{Tk^m1XGAp zlEbmmo3_=f8>R$z4=PKR)j{cZ*nL#OFdLnI6MAd)O~Um*-lTRMd~N7`^90@!y#aPm zvXsT}i)3&_R)^G1M_q!rj-_(QwBYeDcO+jX?r{*j7m91FXnQFed8@i=+bTp8sn0%T z{w2zrdaBt}orQ*FYYQzK4rt*GG$!2j#x-exic>3Vnh5560P zwH=l|Oj?^7^ANM%R@l~j4~~`)y=_#0@R;IRi+PZ#)o$mY(^DzTY(W-BvsbhM+4RjQ z<>kJo{N#E)Wx`e$RnzL}i_#gMT<(O4L`9B14tM#iSA5nhmiAr|@Ah7aoFIhOHUsO zG8>d(SxTg=U*^g>l`iWszpQ&@?*-B84Kn^G1pxV+Iq^;RG_#4AQC~$%KcYi^vw4@d z2}DF{^|Aa~Ma6}_m)2@pUDYrL-p1Y<+Sz!4_8DU2xCo>Jk;GN)Wz8MPQoOCy+vsTx zqh&M(r@bizwXW6dQ-l2cR6uJTpm4i(P@)|n1^Fmg_z@_`FAZ6kBbz^EYVo0z-jQSo z_8lSYJwuV-6JgHZF|fawf+giDMeWxa*nDb#C!lsH$_c4S5rY4NL5_BkBGS}99g0%_ zOiYNolQN2QCkBjg_0Nqe$aZbR*celXeC`ysG^Zsx>3j50r0r{Y z^b%6_Hd#yUxOvXRdsb&jm^bsJ=QE~In6KxN*C9-eN6x1?EzHg2)gzL0c<2(6Y##zd z%tW{Pf)quKWRekH9~(NsV-d0+yXc&LZN<#M_z|eH=%z! zQiMzkH6z;W;L%G+HSMF$NU(`;90R>H_P)#8a6ICsuI4FU2ghH)BdZVU*VDS`CAysKEfmC)0~!EI*|PV4_;k(PeUO4OTG^I3@Q}rS9#=h2=$vh zaz4#zp=JcKAMofUqE)E zdOqDDIs$rDX#a^3k+s+ykbXKfV&e}$CelT8BbbR;!O)J45u;PV7>t*ktMohW;T)x? z$*dlZ{!RL`n?V(a&mjw6&sQ|F0`1ozQ+zNhbF8$j@!*;A3BU_Iw8MjEs#X9VvgkQ- zfHaSnX~R#%;kWTrLn)ogF0i@#J!hPQ*Vh%p{UVn2;YTFE3cElZuqn(F{Sj zjK2(H<}3JmXIJJBGL?y$ujRqBnd*ZVYHx!F&(>ZaJdBw&88c~7k~5De`ERf#=xn8?ya~CqE?N^QFTc~2RFMB-OQS__Ew$fqv9ht#*Wz{a&UgB~ z9u{NPovv!TC;JvHI6jR@`S$mtRZfUJqI3E2U^eRBxwV<8z;HoU&OnseA4BQx8fO~| z+1k1jnaTu;=knm$Zo~&KG==B$;MrQ^gNK1)Yh>|jZlu^ui6SO(BVTkx-X%kYETFQ3 zd8w2`A*+t^^k%cl2QQ2jEgn2u$Ym*ad2p8U;#lz(9=(Jd&seOG3`sZ+*7^#i{wQC& zY~D!&X@42+Y&fcu6Bs_o;>sWl&FO=1WLu?T_enEn_V}4=df&GEm(9cl(uVzaa#V5$(NAU^!O7FNy`G^ZM zvj$bp`5JPe&2k~fU$l^^jK5gr!L$8^4_>I`5AfjGO74S){$e`1smW(<+H;JHR1xKQ zgfG0h@9;~g>^%lj6ouS+oF_P&TRwPU1MvwSJX_9XDSwg&XDLrhGTB%B0*_uokY}uc zC>fG)AK4AWvNrN9zINHXli;NS!4Fw{HV~Ap!t^8?rP(UP0>LKiR}9>u_#HaIOV~0- z2?ert30X#zDZhER;P>_Aj>^KFl&N^IHIhH5ZtPuH?H91s&hh<=$W+Gn-@t=s`vf1n z(3`!A2hUatA3XH^m*jIdHxg_K@k+=lh&c0_NQriUEWNU87zqBC8f+`e&EMv$#&NThYxqMJpLGpo ztMF%R5jn0wg2xBjHq-enf$7MHPzS!umNJTKkR*)a8ZPCIm`VGFcRlmbl zHODu68=1=ZhD}p!q|NpXK6s&T*ujHmYqJkNqHnm0FY=uEhRZ=m$$|K?+RVNcfdosbzUFR%2TNEH4VBIKzXlPl}iF;4I~7 zDW^9}#VgR^WYr2OA_aF+74^=t`R=#eSAv8`<6EMY?F z01-^t4T~E!?nl%nJ4Rfnk&jzaT|Jn1ak)0|0!=G%Gj z5_~z6p*f-@*-pL1lgsj=(EeQ>oVEXua>l8@g)e}mJ}e-|slV%NfMdr93UgRE)oohc97`>DJXbit$Hz(pk2rIg^O- zEgrlCUy}MwyB$VtW)|xA-8{LhmK5suLp(Uk=t9bWfd^+P&yZr=OZ^%TK7th2ov2s&U*bUX{W#^^e*n=L<^%XuAmy;rGiJC#7?JI=sld|=U?Fzxl>49IAv?Nd(CvB=WASA zcwd#CZYNEJH(G_B=1VN&^6uJT&ZgVV-K15yE&N50ms<1_v1s2lxBrH!kz!#)C@)g! zNY}_`@K8+MwHkHE z+jR!*AA&?bclJe958^TekwM~Kl7~CHPu%)-NZ%t>1@(R@9lZ_TAKX#auuM04M`iSq z$tlvmWn1m(QH^@*A*ZWN%F|``snYR+iQjx^-(#adpka7nu$ZN^tSy z8m#d5o+cF4? z&kSNhBiTN~w$UQ`NGH*3qttu6{|`5@;S8agUw3HN*5E*j;KtJPf)`%xw&3D3{|eGw zu~#80uc*RGx&yR**)T_Y5BgI!mr>aEBqv1O*h`5Ge~NjnZ~87Cb>klAX|%!Nx?lt8t(pU zXk=ix;B*12)l6kcQ&d=p=^D!lxq>;Qqw6%OXk4LGn{8Qk7x%4dO%QcLQ?7iYOnmRb zH#)fJ$h~*|jks*--YfUb5urvCjsSKELk9J#UsA25i5oo?2aD+x73L~zoHDq!YB~+u z=(&;{-0EmanjHV$NM%-ASYDW`5li+Fs-(}6NAS``wwrMSUX;yVa4VO8BvkMi>cxwO zQqH<4F&c-+#12yGJ%K(QKFs4$0^i znBFAR=}zS5+Gu33Z=f=U21~i5!A4qWi5rtC*R`=+WabA%S?%la&rm5p?4MvAI`Gs< z&9#>s@V7R+ob;i}vav!pn35AF7b{&OE>#tl0LLmJ73}g3oZXdb6UY4=sCVI*^(*1_ z2u++_*7ff#ZuA`&trS%*Ks4eiX28$?=z=jGm|@qj-CVTE)LBWYmtC z^M$@S$C(t^a?aO~q$ewp4QQnZ(o?d~$Y@bF7LQel}B~Hf;^gIav3qtsbk;X(X zG#+s&msFW521<&SXP}>m8fb7_DhySGLA1E2 zl+o#s(e_lwfsMJkZS|LRik{NIMf6;o75V)94jf>FnU@qf&_c^6wHPlX> z%9>M_JJwS0P{W1kR%b=CvjcGUDXqQ@XMYUE`Q1w5jN9@~u=wAFIODdwE1QpjG3R{_ zi5lNtrM=)=Gf`6Bnje0q2^IGJjG`%&#;!`zh+F*mP?7VIzgkG9TvD;BSUjm?p2fc< zaoi=09qSvyXgr7UK5=sMLFK^y+N~Iy>Gp@sVaK=|!yC7&hJ(=!Q_*aj#wO%2h(FFq zgDW(Ms5y$^DEP;z!8cI!#iKY3I#J#K%alYXaMdc0mwP#N_Fu}8g9&+e4l{gePrsqI>w+Zo837?cp3cZRkk*eew zQ$O=uNSKs7@GuoXBgTb;(lCzLwN`@GEbOI)ZYP49x~#!cY(u3nMQydAX-x{Sto`Ji zLFrpj&eu>FCo2gfZc7(~L0ut?xGh~>iV1;Pl}sIy{N_p|`xZuYmbb7Mu17$yp^@{4 zwR~5lTE?y95(wt)LNHaVgmOu7RsK*~`I6KBSq*r|QKwZz_qqWEwnQN(Rz zH`wz*A&R(-%$8+FU?$}=goOWoCBl76A!^H8%57&wRxqJ64;=F4^Og7#x2;Pd(9a2h zR|^?`)-t(^zbOAkuN?cj2VWD@zSb!#Y>6l4`UAo1tf!Ts@Lf;c-6 zN2JtlHXEIOlNK>_`d!n(*oBKJ)J_M11@HPara_Az!d{JOne$!4acIUtrmJC)0+R!? zCM;)Pwspj*3N$hQOrzOKqKI3E0`@#th$3zsm*rYV?68=kWTC!XUx`THK8UjN_VMbo zBOVydSwIds^NLEGiCfYY5Z{eLd{rU}<&r|LVo9VbIhJ(vflXs$@=P2U5uN>l7L?yU z8?KCqzYg}|9y=DjX#JSzO5;l32B2qt-96kG-(*JiRrkz639Yhf8W>r1XvGM|Pq9)2D?F$Vh(&KS21E3! zeb?HH!BUheD%1ouz#>s;7sr+_U@EE!vt&$6hN06)F7F6Ma;t}M*xV=Yt67dda z-wg!u^Wk;V^VEI6z7Dta)P0Yb@Ea@IQ}?|ua^8VciS>S5Bz~8Ui$}kMo9CbPh0prJ zA5CAV?>f2%t&?+M08tY^;|&6U`%MBkkTcsT05k=A!YynVP#r}8kEK3Sje{ZjegTg- zIDCT_l^O}dj0Z|WMWcJzkP;1!A=dt~VE@M&4PjH@t(D?Yyf^Y(GzIP#O@S)C5y~YS z5LJ33)a=OVjd*uNH{5Z(dNI0nTWaBfXjR=s8x-oIsXe>zu7#RtM`-h`c}LLyB!SMW_8(K~-EATX3#@l}8x|r^NkVyj zkK5J(png)I@&vpgT*ra^5|m5o4PRD#xh-j1Xj^>F#aMZ?P&e4M(O(L4dNr)p!D?G< z4sdX~N|9r$)$PgfUohOuIjrohXyH``hJwwI4o*3O=?Yz$~$p zR_sCf@1ghuDz5D>wfBRzU=^~zY&Etp`R8xM3d5VI#Z7~xdZvZw4$}X4?Uw;1>=3@5ERPdno6>W`;hA) zi>rhzs`wDfB_$Zzb6~-GXtRkW`y}_75@p5x2jvPZF6KWbgRQWk^N73(snD}M2W*xn zehWDpe>bJRM>>aij#+PGZ*AaBz=`QrGr4!PX?3yEc+h@5s_ac-e<@ktpna4cw=^}U z5q&nTc>^PbtAo?tq-g~|XM)%BSR84u;p4RbF?imA6tv-s7EcZnZ8xppU678Ds60$% zyBI{0`;1>AeCcj|I$b?)uB&!v?Fjaw&6Bs9S6c_fAMO5}Zpk0A#_*^!xEC9I z$6d=+JA=bxUM)zYHSyTTh7x^)H`D0b*mCFAeXJwibnu2YXAh2eTYQE&18+yuYV=*B z<1Cm(iFI%VM|`Ohlj1UWw{^~ z!_lh)Z^I(a1(GDtrtlL;Q1c)Ab_Y+}Xy@>f+BiX9LCUxktGBZS7|gk9k&h2~+t6)s zG2v8SrM-cJhrAh#yBoba2CBs(TLA8sZ!k$E-qdN)ByLDUko(g3heT%YJgS2OM(JQt2Xz{F+d8Vb+=u0W<4rto z)Xaf*zKwxryIF5)J!lS!K?nyQCSa&7Y(fV|jAoz^`h+(_z3+PX%G+o_-L^IR-CljD zl3=WOfniL|HnDmIFx$l&q3k66@Kw*z`c138+9icLPh0I-j#iK66k5`7>nnz1NR{1= zrPB_LPNO0|m6L&~!0e_`83*1(*d0K(`N`@n1M4*h#|Pdn`h`NUAVBQQ)l5QbLgZU* z^%O)U9}jQvc96Y6bIfHZV#nwj?%>w*_Ifittrs@gg(lLQC9K)0lWBMt>8{&z4lXX@ zwX@J$gCjNbxr;A;?^^<*AwF5?-FP`ONU94x9tliVl(R^+|@Y3GEWx+z^KGE-? zh#62PyFAhjoQC#T4a00f2YkP`uOO?jBS-2#q4EFywVZmz$`n1#DCe2(K9O*B4TckIE`9c#B>kQb2 zTbC1GLT`3}C}@@ocMA+GBqnd}?To#poqFOm&|1TX3391T@qUtC%HOl?6R`2NPXGHp zTJP=e(*F+A<16vMzBff_MSP^NAyS_fDNl=3IF;iHdQSj|mM_v@E)l3-BM?LjrSENv zid+z}tzpQiK~gjMhAcZsCurl6hA(!7 z4`6Z^Cb9f4h?Vd=V(kJs*sWOEKs%x!2}GXBL$sy=@81nZy=`ziY)EXns6!YI)J7IK kbU(4zTZgZObGtx9cVdBv62~^$~rQNE88VDgxL<05)X+ytBh+HP%)!2ft(N3MXpGq>U}%STxsD z;a1DE_0FkaSq&?y@4M!5;DZF>$re-dX#V4MOZ7Z7;`gYnw)n4YTF_1}meu+NS8q_C zARPDA6}r_ib{Kn&DdToyi?J_!*8#(6=?C1vwsrTwCC9xWFlK@Hvd~`h4ae@*j0t!L zIN=9~bFS*^n$Wq(8sdz|n5yf68F!r694s4~!co)K^i@GpT!_XiFnQyZ5W%bPcPIY# z<8O`_0baT!AV?Z4H0>1#I=qKy$zz(GQ)W}KXDCxzI%cWOb;9{BJ(ynPA$E+hQ+`Jc zj2|@?Qm&pd?ttttnXS<5dSNcJxHC<6YMu#^_<<{G=9xbn+q5ax!#uuOS6_jSA6DMx zueCAN>QUQvd}8@o&v%ull(*%nCmX4rW~1nKH0-3>rr|=%L#F2s1>>9mO4sB{5cK|@Hx3& zl{f6i?CXxW z?xnd-yJp%K$?Mtvkw@GBP+RIMhF*l(uIM#>tF9ketR4h0Mqpp?%2ds?eF!~LxJaY8 z=#x8Ko`Px|S1n6jhIX8dbubyh`(paZXklE^i(^ds&Ty{1PH(_fDu#0jquYV6kjnz| zNx5BJ)s%+ow3H`Q*Ht{j2`r5SqnQ^WX^rqX(KI6&Lz*f;co!gw7Qm^*=Bo0>hO!@q zYF^a$&ntnaD*>F8YpoF$2AlJWbyPF@=e6~^*Q&{ zz5~D(P_wCNAW73XKt_1fmrqkG@6HKgJrzVFptjZ&7*|A|LX>fkUC4{L$iOdx9GK94 znypQKYB<#$lEc=T()Xuzna% z?4W#diR4Y7Z2F4s!nm1|)gyaQE*WM$;+$Hq>uuj-4B+Y(s{!*jJhp-1D{P&_XmNFf z51YKvMb$DjCSZXwkD3ELaxpXKlp}&7n>H;oYD~Y%%zW8#EO_LHX`P{gDAx&Apj-~u zqVr@~eDLht`RaaxO+ICgt&}LnO|ck9D?D0u#H%`EG~7zzjW4M7L>JNG2r={oUzzY2 zs%GN;Y&eOCxzI)|Ac*01LcrER>{`#P3no@u)?u%$(&BL&hIqPrQSVTsej~6v5UqcH zf4%FUT)aJ?+D_ZhE#0fO*ACO-hy^23fLzaN+Vf~U=5=shr**!X>ayOrpxcm6ItS@Xvq9{=+9H=dbk4~XsXZQ^S|+EA(G*FILplr>%ccE zI^oXzE@LO0M0dWaVb(iW!wEd)v>YvJ^ThP4xDxFrnuq6Z+MHO_GHW*ym!f3AeVuc?w`(kbo7pl?6T-pA(og%IA_{6GI{4 zjPaMK5}rZ=xjVr{v5oO) zm(tw4O%A*d;Thk|h;46PUxmGLnW7Ib&gO!A4&50fm`kZdn?EjxybhthQ4YB~%|)S( zN9!Izsy`!#-j7uOJR{ZV>?@AzB*+VLvb!^-ry$qlkk=u|cgrDnr@1J|t+Z?vr1$|j z=)t8p8A*}h8OpT^j4ll@&EJ*N+?~-yc4T8r^Rsfu{ct1esjgpuX?{^oYj>p(_*?Fg zz9NU*oxeT9%-7|RyVG2hTrtf2yBzr7!utV)nTgFq#^IhqeVH8cI)r+s9P%JSEeSJ+ zU9V+0=xN>tg$B?IVbql2jyh1gWYeIL+;LQf#!0%ugf8?gXYKOkh{}dwEI!E zu_AE#?Q+= zZ_g0+*K)|+X)a2x7{dNR4t#Lo{QyGPcjR;E&Y+$`9oZrcj_VNW4msrRG#7l?!6ldXn%!LcsM$zBJ$Un_^)o!zO5Y(dspOf~zR?9nz)%At3sJB5x=&ay^x zLH+DCfLzXNb6Chd{naHoxSd2dUk? zTdHZ{h*x-J(R?QjDeQcf8{Y?|;Ek?kt!FZkjH`vc*XXTKuAktQ3PDf!P2L;e>S`A9I^m3S7XO^N4@EBcg?BQbXTN>P4IiZUE=iu&~e4cXg_@J@td zJabM&ww01}V|@G~MfuNilt^Q1sDb4p{}#D=S@hveUeInMDY)jfkgoiA;LwKvSMesL z`A;HM!>HYDqNFk@#RZ|>T-G(7Zu!l0`r})r3$Ah<-GV{Ea`UU0WMU^>BzlV!e)H=9 zk+;@nB+>}Ww?r&bQNBu!>w9@zz2(PA7)E}(i+SG#!R^TPiDg!3PsMe=bc*GkuX%6( z;`&J`e5tr1EE#caURsPNML*MdoRQ-hLR1|6FrwNS*-w&=Ul7!!&?BBtrY)V=Tk=}i7Zj%f(_aRP>r-h zN4|8wkBmH9@qJ8L&TaEGa^E2AsId&SDD75ECpEHfWCqH&Elopg9xgb|^6aP6a@xzC zW(2&*o-J5q36I|A<-q%4Oz!P5!5{P;dd!QSKHis;TkhkFj4n@y_&GUnDWiK*{ysTy zDdib(7+!11fheP3e9)@FAqQ9v3BObou-Fhvnq1kI|3GflC>kQZC7eu;d7&)Tao#Bt<;2 z4&Xg?@QNIGpR5@vx1JBmflJxalk$(sflDbb`oL}R)|s$Y`;;6*KPHro4m+a6#{}1~ z5ns@m@&NI9Iq6c)_XPfT>i}Nld?6^mCk0hfYXiJosE@4!cu%2P za^O;-_OzZSiz>c@FAqQ zo+WKhUOX=+SIUc?QhY%Ue0@^U z;BS=!?}sVZFu?az?s+-6QWfc`+=u1BrHt-L`5WZGrIeRQG3%n3?Ok#NQtDF#U6yH`>k0hXYXiJosGnE|@SfK5$8z8@p*G(o zX{!By^*gqpaG@HSIV*zNU|W_guW5lmjnUpa^)%tow#$f5i9VQ)Fol zRZUKpqR~)igw=tfGC@=e2$f}6c6m}qid8>)!^x8<*@6mpu}gbt5RT7sURS;6Uv{JizU ztUwqvl3WPYzrh|qDQI+xy>NrKRF0#-P|NX9-wh>>T5-v=nS&2eaW=9LR^=^eKlDg8mmeLlX6@fsEsOlUNZXNLx=CW>%M#MyX)ZH3;1#0 zy^D9>H#5gdGgZhxpxzNH+{6lQv8r=sU9lW)ead-G@+_|u=DksU2 zQq?DRo`VJHSy|+o^Lc{ljk6%}R0UjSZ4UWz$^owK(zmeK$o@v5@E>~tX4ZN|Pj$;;WHVgTL zZJKam-870@w;b1*%qa2+Z)UifZ^i!-qdy3vkJdU$;_WoE?pIK;F)qZ2;DN%8aaBD; z7sMh}K}EPYNN@-!>qjn})#+qwsYd0=8CApiDND5$)_Vpy-spNwSKZ|DVD9$88oPbD z%84Ly5FvQ+$(GuNW2YjY3aVl17N~Nf%AN`p`$Qevh=$7f^H0t!H);nLmky#rr!{j} znW;MgYTd3WM^MG@Sm0hjOjBO3dd_~f8YHZAi$+jG#aCBR6_Pq*eDK5*rn!IS^7->o z;AqwaPWE%u)NheUSk>Uco%$36_z@;R*ky&4P+(ZL?*V1ILMxCH+s8e8nM1cS>oMMjrvBNIT=dQDI8 zke|u1c-M3yhYmF`8&DX^n2s8bw+)U+O{Y%`Yh&?Qfjfi0-&osHK=g)I- zSlJFs{TzcTCm(m7_`<9u^CE zR-rkn_!}+dX#r1FhILy0)9PJOS5R&T4?*-y&%stu1XE>;H6CzgN_;hQ>Rny_OsN~s zp0gM2L}eROFZ#V`>c+mo9r|vt?%$Z0n$O{Xu_q0;!-=PSij_ClnvyU!IY>;29690b z+mVOwc*)2L&hmZNni#mvM0H+#`j_KC|KiiXl2;$x71s>t0Z%Df?aKy|Mb>I>f;!xc z@v>7TX$hINS{lWbXb`I<)$3-ppA@Y&KGG1@%NJpS`BDRRI;h+R~>s_R~< z6_+2V7+G`q&D5ms9!QMYXYX6U+9f8&tW{5E`4^jYzBwi0_&`KNc1@W3x9guj%B1?z z5hBd{B}G#zjYkHOM%J?TKqY>Psl*`hm_~6$8pN_m{kmE9iQGY!Flw9$Q8|e%%T~~e zAF4c*2%bmqwVX@w#u`6D7bcGVHP>mkb*_d;y^RZ>gjD@=zAGM2hmd+#lFIZbb3D^M31JUBT^&`9BQX{WMQl{i%N?u@bzdrmw(Fd0n7Z)E~IQph& zhdSO;uau5UHo4Ev#3PTre&HzXR|wa~X3j<1Y%bm+(e85z=0jC%uCvX!7$wp;^S#Ss zSmx}~NTD-rsn|b0kl3?!^m2&eV@&K>JGwpEOekf19KYn9QUd>IAOa)HBdYqhyf6H} z(giq!FZVYgtY2fLJo+XqNVD43OTmTFq~h^zKnxLW$I#YW(E$glUO->2?5SRSX&}AG z`m4QA+%Gc49mHSJD6Z~<_$xA!ZvLv4J{i)Y&Uu?Zn78ErLi`DSZ?GV^35ruzcmn}vmW9OO#T~;(OC~M zot8?T*Io-|!}!(>C!O`=6eiI3u5VVyUjf!{!}!6T3TYG< z*dRJiV(zBn=S$E3g{n6!N5$rRqU)#imUA)Qqwy58fpsOG($p1tmkW(1?bcW8x~|ca zBGjI};jLDf^2}y;)Vmxj9O-(OyD8u22I6~Gl+O>F*hm>oN61k56a$hJj|8Rq|JY*$*&g58}va6c^DTN=|}Jm0UjZr_)_Bz8ZYj}*kYb1W;W0ytHI%v?geX-gR-l5Cdo)BM|? zSYpX_Dgkd039vktb}}NS;z#gW=MiBuGJ35ezA+3xtTkZwd>g0wIwVECo@S5zT-uCn z&~MrgI)3UcN+#b*nZ@NC+fs{@u9R8)nybV)T6l9u*&J+(x2@M{1+PU3NNjZ&8qI}syw z8_n!{7gD}w`oNWSVKgc>`iu)3kG_l&{Fl&_Qel)kFSrdk@$=;G_VOgq_+3eM#B8{^ zz19iG;71Kd%cs0X=e{<-j46lXNQ)(-?=-(cm)od>k$7!83#P5<+kVxH%QwjIVd0N0gT8C7pKIPTUsvBS?e~dkwy6ukhU7*D!a!*O)3!FPv|w7Oj1d z1h+s=azSk@u|G=5Td3O?7X%k5h(H)uqj6P?V}CTRhH)^9Wv>Wedn~ z%yR;_j+zzo;my9Q+MdOpJZi|dTfsiN*SU57yC7whi#6Qc02mv!p@f@P@G=ew*vK-jtu`EF2wn-Nu`6P>kxtTTVW0F~o7g$pH?b(|( z-E|$eW+0MUI*yecBT|t$67Jxf7odzXD4lR$?oJLw^S14<$Y~BYr6C@Dd-g_daJZA^ z0NwKpu*kxkI^lLpwO0aI4mhsidb4hK!kb*Zj(pUbrnjLvK!cS7_%H@TZ6J3Z95J<6 zA&jwbS`B=smNtc(O{m*;EoilCiAsX8tN}aXx@)Tz0o=h_n6i`f)26nk2bxn`ZIMFl z)K}Y%r`N=hOiSu0M`n5^)l>s4yufQ8^x)3e0W_lkwn9nBAfK_NZH}VOp5n zxlXu;egO&IjLrMZU!E8Vcd-u;EWAO3B3fq4^gAba?hmKidOOYJ zW12`U%hnl-kOaUxHZFEF)aK+f45o=ss0oz_*RQ5zFk2fv9thOjlEdptld{P zu!65c@Z8?OWyV7Ez7Vv5Vj9%(Oi1nqu0ng9x@k9{1Cd|YO^(6~mUG?A7U?dYk-0H$ zWiAOSgU=Q;SnwKzYv?+@4+(Fnqt}I+-cn7grfM4bU66Mr+(nS_jt;tNHMmc^8g9|; zi=9)!a=49q6PPbF5wXsMZTK}LQ?KaoPSBfOAPSo0!`%V~686ZOhr2Val&;O10j-f- zjFC&#So=6N^53(~Zz1Y7ze)eJ=$|J2^F00Y7x*U#C#Wxrj}$go@2jlmRn`k%!n~5& z2>_zy{l)_v0zFzW2yBHCgxf`tGa|OvO(+h{0)+7vvh27YpRL%!`+)~gk=C+fC0fL~ z-kfVpdQW5^PQ+N*pxqhxENQ(1le;AkE4qVN3BSWKP{_efBDuig(nRDLKTgSrXn#K# z_0G;|*bsaBU4t+@s0~M$xSve(WYWweKWW-^E6_;OR!Hbb`i6&$oCz%hg5~P}0?YUz ALjV8( diff --git a/latest/.doctrees/generated/malariagen_data.af1.Af1.gene_cnv_frequencies_advanced.doctree b/latest/.doctrees/generated/malariagen_data.af1.Af1.gene_cnv_frequencies_advanced.doctree index 41b185f7381165f785b1f4462e127b36fb28febe..ec41255b67843f369f2f1478b6cde3987dbdb82a 100644 GIT binary patch literal 57230 zcmeHw3y>VgdEVi5hg%!~f-jLGK@CBZIEZ(908ParLOmdml2{-Sg<@z#Ahev@ox7RE z?#yy#7Pun`nzAiRFehPRt!*g|WxHIKN>*YiQ5cm{kyDAJ$g!2AEGMz7N+K5RSgy!Y zDwY_RO;wWb@194`>))BZ18A4XD)4rCy8r(Be|&$xru*p~Kl>Bkm=ga5d%b~a*=tR` z)3Ke7;f;cw9j86)8@50C(CELnq3piZ z^O|A#8P90@mSe}o%^l{nIdf(-Z_Wlge9P|{%B$e6zTVSaOJ6nYM_L`-*PHsvk>)Y{ zLyGZ8t8Jfqq_yH2j|~mGZ5iGpExmJ2x7$W%L_|Sz`$NVWF{_fA%9ENRQd26asf5(~ zN3x~U10C)1N9Mj@wiOG)+!joS?LQf8?^(7nIyqd{gNE+=uC+Y$AvcoKHml>2OlI0W z-Sd!$-#cu*FMsXq3vfe)H8Y`4%7|i(kD!m$+d(9inIrBzyo4G%DcFA=5#*#a< zZNptU@3?1|5@9WptQH6BzUkOy$!LJLBpF{KX}Y>^bd=0_A(4z!5ycW}x*nu*(}}Ia zWpgUnVc8vHO;MxNu=zSj!Mqt-xds1j#lM62cZehcp}No>T00L}TJ|ceAb2Y=Ra)iz zA#FZsZ;Dr~Z=l_sL!;mgB{_ukl#(8q(G;e}h(Y)<&gm$iV^LVp| z-n2Xm+VY34YRISl>9(n<$ZSh1o_CE^_{LGq^Ih#p?WrvH4@iu^ZP9yR@Xay zaNW?|gA3Zh$A-F#B>LHRY##=)pm};9jI=z%_m0MGez){^!5=X#8++2R4ed=D{fWx~ z8C=N%vXy3NIRio^)X=foel};{vRiG(bX*_GecU*zS+tTGAs5O4^PKE2EP7s%v<@1$Kr#k+5v|I=wg#_;zgiwQSi= zzXd$=Q9~@vBtzRA+Gim{5>KR)NY~Pw;y2PpkSltB98J)dVR5IUl(>Y<3sZ~(xnr+85ngpA$wB|kXuLvUK*>l3P zDGU-0N1@N$5o{-?ma*pA@F9#AK#mghI`H!5kB3ATJ8-4!k0H15HfJHq}$HGT#}goSaYy`lp+Rz8d&43 zXqntik-Hh?K1OAYp5Yz0&%Hg2&+Er*y|?aJ-Z=QZ>BJU+w6j9$S&{E&<3gm1F}V^Y zJ<2I*Cn-s4XeTj~SB`nwe1tUd-b54T8H7UFf-6M}&~1Q{0c<@0vtm7`97KgzG5=M} ze--n?zD$hfmkje`NSB?p*fkZm43^VA8TYu7o|e+X%D$z@D4QWWCE53~WicB9_^Hp> z%HrI#w+AXA~wILSOL(_=BaOP zVAvf*#MT;yYl;npL!N7cZD2xa)$`@8Qq_e)wXxE1`nqM0f~|vfjFFH4CqWNjhv+7Z zL>6CnR}Ft8YYBGIka1wNtre?1x){tNWTV44q`}lxxp2L5ggO)JMSG4dv1qr_1hjJmtyN z*}aXYT+VY|qcb6*Co1jU$y2YO)nJ>m+)caZp7c=t5-IaOp7nCUj8*23@{~8AOoOLf z&U0Rw+X>YbO?o`(3YzR52Z@x6?g|wts+!0p6x2<9uhfEQvyZ1-YXEu zeur;Exq!wh^&33p4Jh^7Jmqqp^GYoUWH0m7D`@r72eO4YkS!?ix)*cs%n*1365r2L zE|+*>CEKu)8gVUt$8&Mr+j;8cd?(Zq(2GL*T@z9^QY&2M#oUZdI02c-r`Sfcm~swN zJ1%C7&PQ`F!JN97EV!OGlbODm@NLwb_&E{RkMfNwWVZWm6iQEA70!!x4W4+RE+XP% z(b(gO7n)H-JQ0xyp+ehvf6j#0_wyAh`ckJUnTf55#);kc3E`)gO^b~xZ0#g=)l{}6 z#LMaB+Yxe>Hyf9aY)?r^tnU-NNQ@d3yCMz zcT08I=FM{^EUbX`@9|t!FwydG6V+CCVx#-JIeis(jK9S*U#zc?_*C$kcH`{tu}U-nh>Mfk=dn`k7S%mOXU0{FNETj zt)Wnr4$V*V#EY#lBtF&}Kg<&^w#JZn5>j4UF5OV9`AD)eDx-vwU*ow^)Lz!x$%m4? z;q*#eUF}%%v7DlcW65vu+!reqx}v~ zyx3^-oEJ~!e4i)2G0q!1*htKBKGsC8}2+BGpM7~V$Wuw_xtq=It70WIRI8(vCxWnyWu&4Wut9G@w zyeW#)_?1NGr`allEl$3J{S+0sp<6YIKFii%vW=Pzrsbw+wIxzt;e=4uKz@;}jkYhZ z=)<0mJ?y=qk#1XXl{Xv=#OC=vwt7A`bm)tii`a0~eNJt1M&*jlmG`$^7xtIRcG%}S zSaWKDNOS4LM2Vkc8(lIN@jMDu>0*7ECti#eA@Q*m|DSo{#l{g5Pr6tQxq(h#1=+>C znMaaLm*Jay#fnnPdQ+RyW%vWBgt2mZnP<0HP9gEJ@nCkE4ZOt~uFCmqc;YPQc`at$ z{Z^iO1vPG3Jdgs(fJ1RSsOlYW;agWMJ4w9zW3ZTb`k(~-A7JTsp8<*7bU}#zRhw{{ zt)c||!zO%GZ32t>7F$dA*Rl;65A~9Tj5ZZ>Du?=c6}h?ZwQ`t$by3L(`-@*DG2q8p z5tPJ$r%2#DHDO2XUcf3*dt?DZQUh^HnSQt{4Tj ziwbJ@CI6As!&p&$k>|HqR3Y)PVc@Gg@nR)c<@^PnILmo~9y7y&@9@+s=yB7+fD}ju zIEuqSRR`HQ!^Y=g*-7G+!oamGeKrhKZNd++Rg{E*unE<}z#VKYlY{}uLPnd4IhBWj z>q|ez&EfvuOx6hUbLk1%pI}>Bg7)t~p(<$qw|U~lKoAli3t_7~@nT~Ri6>~k4WHOb zG3CKQyh}v2&R3`?vm(X|`n4f`D1={WmAI-XKg73;6J;e__+^$piwjko@F}*65?qkP zyD41QdgO5AHuN)5|L55nCcy+*{Un%h1M?Mr4i)yKGe@n3bKOQurLKaa0p9<9ZB7) z(!7ap8Yj(4u&}_=XJMgg6OOV~l)!={o`!|(bihUAI`Sd0fp@aCOacv(g-M`c>=_(6 zeAt~jwIga{CN*iS&Nj9L9nPRo6?AZT;>G9?5+92W7kJ{u_8byV&|!i(!e{x4>tn=Z z`^%n@N*F7rU*Xv;mQzT4?BMX9@WhKXT$S^G#S>>a&-eebbAIL<0?FV* z@!+tkcYKp?U9s#W@k(g_5=);&`>IXYHp|9hwh5_DAUj96kF8}Aw3qG6Xj3t#^1xJq7nR;yiLNu>scw3gn`>os7e@kBTu{-Btqh2;qC1_@nS0pi6>!TPCc?J z6mA|uc8FZcDB=`fxuW!ngUGOk+Wp0cq$1x0RJFpvVtz(;W~sOlr1=37@RJ4w7!F!&9YJ{t_GHsLF56(wE&unDPP zunnitMX)G-Cm{HBwvI_cfn*?~OU0PVL&0I?yu5hxd3+>Z!8v)kh%g&dh?=XUB#r(q z+vpPH|6eFn1^Kr$*brWf2qE#YShklZUToDN@dWu_TQ1$wI8d;o|7M;UMdxLaAP*qX zm(UaM=-&^f(rPN+h4}`a`C>Im;_3b9JEKz@Ba=%K5{o;|*2eCz&Nrxd_x|5xt0>uF z9TFdFcP*ZHvE3C(YbJE#NLcZ6BC9@IS4~+JZ##X0t%8+R2H1*&R8@C=mgl2btde-8 zAoUzepAAw~oA61tijp7|HX#+H61NHWvn2_MZG4WcZIW;$S;=Tsfv)m!)lv>=jRAEN z4`&UbIDzfixWdSLl$1n9Uu9)f65aj-3Z-GQ_`|gqc;dyd84@3hGT-5e7rR49JQ34< zo2HCV1Np9WK`@-!#fE*wqAp`F{C-ZW#li4up7~;}O5)jI7&<^?p*s&o35kIoU~6Lm zKHs3?V0f6Vq6FYW;$zM9%{=j9GcA(V-pmQkk)sUEy@#!0gR(Pu;?-q0 zeNY^B9f>S@OeA%Vt!Yyv^^Wk{Tf@v2Br2#JaJBH>NoDi-`0GOC(Z?xvB#Nq zx6ZNQmgPJj&$ClwSMby)3g)to+OwQ8Ze;qW#iNd@-K^L1tt*zDBwlIM@kW+DJL;&~ zgtxO*l#DvUCS*n(;av%ls~3UeLu_r6j5;JM8LcX2RX*w%7TwqopTVu(sDR(e4GnRQ z!c)5Aw`zHDBSm;4gOHB;)$_DuBa&M5m_TEnm08Is#6qDeqmUFMs5+B>WyT}tS zc8`#FG77=P8_A6th4S67enO?>;ViT5?-%$6DP~tTG|7J8Lt74OBiYYO<&KsAr+9XY zB>I<3i{IwiWo0o|i!bxUH>Sne z-4k>zLKDerF?TlPYk2Y%^q8MD-`LrZ-MsS@PZQkEv(Ab=FPRKV-Nh5HAeYOEQV;O# zZp^+<^Tb&}kHuGuC(d$Spv5#wo#%;9pv8@#lmaBh^F+_^>~2iZAK{6!f=)PR&J+AN zUjfT~QbEa)g3oV&_*fhK0#Cf6Xtop&Jb#BL&WdF$=ilIovz+I>XJ^zyS2oyuo3EjQ z3*`eubh=Gk-K23}F`METv1Jb%Jz3$8CBAn9#Ph<>h35S{`H3WdnL_gso^@92dC6o# z^ILf0738v+p;@t#Vo-lK&n_#AvHq{~#99AOIA=iJ;VWRdPbw$@^$VAh_%oYByjZCp z*#PmeO8q!boK@;r?|Gglewn>ztStT=&n_zq#r}#z^Y8J*S>qnd`TyXFvz!-bG2OBK zE>C;{EpDV^J60Amd)Y9|%3`b*ui=SrOpCYh#97YsTFk}xBRu&Edd&B(E>n!ZmuH<7 zdtNe`82@gbcm=s^W{e+e->W>ktd)$l?;%f|74%rne}X5@a$catG)nz_p7;b>+z3i3 zf-Vl~zsj?_F+qQZC(a5w;hgEI{cFAgmiwfFlAhXsyp+WM+vLPEYgWZ8kyV#k{x{D@ zv5F+|N-L57kEPG9L{@FW?kgq;v|$r6E0OA28}4qx)+u=%x-vI#16$i9E0L0wj8+w# zC|`-ZzVwpz+-l*Rnl)N8OeZEQhj+4VELk}`j6zjb4&TNTFZS7x_*iIv7f-y{oI~Qt z%3-aK_m}x96-8ED+ney?{r3v_SNeFrsx+VEo5o4A5;*)cOP>XYs!jMXTSdt>1xdWd z$NL{+YncQTBny>6fzKFR-^VedR;y>(Mk~I&8;`j9la3TM2e>-sUU{F7dB(iy#1=U6 zR4^ybaCHrT=-Qro=;@75t?90-uQ%I{YcxB$uX~2yyhr|(;F9kr%|!1LocT>wY-LwF zGk2!k!0}ak!u5+_FLxY<;?E&4cmEAFBPT#bC3oxQEjS1i7fxHNqo9HRFXFaa1E;?k zsYXt-7f+*izwMZ~fO=)v>xqlcgPW1iTs5H9wtcR(;u<*9)oxpc*U~%Zbh~YIP+!Y; z+N5^h8+E@0UPChb`Enn?ZM>qStm&4qHO(Iyku4oJ_e&dsNZv{|rPxy2v3&zO7m|z2 zUh`4L!AxH<;Zt$_h;~$iST)Dh23b}xW%k2#pkYH%=0a#5FJJM`z+0bEb-&O}cZLL@anzjPMvZlt0p(An_nuiT@nhvL< z7vSC1d{?)0nE_mjpk}|p+O=!L{uezp7d0Li|sH3Rm{P(%o5o~ z^qAPip;*f&&6`egz)rq)kaF*j>|q*Katl&~Sv1-`-Sb3)6+H(!r?*YfZPd2QP*Wnd zyK0H;M<}n4X1@6JKP-0C7oUFa6>!zW zhVHLrLo&=ot~Ud7x=*-XW^9uN^6opRj@V(Tlyq37ABIkt+TS8Kzd2Qk-25g{SN8z^ z#76li;Z=zez#GS%-mq^APRXoycbg;dRVw4rCvpVd?c1|1gP(tEx2X5(H$ zIFajs-odGxM_QKW93Xs*o(Y-{Bs9?Z=^5vYo_3@m3IH2%vx0Tb&^p#R%R_+i1Rhhx zlEfXYG7@)`k_aKTJFf~Lz8f<9GBkcpblfFLqPu7AuMe-gAomq1_cyB5iZiOhD#h=l zy0u!>g|I|*#IV$Tr&3iR6#W3`8Bp{;H@lgDp~Rp8J!H~J8d)SI#;#GvtRphgu#3rX zrk&W&#ai~0hNL-|>rbKlxIRQ0lBkq4@;Z=2u0fC_M^b56dMLg}6TtL@yuNTji*M({ z&p!Hi=D`b%`we^5H>o2+7oYyf0&MNWj}6gFHR4Ah2E4nVOyoXai`fuB zh{Ngta(i8|!y9XrNkso|YqchA&if$xF9^}siLg{kDy)thYCW5@Z(Rk2PN96gP(h`n8PxGDGM+Nu`e^7|;?AdJ9wOsO$Fu<)2V-@a zP0j{Tw7`UcLAO-tG$o*~>XwbE3YuRCJt*q;V&2VZcyPM5AJ5sz;+Ea+4Lc|uc9`X~ zGM=fsTO<6uJ}fQQe)^ zUs;90?_NO;5=pqnmo*sNyCW1gD&* z(hG`z?z)(Db61CbOv8EbO5NA+No|juc7Ta0_?T~E5V~rTCrbx!2nV0X)S4?CdmhsR zG~LUo=X-0Z zGwsXQLB#J7>P-9cwZ(FboVo0E!c?yoQ=vB#C)K_AnPWoRe|eM&|NcwGQ=*LvwX~7; z`0HUJj|&s2TCvzv7EGKd4)n>%oM+;kxi-OV0V*!~U|Ii<4jaaD!q;~k*Sn9)7kU|CGaJ>fTPfv=oW^?eJdLMg^#(; zAiD3s(`*MTaLb5*=aQbP?9Spj^rk|u$=-w#I!!h?5&G9^2|evIuY(}|lMs5^XZEvg zj@)KUu7t%us>NdHImB0W&$)ZUdVqs$j7ZYnKdaT=v>#|t$@hdx>i7Ybl8UV32c-To zKX^EG5l7X5UfBpQBv#zV%iQh}T6`uok?u8D!7wIVAGjGU-iPwT<+Q<IQx|GeWB-X&80=f=RpXtktfxAs>LKj|frMF=Q$w6;#KNNv&muJS@Cg z00u43%+HO8l-?4~+Qu%3zJrCaxC69;juS>J`l=CvJ$6JGYi+~m(1?lc5S3hG5E)q^ zpUOP*gSC{A2Krkdpp!xwX}iC*k`N-mub4ZrpGRx49QpeLZzfS>v#znL5Y`~`fJ!*6rZ>b=XfGI3L9%bE7qFPIe4M44-{o< zJYZm>SVzNt9}NTj_OOQqWo-MRsXgrKaWF*DeY`uL?53mF>fSl+zLmxSl1;Y9xmt}1eV$rU-RJ-O2iw@pYfo)~yKasUun-<8 z9ZTuOrhh5D4)up-_FQexOCb2yYZ+Y{f^UN-eNuQ*9SEjU(*No}FnMhW1P6Z*p9wDT zchcj>FVIwMdXiV^(nJTyMtF^GB%!Q;ZL!Chz!G~jS7P<- zhtv14*WBoNP4T-qz$h5gN|<_7ezpWb+kdoh#H*Zq9(IM4ltjf}siopHSiT-&|4pId zG*~|RM0BP#!W{OD8y-Gxz}D_w?;sMysl@mj9xF*H79v^8N4A62#2kU^8iA|SXaugQ z>Y_xdGWsp6jh>RKk-}Gws^YQ=Fn_(407GCVsZ|H&b0H?ZB36aY+&!C7zap}4Wkg0> zxqZv;8LfCbw6Y5|I8xgoBKugX=}8KYFJ*Y-LF~Jf`-Uzx4Et%X4Yo8DQrYJ6$d*RY z+d=h@1y!DbcO=XF*d9-%q+{}RrFU17JC~s7sh`?5H6;%;1&RW_2o1yK*Lcf&I{7$y zg!*#NIDHx&M8ID&KH@WVz$#1UOkocx`s%ZB4{iT9G}Ac`mhd5oSgXde8i6f7KS8(I zb^6-l_!dg@Ou!F%rE)K(T<6A8c-SPuX&t4#vjA!OBn7=}KrMA&qsrt?(4pNi+}=7> zKxD)6BBM_7pcmf2Xj>~H5B8br?yBKq-)Y~$LLjXQ$b~$h-VYx>tUX}8?cf5f)!~H} zGJ^$p@%5I6RYG*PQ4kx#Xkh@mYOnx>RYclKN^6Dq1OQw2X?TopmT0|!_|=EL1DNfh zR?(mixaow%!(|ECu1+RrBbQTKhD;s1w=M!%1*V9D#zE{*01t=31a>NfPX`lPn6$!I zLKuInST1%ch*l@803VXW~e4_ ztYVQBc1jjRJvy>^jK{3D+0ff2^^S#C`zI$Ssm^wDDy<@a9=e421_ZxOI?J<4Y%_dbyJcU2||I$U}fh`|1t z4fFHj(;qtn$Qetg7?!9jB9x4tgo6IJ*Aji$KOlKm?jM|bY3tO~t62Cd7XDyjA;#_d z(L1>u4xqaDrgsQHJnRzC;AB%f1t3i!Sqyr{bquJDB7moIZ&v3ZrhZtEM;we(kWj0W z5EndBk(3(UGaZhY*5Rte{)%-PlCHqrwc=5FG}1&@;4aY>s52U&QnCY4XEZ|Hj*`(x z@Q`|13I-(Xx;nl>&Tg_3y{boPbkGvL+WA9|HXEWJk(qH$pTH7!uhNN$WZzRuvgxUm zqiF5JLbBk>Iv!;+E3JQ28|_`IRozdWP%n_b?)k zKmOa3R%Fy2oKw}S5PM&S7;nkpz@9kB5A3si@#dX&rN0h^pA%Gh2GRq2DkaT?uPZ&U zC*w+7i7$C$Y9fI?xQxEOA1)^)g9e=j(U)KQi_N|U=jZM&Cq5GDd!GJez!$X$Wn0UF~q4n*5F4m7og zb=RU1qo)lp_eCp$a?~G|Kmm;Yk1WQt@Hve-4yW2Rec8b{od%gUVOAVtDDW&- zA{qJMLtEPyTs7`c#gm#l5zQB*(AwO|BI^x|*X5EbKFuwhM2`=}iA*pw0tHWgJ2t5L z-_^baZt-OS0^>e*J@qwM;H#ELGhe(5{FSvl3}gOeG9A-equ6!q(FeDLFi45yfTVIS zic5-uuPo9eJlAF>YU?FK8}KIZCgg0>5GM&_|Fss1q`MMt1&aK>K#@9K2`VMACkg9x z3>JR^10mKIE7X{8$ zJyG%^0+zdumviCE=y@MU-YlkdZ!qWb%?sX; z91SIpozhp1EYd$Z=w}fpL@g>Cg%;xz$r4>C1j4hWaGV(kj5#+-H`AKKp%Y^6*<3)U zZ!7nyWiahIL$_^=%!S};aSRb{c*5~cSOBMWWN&l<=d|tc9bfN_PD}-jC=U)&J25q+ z1EaPCd)h-6XDa!vkk-jyE=r*j_C_azouLT5QLqnZX$^e~EA1FBkPdJn+w{Zul+s9! z)C;E3!NRK0=%l&#WH3w8!@(Yo3re%-fnnVm-zno^m+Lq_Sf!5KDA=-uyTc?4bh6)B zWN3tsL$`;g-E{8Tvfe&RZ^6nAsp#O!6_CNcDnohs!C*J0FMMptYOT@XPoob8duY9B zfOYl0_^=EFZ;&b2!zEH$w0_hQhasUcs4px)rz44kIoF_F1ub!E$>_w^pkbm57Cr6= z_8Dsyq=?n9p_ioY=orhxRnXgWUUzL6B66UM*+wJ?p&KDR&oAbuvbc6p|V3z83p?@Z!#phC&@?mNV*9R zQRy4gFEWLLE2s?~1Z6@*J+x^Q?C$CI>JS@LA@L5Lw;J{+xXQ%>l-p@_i~%eM)!=A9 z$YC0;yMnU>ArY$+8H70R+1EKwP0?$JH!5<6`LdkD-y5_LA~J~5!@?Mgt3$M zlca%X3_DJ1txpDZg|UXNwb4>b3M*;*EjoZkn(SVDF6hyiL+&3TE@vWFf!ocYG1#v` zOBs%hce}%EtrZKylo3XG*U~Rkg3mC7ZyGjH>pU&$B_B_03HFh{!E)$u3;00a z@<$I`aWL33Fb2s|KQ(5KQkF50YLROM*O|UQ@QyAmA=$%$cXU`@({WefQP)sT!2oh% z&j^kbfCr9(ok(B2_3)jL=N@;Zogq&t3HjS1@-%!RlRay=P0R3CL>&NxCDZTsP}!`n zFT;yEzBxLvGuRKC?6+d)jK?l5ampcp{R(d#gTS?xX|0+){Db{&?>S`pb6y_@UbG$? z!mB+9>MHRpA6w!ZPAS^`Z4=|_HWV-Y4N?{&MCr4`0jk&o?&MYp2?G~lJx<%QS6~An zE?h}K;SHBF*{nX1ibU3{Gl_BT*%U?W-;%Y8LRY5f1EgJl1ed!eODlYXSP9$_qhJEq zU2O;BVxdh$o|)q`I!5}3AgK3`9)u5x4~<(;h6l5e6~^$BO5PPG3(fBe4-$Z-trA$! R!U0aMkzhjIfZ=lU{{wtR58wa* literal 46085 zcmeHQ3y>T~dDcm~lWrxQ9=2tSEPH&$+$p|Won#wqfdaB@j3ZmPRK^jJ#CmRb_GVVQ zGwXSr?rh7LR18*S0x7(N#FYd{pz^BXQ3jk!C`baS5JD;m1qlH{j4M^Cq$nUbq*4Sz zzQ21OJ+I!KJxMn4x$5Mdp6(&Gk`zOy6*-H?5ERqpsn$HQ|+iOGj<1wxKR)=E+(^b=9ic+*dt>Ka^-EYjtz+ zWUXmy4|tkcH#FyDO>HcyW?gIa2q<8#zgJr#WJOSGvY^%ws5K&}H8H5idVHi~T@~YU zd-`^NycQ8cU+0en<3H-JZyTo8JL=7=enoX%+nD!U(2eM{&S*G9lMVH@>NqIG?@?3j z@LwAnUN?T2SL>&3tx0t}e}k(o(5s%lRo|s=*00pp>AU@R?$xc1w%7JdQ?vJ;vFy`( zV`9w`t!BH+u5Ot{#TbCImm|KHsA;RN)(|RZi9|FKNfc42YCE9HRY%r(^ZFWp)G!;` zlE6mJVf|`QLB9rExfXxd;cp6mdx#<+stxX8w9}xaVJ<)l{MQmvgjSPrqKDjR}5KzY1){@YX{S>Y33^8+dVt` zkY+Z{PVSjeEL$-ekTaucXtsi`)u1~Lsi`rRDUMgy71iNyHEQMBs_E2iqw8|S)V5=B z>>O@(G-X<=E>vfLg5&Pt-~gYa>r{Ec6h;r@q1NV?XOymH8&-q;bkq)rT5~klIe64E zG0dO@7R_GHDXLjrvY%n?j$zj7mTuWDDELL4cqG03^RCj@Lt

Z;jTfQ$3tEl8s%r=5s{3b@x>4g=ba3hn%(rDup-lJ8(@vgr8m0?531l=7LM|=Q z8!iHZG#yskZFL?3bs`kos0FVJibbu3c2O=KX~<#+;8Y@hRk^dNOhL(w zMGbWE98K|H^6d69^}=9tTCs|1LS&t;RyUfgqN+ef7c>|4s$<#93Ndg-;j%P!!`z&5 zw{a`L+Zw$H&;p8(BU@c|ID%&kS69$lgDOF5AVC-m=4Xdg1%rWhK%iaSa2R-wx$3zV z0JqUK8(IS>H8c*8As*D_!))YN=LoTy3MM&p-CkCpj{$lLVa7ogpchb)fu939(7Gv; zcNPPLR4y|s(KIl}h$u$G6yfaa3kUv(Wi~kS99%A-x&DwCMv4kx9A++ZPE|Ps^?~w) zHq9j~N(KnRrY&f;!)z05U7!!j8QrJ{lvC?T&&y*ne0&~e2F1CiL z$0P%`sJ4v;W3YgkL&csJSf$BR%0WSp4U@c=8k4U)HJ`VvHjMZ^L z(fy=Zyz%s&`>Rs~o9xUU=8Dn$xS7q5~yIRq|6eqKTu~i&~Fn`8(0e?SWhM z^h({T)D*o}HLb3$wKb>OT|PiQ7n{FG08%xpam_*uswb!3G3C*zFD zX%g?2dQ&0o`_zh=a=(lz8;L2LBO3{sEHm^I`bnbvn`6rBr{F;H5$s?ifU^yzx-hGl zR|RP~{$==5e0I$f(p66hGsdc?WG}CJO3Yu6e5h4VY1LC=ek=2_`ujJlp3=qklp;ro zZzMz$pg8%pM&ijYy*+R&+z5y_0EC5q`YkQ(`C^Jsnd$f3Uc9&$?GZahxZ+oR`iOK)@b{7tCNw@8e7@0>r5HB-lGc(fmUNoKv&+(#?9Ey1>3X?Ybk>t%vIJUd&n@-Y+>NKlttj<#MUhr9x& z-YJJ%jB}Q$8v?&a;OfuHp%22SyFs;9m z<60~f0)6u>(m%=}7t^=zH1n@=$i+BkIhUPgzApz}o_Wv1G&8<-$a%OgQ!kf8UIA0D zlS3}U)SPMN208RWxOxGm8G+o0w4ivHo&Lxv!LHsRM|%b2exn?6F}Vet^Yy+ihr9xu zACN;X#yP9^qikbEp!8ehu*(a`=3oZn9bK3y>BsGP-Uk-T?a$K}2?BjA= zi^Za^D1Sx{xtP9vr?9`1LoUWS%em|n_Rn(Q<(c<9OkvN-$52e5zDyliC!HKuz|^gB z$i+BknVK_&?Uq9ygsT^J3Y&?huo=Oy?vtav0&>4b4!M}zv52fg*jtD-`yK7kw(gcg zFUC8Dj;TCvQa^DXAm`KC7#4D0dv!(*xtP{#{L7*rgRerVdV*CBLuwX* zs*SDcGtu7fh9K~iOG5PF#ZQ*+jGtp_eM~-_Tr^uBK_djfCr308rsGj$Y#P_}8+@jS z>&EzgVHkWrH#EN6(&4)d?P)!x@g|{0sELWP825h}2KQ$e?uf119+^Q4gi&3~77gIY z!LW1uio5(zX_x+pl~soCQIlP*px<$Sj0X*hovo)p=CD8h5O+DcUgjQA1YcA2+AhM8 z5vG{z-oM20x?L9P+(B^n1D-`kE6(AwPiq}P4Y3+VN496et~0FMELI7Jmn@8jd9`$y z`TE`3g+|_d>p74(Qr-g2%}U|7ehd(46VeJ;7xc0o5TahBEPIu_uWfjp=&L`UI10n? z=?akvi3qO@zb?(I8uBgwWz4^OrDHDO-#utFAphp2@TL34EKAXj}*R?T|qAicCFnv7Y>Sk#^d;)yq_Uh#k(Jh zRoQbS8CGpc)CtFwDvgKtDe3SE*z`w(v*`;`_)<0ny(HKqwTfSr_ca8oI10nC>XMw} zJsDn2BrAo?N*Bl6dQLjR0&ab0aBhu^%3J{{w}M`h+@iw<;i%TLhj=Vo<$VpoEsnx4 z+`6Lh+*O8Wm*rLs2U+ko9`&?z)CC-T85#{Zi@ib$U&_Itmjnmb;pka7HugIn$!+qU zhTtDZU>N@G$R3W%Fm61m6AnlyiHCJcI;;W)y=ia;otDCvGAQUJ!Jv)dVZd-uaX~z$ zWqF@Nu!^HH1gnle4L>+Mwit!Aorpr>qX^ijga^H%JU*VtV`Nby3ZRc_7q!RH#nt18 ztH%+o)gb%fk0WMG>KIq#(Da0lvEg}_)bJD-(|0gqD#nZE##Fc7CkLLpvDXTK_uc;f zkQ{jK_IC(8+G{%g0T{bgBe#0ynyy$_J#+oSJ#!scw(M8gyvY03pU7>4u&>VIRDq@r8LiyC1s)> zl>;AyC>PU2_2lSEMMNNUzHtAR9JrLweNEIy=SS&$ zQI77)2>py4xRlT_=90LmZ_7K7Vjp)<5E}Kv6#(xmgOv@^Ie0+QjO1(2OXR?%Wa*3f z%jLkOm}j+TW4LuD_-Z%Gdl*E8lC#6sApAM%YuFiIkeU1m;`MUWrIhar{Js?c&r&`! zDL3Tc%ai>gP0CAhyrneHk|i}MzfBH&5TcyNNm&q)d~^P!99=0b`fC2~%7IHYKgL{Q z&OagVK#G0bL4i5{?1cpW#q$F^pQ+ER0C-=fep?P)%GAEv^FulCi>y6;X|ZkN1)P+x zk^`3tcVEnBwUl|u$a^O z;Fsj!2jOGVuewMRyf4RFO7kpPQWN}>a^Qmyk_r?DUmcasX03N&j!GO7qElP^U}esyy8N@1C#7BFpREjlr(#F*&n*rb zt<{y|kw0;B-~*lQdPE9e8nip;5PWGDx^xJsh~OX%Mi`d2G0cl0?EXI~?X5LLL@*y` zimSqsp!hKC(PWZ?I9_hJ5i+?Hy zp6}BK!23F{e>q*Q7)m&GRF8l_eOmeS;cToCkT$UR7E3(Vw_)4kKSE#R(1J4&~j(K85=1&ir zBPBEtgExqc#|=_!r891p+W9l?A!!!{GcE_7vd#H3?x5D@jdDEl8N-1OG~?E#@TD{E zphI{-+C{;P8w?>aV{UJe_A<;&%TY*iQ!opunO0uWzoLV){YH(Y8H%pA z$0Kh0q;vdw7nfHAnRvo{FapF^tCTtrnG|s)de5&=mKoeBjf9fDWTu}n>6OvArgt6k z4dLqOrq^!sG&R@s&CQ4YYOYnU0c+RkwLSns2VnZ-%y~QRyk;$VPuKSCX?hP!N_1G? z%}D@~yq01+G3SRVlqk!cn1fSHqB%} zxK!@N8_H?j@f6kG?f*oldctiN9|;Bx!Ppeu&A-v!vmBUC)*0CHUlSFc~PMDu@a{pbF36cphDPvTA z=#E48%+0-W|IKs3d#hvAE4*)op^0>7EYn`yvTR(QkCdEF)O!D22X4IamYZ+6asN%T z_;Jh4b2r^GxrgvmE7T1#rLmN63;;`UY1EarRcF~8l>0f#(>!q{(mzt(N@M{v8_1zn zxtq)-<%?t2p*Ud{xvp*TgoP{(98raGCGyO1sN*0BAZ0y7=Eimf=?wuJy&*>$5@m)7 z22V`haBLFC6mPg|@)Xxw%D}rGH)x4W@L$2HP?iIsqz&6Vmda-%8Ouumm)7iOsP^tq z8pj}`Uq=ZO%1SJ6f|PN2Y<LX9~-2fbkFe&9O~%?jN*H2 z6!HOomj)bZH?`v0E${2AiB@D2{(<$?`WpThD!u=$;F2_jnYzkhtL=46mU);gE9EKX z*9lQ_X_e^)@?KKrSNv}w;akC%at$Q&T&`AbXL*6C)}-3Ntv35=hGR{VNQTceK}^Ol z;Fq@Nfn*!$KuMFI?P8{E_;(4S== zFK>%CgYMU&J-5Xy%Lz-xENT+FBsf^vq%I78WvQ-jqT0N_Kwfa6#eWE+%`yA_H(mrh zhn4vE^F2(MgIKs>7D&9~GLlXzjMSuzh=*XfkmrMuiFs_EUSCRn_yQp`Pg@{Lw=>Z# zW1grL7x*&fiPVJ56JPKpP1L>7jfXH&4^1v>s!bl;10Fm^js5IkU8ql&ucI+E}VhO!~)4jV3A1 zJ3#uMM|;^7ois-$XIpB;8CFJ|iOogg{9JH9pQB+XA#Z_!#Mms?z1prE4zp(mlQ7yS zNLg;WYz~Q*Vu$Y7H#awT$Lygu1Picm#aPL07p>t=OolCQeckLKQYzv3*2zS${zX9Ef_R`+Q-K<>Jpu$wks$T?)bdG!xu1(=WB+;$FsHk&+bItM>=?>H$x) zm$|`;6{T`W>0&n&`!W1A^aVK_#cCQypt+GS|8!FQ^U7OR_L#(=(;m zl(a9GgLGeKY)aafEg(fqr_i9JN@EnhT?&Q3f>6JMTaaIP!SD*&|I6na8E9xEI?q1( ztD*2b`{=Kw#RqRi0YVMvwYaALaVcITwe}?thaWO=D5JI1iVIO0ttHVb(%O%TS{q&% z4DD?gb!?hO4#pu?fc3Qs)q>xw+6!I>{snwxU3J+`Drs<6bsXBz#s0Flpp#=QYW+0X zLYS*uHPO#yekVTk}X)z#nYQvD%B8o$n*$UsoJxbNj`~#`DOb{LE0!f`3h)(FYg=ca%!b2WLg_UH+s-a#=-jz9a{+arfSK}`&_7p-(8(EfHwJ$n zBXm;twj_obs$QxzMnNxyLZErn@8FtuaOI?iuB;GBJmTe2BTh>9RUrBzBYGL>rdFI) zWu%)JTqxa%o3+oAyBWaDpJP(Db_cSZDvgQ!o>D|kO7_(l_!ErCDakJ9D}JyP3V~!( zzk^HmYld^rl7xnAuNY2D_)nA?byB(&5dJAf_%hN>tvI{NNH;OLNV;puyT~ElJp4AY z-FG$>y1{!!p^9)^mlfMO<6u37?{Bnf!oRTEriC>X?Z(t$xSRM$ZX4{Ydam_OUvwS_ zc)B;KFi5V97u*ORhnC#oPKyHToz;`W3u?6kZD}}A8;f5lg zDUZ>(x)d6L%v0Zk%ls=>LUhRb(Cy<<&XpQvQpR5fV$U*SmyvO5#aUEF#)+{-GX9s* zHTRI~hbB$S?x=0rKSuRClOkE` ze}xzYe_v@a4*9*er2Gpgc`20S_9X~GqH(Ygq!DrZFg-fC(McM(mqRaF45}P~@|ItwZ}U+I5(N{5L9pI@+|sX55H@!7v7d(=c0mACs&ooxF7}*a zvECKH38Q&q=oCyV3GCf)j30ImnI1jIQ_Sy|VI~Xd{hg>q82#{5n9%=T5X&HRMhu=h z{w+jI!Z|shEUC7wE>~|u^eH~kR_;aE6y^a6Vukgls44nzOQEjx`GW_k>iA~TK$L>X zqMMXSzFXr=(r$HSGF(VaR+an67n*M)^0tdOJYy-0$qibd0Tu=OW+PbmY|OC1s=+`o z1dG{H=Pi$abqTsbz^zx;72rUhVkia-^ND5~76N72HhP6(+!H%Ug?I$GmP8~RVGxT&b(=y4Pl_tNiVQwT&pgoPNea_~}Tb%5Ohk55@RnW(Jbe<3v)>LKR3C$4LBj zDI|i)iFzJ*aytGMD8Z`0lNQT0?OCuAG^@15W;Ks~cfZ2I7bg>2bMkx!D^k!yY#=gePSQ&4IT5;nSdlsQDp~v1s zE9uRU$^63s`bv5-)GD0&6Q0b5;6@0+jS-4sEcARI2Ht}l`45pp6`XJjKTsxHO#5rQ z%RPS#?i3b=>7#x@zKhn@2^`4Vfa8F;7+CAIw$bB8%84vKo7SvhHngSQIe&v`g+C|4 z;#tg-_A*{>4qk@O+fjpNWcnZ+RoZG=VOdy@AW?tta>(Q1XBvN+?WpY1H)n_E--P8d zxivTzG)oT3tlHei{^*d>Y~5U(6^_@VFwS8ex>tnn*h z9iV+=jfcQOeZ-%rd$tXt)dE;Y{mo$s9S!Xr^*072bb82aZPl^-$4b6wGafV`4EIrb zXeSCD_s8JZVUwVDRNs2kAE&|d9N2gOS+K{TcDew&$+j#PsFMHK^GEg~Q3OYUj-;MO zg-Y<~*=;;+p%b6;YW+051uCPQ(f*Dmz?eusExdf(-{RmXs_AuVOW3vO^d9#oC<>^H zO@=!(yaWy#E2)uZT4TZR7!3Lg8nh|QfC@I-8cTT14h8g%to188Jil7-IO=cL zmJCo4yB(ermyR~Hd2a#DC(fw02|+{+c(xssjDsC@jfO<{8762}!}hs_Lv1)xJMOv7 z*_&tC@!BhsFKe1@TXs!{JKWZgU}KC>#mQTLE2q2wWt2hb`MXnZQXpFQkd97pxG@f4 z>noElQjPs>GzQ3?qk}|kjH%~uX{+Xf2VDZi8+cx;nLYm!TdU*DUag^Zai$L47>uxE zP~9d@5rZN|BNPaI%%4y_*Q&)u{#pa#wx!{9y0u6oL0DG6_MqVH5T~}X5+>}#{kW*> zXkNprEpIl1WJ&8P5&4`j$XS8IhvGdI^?Ax4WtUZ@%y0M_Q@dx=`-?m8fH#?M5z7`~ve;hf? z;~eufI;|Oyc6VLJ(!P$>7uPpXnUN5+PkUW-F#+uOX)$gF&Ov&tx?wgU1A$%GL59Nd z=2O*-4#_S)4sc~$&rA|TrZcZKpux+)K-V;!l=m;Iqt@w~)=`Z%jCzCYE;#?VznvgM zDj=)vCbwzl{B@eS*gNXY`y076f%-xcG5Z_hbpRLFl%x2}bbw-oy41Mo>&@27v((c>EY<0YioVLd)t zv4qzH4Im<&d8-{s5vzJ>sxYcOo`8t$Vcsiiv?Bo@M%s3JP`S&}u!1+3D`9uo;+qWY zCPePFIX5x$Y&cAda+E&-LOs?y1|4FdWi>Fvf!Od4BlD9e-V_xx&TlfzdfRJ|q%9EB QaWEDZGB76m+)4HS0AH@>TL1t6 diff --git a/latest/.doctrees/generated/malariagen_data.ag3.Ag3.gene_cnv.doctree b/latest/.doctrees/generated/malariagen_data.ag3.Ag3.gene_cnv.doctree index ef80e4df5467f5a88ffa0e20cba95097f8e88cb9..9cf1c6a911b5a4f5e68563cb0997816208e9de88 100644 GIT binary patch literal 37195 zcmeHQ4Ui;PUB8e0oZZ{YCAouexzGfY+pX-*UIdL?1?0FS1s*vgq$F^xL+?z_cF)aB zPr7^Vc9UETYD})u2*^+xOA-*#LZndeqadZ0AZpOk5(=!c{Gb9V7Jd|3X!(i1|9k!M z`s+VEvwIiNq-rnI-S7S0|NX!Fz1QzOH2LmVzH^uO&)@I%Osl(D)f)P5u;|Y^`gzyxJ9T5=??Q>XX|)@U(H*P}`~@oRS#7r()Sq^Zx@Xzl zsJc06PMOndgGF=JpY$xRZ77fY>pOZ|cPxFw=)Squ&^^7XZ@i>>0)Mz;yt!8Io*PhY zRGzro*d(gdI=ixUc8NL<4Yj3$-o`_rDjL5~LJe)F(7 zZ(eKeHIMlBt(tbnSatf{uHmenx1F=AaralK_ba_E&$PQmx6uK2RT92R{Bd;8XefoV z+#qID9TyC^?$noTcXZ`e~u-(ya={g z-3^G)zlqu>^u;A@G44fz0r6 z^$g96c(OoGYOV!#dwoaMt$W_IXVs9IuDPD0J)k|9rit{p`Z`gD9(!9o z^tF1Y-lP93cV26`-kEVQ))bJt`@Oa?7Rs_#tyb5THCOKdqUIW&dpx4{^~Sw@qgxlq z)SM*qwB0qdmuvLDs2<8WTOltB3)Ji$Sue7>ddjX3jFQO;1g9@)s>g~3^4tAXhg%Z_}Wx;WC{-ituj!7XgBk0#-Nxg)oxZW8t-L~ea8o>})@{eAl6`{N)!XF% zgg_Gpautto-KpKe_-6%!)7+g2 z9Z<;O_(sg-w{TpZAudZ6&rlOt?wV)JHxny=AZDex22U#Kx>C@E00Sv`hSP>yP{e=F zGThH|9_Klav$j^w<3tWchO|hp6rJ+dlL{3Dt2jt0!72Te;(;1=($A%TjK~mfhazh& zZF*CZiqP=F%h>E5EH*oTcXyzx9*pek0od23u=T5jO;Mx0ez)%R;inV1q`&)k*erg< zExw&=v6pS}ZBdI+0#TD*RB_ z-!r-m_~Y6pvQkBdf^_eYzZXO(z53PSUa8{3+knw**d5*K4*Wg6E#!x|fk2McDvKH#=)!vzqRrp( zeJEzoP@#UEN8W}|_u~C>tO%JEYEHB{z@wLtYSu^XNU%{jjsZ#<8b0LjUQ^uE4Ls%B z;P^{;h6zH}UAjbjRoj=y{?2Wn&^6iTM@tVrIl97=TQbQ*k($cI*MUE%u}O?T^;RI$H%fRVSkXfM9q!*_St%CMo{_L z%i}!t`GN|-v;0XVFh9?Omtf6KBrrL=$ae@&@#M0+7^<{S^WgbPo0VdIj`XKI`1UCO zYaX1Xe5i{23lDyoRb;3XrzhAb%JM=9NcmDc$b)ZBiZABDS<16goS>B(iW9t623KM>7A+C5riWjo3Qn!o$yVVuUVI69wUoAh_v znVG@X8>!0SFwhO{REurFWIHwMPsz0|YEPuRf=nx|AosDY(W;cD-fw$Y_tWkh$-enl zx&2QHLq3(C6~Mz3vs}9 zIzMx4y#tlXq*y=0gXepT0DP!&{1OkIuN(n*oMKhv%(U;E-$;QbNV%)KKAQ_T! z4*Bt*taZGA?_ECcBzWsh;CuACSK#~?S^QQL5b2lB(EFF|!gsPw6nOuj3tMUzSg(H@ z+e+)Of|v5(`A#ALAL`y-#e?T7dH^0rf_e2zj>1qdDM~4^;BLNgMd&4C zLD0g;!Qd__ilN*xd4lt~6@U*72IqM2d^wk;{6~0jmh$1j;KzCN5`x^ZU?3Tiav%A@ zpsbDjBHz1w-bwIM!Qc}tJ{t_mcH#HgCJKT<(1k=W*o%*}LboV>$4>AIY#ZZ*0!cth zmWnbJhk}0IXJombd0{Pm{MlGkBKLE#=xNbsVwtcqCCLaG7GB0Y`zMxX1%czMs8l9! z{5KDt?@$8pp{{UlnhX2|8Wn)Yfn#0$950u@+m=sZINFQ0m0)y)?~tN)C4-T`A2}3V z12Q1oq5Qv@CpX_I1>i$N(RcIU`I=Lf@;iBOmhx;UN)0le;lam{B7OaG$)srW8HWdZCx71k!#wFM+q0ZWd8wy(@DhAU z52BM7ykz?Q$2_^LmJHSJzu>`HMi2F`U**AB%5$Wc_=c|a?>zVzQrwQ0QW%}Tz--?P z8|$~n=)*iX%jlSLW|`R%-vCQ}+(5xfvs<8JZO>$#?3X=gDPxG1UIQ#DlZ;A5+da^{?>_u++y5 z6gc&7TuShLv*QO-h4Or%9^MA{P@yjI;H*%GTF)&!_+_@9p}aW7lgsi#kz#&mej^Xg zD)&&zH+XQC@*F896WcxyK86&xlh_XB#YLW6mKQ^%_!B(%_N4d$9-O5-E5%HV{}>Nn zLXO$&>N3Un-{VPV*`DQ0D#m}F2QR^wos98A_51I5a#<}Is^9;{gR_htO8I1kjgl&7868v3WNIh*23YFj1`0B@@4J-Xwei7I zb5{BDk7cJ?T%L}65lQe;^N(+3@!9#uvR!yP+XOpX)Jn`h&V*YshI4B1jd)h=J#1^^ z%tXq5rlhL)iQ<{aYYKOc%*+$9I3<&^{$4(ene}D9Nkxz)=k{a+BM%RKQSd*xizhFtq1^l*zH1ye zOF4)6IW7>h&Y`SAynt<@z&S|pq;r^{4Ov6Okr%NJEV8YP;}j$brJVv_(7&dGk7TTx z*k(4`(-D{05sE&DF?;x;IM}9D*;`a@D(e{7)41!ZpX^*abWhrxFE*ybJ!@mOeGkjF zq8tHn4v>c(xs%^*EA|{X=GJZ0jSK@7k=&}&hSu218+%F){0eRP zicQe4NBJPRkM0z^A0hg>7rXglU&3a;-IjaC&Z~P%1G?tf^%^AXxr0^*WQ8@NeQF=U z)@!1WtiPbvUtAJ<_MSA4NF_j@UP+t#z^jKl4AF}k(Bc`4OcxjnbilW^pQ{>CZQ!C zz#X9$6|u3Z=&&MZU+3huBeD(k{xY-_v+b#o*!FQMEqN7iPqHjF5`|^bh*}p=Co=QD z{C}Xo*m3QdOVQ0|9{TBgLw)9<_dE-x8tc#>jif^|qJ^e61$FuZ)aSApGT5i7jmTiB zmNZx;mr0$>LABnWs6}S}UeQ+TXYs#CDIWUy`a3LofT1AiQc;AT7^{4YGbY>;YH;=+OVYyE;sTVk)9!1*Qa#bWq- z>Z~|QWpoc%0c*Y@S@Q|C`Ngu#2%T5?3NhjTF%sc{47Sp&911HRD)6Mij;@!N@nCq+j>I%)HKeJQkHZ=>%nl4MTl(+ zf;>g@MA~4`4hnRVkEU;6TXiH+l=%b}grg;NO3jy1xZ=X-a0-ijixkA1e)UM4P8#R}gnzpbe(`I3HtKWQx+jE5g8W zC>D^(uoscI(7OO0J2;yM7u^k(?k{FV^R zC{{wXq&P>h5>kQ!E4k-Kv5%kpjuDnY-|N9Hg1jsmrAyup*H520qi)iD289yeRkAoZ zsxN%KRLm}%{jJ1%Q=SLkmJ?&;aEP+HSK=8L9w`Dox>O& zCBVp$gDznN5F>WTxX;3RX%t+XBvsX3(^O9X>$`^5$8nfWdy5(%*r2{BsE2vFJi17f z(KUIp5ze;k*vJrE>plc?G1{jceaW$7+MU*`jxJLW$AjS1L(0s>L4q#Q2hYTCykk%{ z(bec&#)gICR$UssL=u5fON=&>SHV=peHiW}diB0%8aPO)5r7KK|tOmKBH#)4bi0?~%nv~bp_>~-8P z72@Wh5I8^9?lw4#W5Yot9eCry2t*85iCB$cixU{M#j%v(XtJvE#s;!4F*J-(=HTo} z?YwE#&5B;H8$FDIP-o>KlA(;n2(dgJ6~dM|BMp{7ZN(%Wv=MQ_YE-07isLYu$Ps>1 z9E6JSGIl{<9LWVGW5Xf1g+CWAC>a|bN!q*06U94RdN&Y8pU1XM&odAG+*)ut=ooJ4 znTLK-3i+9b9#_6m`Nxr1AH+D~cj*{+&)2bQ`E$PTIbRq%uY7;{f72J5hwh;*>Mw@@ zs3yLw?QlW>@E|3C1KHW60MHbY33q5>Kz$SeJW+b5l7k5Sn1DwdjPBsZNJ&Ce@#d0H zYIIK-NQ8B)EZDbL(h#Qt-xw(#CErG#hg9IdL@F@K+X&T?3B)LGBb0U&yp8yGtBWM@ zLPE;`b6*u`Ef^L~q(|RGR`nKI%_0x;UR-)hwIcF}^x(JJP?%^Gt;RgE4?%m(8K)Pc zx7VP4e?6IG9bvl`QZ%GgEc}~BA~8rth_2Gfh<{@_c1v#K1^amg<&_lb))dvWTE(+G zoM#`c_)sR={e`4tLnh6u@>bCANTKtpeH)cN+#-@N*^kr2stQz^P+s4Yw)Jg5eVIVz z33xi5>BHI`swMS?Z!0h1bgg*)+d=j*U zGvdJvYGRW7wqTKD1%t(yaKqF!4gY7C&S6J*v35?p+`$jobxTa%6;8KBt1rVo1`R1% z_Kt|+(Py?7!FOM1+0aSiTesacn8)@&V!6I=q&_DtYYBaRLiBkQ%c5G6Q?ZtZdTqv< zoLW>t{JmJBt)x{^txyjWR)yoT<)Yr$q?B7R6=uFYL6dpn&yxuTt4GZvQk{}D7Uj9! zQ!s7QZlu@224{P>K8r5<(^xBuu|8wa`W#)((76ceb=O|8Fn+d)Grgy~cKCB4yuE^j zb}>jNl3OY(5-Muqlw?eJb$j*zH57^8;~I=N!{6(S-ZHs`b5^D%(d)*Va7 zYQYsU$Q7I>F8*k>>q@Sv?v=@axeU*?hg*5zPq}vA zsbkgpvVXN$FW43XkhPv;Z(wlH9bCYoAVy^4*5Bnh;P{VWPpg3G?s#??Mr`Mj>z z&(c$nGAYI9U)cmq7iT{x4xpQx-@!<{d+vHqkcD8DQrgzhde*nIgEH^bZ)D7PyEp;JzE* zoopEE{S8!KIIlZhs256LjJbn5vk*t!pe_-8VkEkTRj77@l+d5;d(D;aS`jPCuT4Iz z8IEH+HH_^x+6Fcln<7%N*xcVQIj^8h3Y39=B=sZ((Yk5@mbV~rV;aKR*CrpND*IPZ zA6ziX1dH0})4<=?*1H>hSO_@Y!1W%ZJMgb^Fiz?;Y7L_Y%|SDkVC)nOvWbQB;E2@- z6~dhI7wFxy7T@ysSWvfpjee(Bi&PSf6*n-5XENsx1axFTL1z4CpclCATj1iU7p{c;^=Fu4!UPIU&ith`G)tXit zom(6Dhv*j?!Mwa!BW-jEtpSnGIr@2sN?xAY?H?d}gXVNMpond&V|jx+uQ=*2^o(Ad zunJA2JL^auYGfMz^G(m|xyM&maoer-w%~BPRomHsMIEG)f&i4PVa+wf<3SuVxW974 zv6q6M3r@41f~Pw%{EZ6SV$%-M~d?4>GB46FLz1g)7NXxc&81F{?wm+qQLS zj1$5oL1pk=LjxAP1>u^8fv;=)gLRZTTQfSk)voD{2Kil(_o#n>kTK%|U2Qj|PrK;v zH4q(6_t*Uy=}ln1&_u*E3%23a?;?R`Yg=Kv}&&5Sd8d-=~UP5V5ar$%!#iGkJ$BJ1i%AtKO02U^`He&br->v`7@a zI(0KDJ)1zB4O&Vq)^Y(z^mgzzao&8hw`YyjEW literal 36758 zcmeHQd5|2{dDm+1L#qRj146i2g0(8|&Mp!dkdfm>*aYhcQQ=szkVm~UJ<~ng(>?Sd z?FxZ$Dg-HXY*!dlIf$`S{wLTe?8GiyIb9)1rDB&8$4-J%*h%qEVsf~gR8piUSMvMb z>*Muw&zoZU$W5XYN@*|trf5BF_p&Qm}K`oapyR5m*V61GH z{JLg&&8M1sKh%7rIU9^S>RH$Jos!lJHlapIH_Wo5Sm`p+tMIShCJEsWlo8 zJ)o@;R$`k?**2S4o5!0R_mPGQOueSQJs2;>L(>O?k#I!Ef+5qewB|8?Sq&ys&vT4r z-vcFR9*Cb7z1z@IN}RLA4m1HvQRlo4I)Ot zaY29^4sZ6C^-aOBVU@L2fd`yD`kOIe{YFswCj8xuzdiWdOM?gf9D@yc7GyK5Dp(l2 zmHH>>vwM}ZG5lsTnPD4d#8_B?1Q_%B4*t|*?aDUeAG zDp1lCa17#CP!6e-2WMpb zhI23tkt4iCYWp;#$1Nxb6(6!97|9hD_1zvuNG$J%tPkNJ*mV zXlhxhICfn*r#g<}>b7r|iOgl=4ER>2{_Jp=A;-WQ6(HOdh)EsbRH9Wuxv!$^fvOp2 zv^{f*?`nzR17NnS3KB7_$-0l zCmIMzxaZ1~vW+MNCVwLe*@!|AY;nuYyy`|2k{7gWL?ILxZA2j*qmVcV;Zx<-lKX#ShbdxiOK>sy-9@`(!fX07ix=Bl)=!q&q!@u-a!FN&>^%m{acQ5+LJ zCQ;0z?W34rz-p>u07&7=d4wygEOfe>g(%c%!?#MF&n9+)Fa!e!qHggk>G3179vj&n zeGFdj2QVDlH+vssj1tUzm(vRzjVs~K!=tYJ+O1z2std}h#It~FT& zzNF9$wzaPAHG@f1=gSX9sd+IN$9$x2mwj5tyecynsqUv)(%Jzwo5H#>U4T*;W9CDMUHlRqI6{BnjG>v82N-8a(kS!j2xn{Rp8>s z3a(nuAbTj`bhuj|LEa$Rr=0D}YduQGcz|D+r?$Zx z*)NCQ4OcINn-R#(XR`XvVBnNsSMQahy$*7}R}Q&7xdoi_^}ZyBybhcnl0$Bfb5`$% z*}{rI=?}_b_bwn)p$Fp~T^<+qlpN{yq|Oqg#f5!R4!Ik0Trn5+1v#$m#iFAqzbJ>? zp1vJj*w^Hc+vA+&T-JsCy&QP&%=-bju>X*cp*?{*GId~3>Kxa>)U9&J?QzaBHOGbR zmP7A`tC!b>&BaR%bAn;LMUM75$o*q-$nD9Uh{zyLdqr5Y-|-r4?Wi1jd%P3qaOLd4 zWs6fkc?lrr)7t14az}f0Rt~v6tv3a4iWkXE1N-=@S>&e|gr&{k^&jH%c9D$yP}3mM zyC_^l6;wbdPr)xzf zqz*4<_;qz&)rfETFBAU#sC3M2_@|&zm;Bo&g)ik_*h}~Pd#AjwKKRE`=!<`CPnc); zcTH~9h=Fb1CLH`}>8RUq@V(u0uquTw#D82PKD{5;jt|bnC2^gN6aE_~{O!)?@;6TSw>#mV zF|Z?Ckt3@UJtl_d!&1Z3#)SSnGoj)!k=&zHwP)nObL0712)yI0_c=N6+*xk~JPzJZ zdH!^mxX#zY?!ZhXe{#{G;bv~1bM*t`RGwcnH524UjQj;DlY?!>cXdU`pwr^9x+ zXOL=N%oxr5qYr;6$35R@hQPDr8AOyNtOk5r4!j$}v}_#_{9ZTEB3g8`@&7JIH{Zr* z37x+ex@lN8=gnVj>KgNDIdCcFIb2MgldN4Y2i^x43I1i{;-VZ~DJ_Hr`+P3GLk?W3 zE*<6Xh#a^S^DGxL``Yi9gYSlqX*0FHeeFoN1)ArZC`*pFl;&Bow3w*#a^T$%r4g zxRlTd=92BuSLGc@u}?Z^vm^T2I)HbS!4Z5Y-0PwA95a=#Jy*+tOUcp^^BFmCDO0oB zGZrnK39;IuyoYX7DD54#hNqt5zWVj}g3RPQh99=0b1S^ssTAh#sUmq7Ma^Oj;>ThItup}<-nzc?uhxH%7IHU&*5U) zM14aJybms}$3zK)&iCm5Bu96Bg#Ir%a4De^%q3yk(3sRsO0iEmXcMOGxSYV1O9MQg zsfBd_@2EX@$$`t5TKhTSG~9{X@UU^*WaGHW#&HweMc2!PlHpO34F%e`k(J-&x^Z5s zM+Hg_U%f}_&1%00AC)=b&A+F}Sp(1iq~e6M3+X0z%h}QVj}y8*t!2vb$amZvcvpwz z&q?7+kLq?igbUIxbm;c}YPc8&6An>*qv1A7=|!g(*S%Z(xq4?+s4Q z%k_6(aCnv{K7hK>3APv4W{p3lY*c$PdvB<8}#-2cd- zcSD){EQ4N826zUu0!1INg15eG!g4u4b9ghq|_YD%`u^`1( z>T$Ew&iA+nrCqe~xEy$kZO-?&-CCQUl;e@l7!JHEk6V<&mwMc8hftSx(Z=J3Lr8ht zA-bkMk{kYz$i&0aUi$I09EBEc3TC0j)5ecp>0k)^@Rg?( zprkBf!X`1}(l`;O>ZlD}{7UtfLoB6-hLhc8)kK1i#+qXJ^<|`PSze>WEy%{fvW5Kk z(WAJ18(Enm8R?^CB2b@`3Y2)`Cwx2XLg{k-Au5O5g}w&KfT!!js?3)he22Hpt2@c{P% zrz#b3@j+dXniExAGRChZKEN{GAma%s8zpqWYB(kH2`_sVUhtBML&%s>w_T(kLe7r5 z5@z(7*>{9;2a&w7Bt&uf(!ERfFD~A`?~cXry{wRAu=I&8>d3A9Ec>X-{y%_ zemj=2yu2i>O8hd_-W^HfFl6*4lrW*3NaRhBGA@s`&!SeOF((!wcpDPbmjvw$UdX51 zD~~<1@5n2U{aT*>;a#GEah+atkU`ICA;Ica4~2Qf_gX}bEE>xsSj4@~Jh_=5LBaJh z6^<0)y7p==^!$2D&*>yQt-}7_RC`yA(1nEW3?90y_5w8Ce;gE@Q|K4*5_Tie(^jGh zp-)SOzr@)_dOCtp{2LpEe8B%g1CF(uT5;``_w_faR%8>t&ibnTE&dlNeej*|3IodL zrsSEsi8zlPuZd(-o|uF#axzQz-m&zQ?P5Q2awckd_q*qp$TSPj zch8(6NuE%#OJHhb;Dz*eQP2Ae@Lx>cqb_r5yP>hKeM=mD>YkMFKBiPz!sweOzyy|H zvUh_#3F5yQ?YTi_w}i6{exf?<2%Wp&>mwz~dzB!zzbC|Qq1qgqP^563#J>tO$?*)q zpZ&j*0ho-Jx*HI)(2-cjRyC5cPJ%78Cee;;h$!A{z+u^>x5 z8D>EYqd|%RDf6O65hMkGidsct1H{pkt&@YDK=Lq^`FoxdamG_uk=5`ZQr4Ah(?564 zF!r#_HznIga@IBW=5F6vK_slaTXpR{Gr3kJePd5(R?>wDo0fZGQ##P2$;by7n`-;; zzu2g6fh|es6q%8h(gcM@Pbh>Ig!=8?g8b|ohF8%3k6vnIprNtoyzh*{5?a%z|oHOj{Lo`#3TVpNages~8n5#_*iaSkmD+pA~Jjq-kZ+ zb|epG3q6GiCe*X(Aid2!T%jhmd7IGv<(}xCR>f;TiS^uuHdDHZclDcoy`gJ{Mf= zIjZHFY^SP-O{Xem3U2ceY-105wx^oS!<&MMsE$^~qfa~G1Hp93caSR{*9Y6agFNuZ zf~ly4_RsM=781s72HTOWozlv=1#AM--g3DajQkYct>?xIgTaXHdkx=f9@DoT3&v@j z{N`mmfC3t}&FT$+opfy51FG0tTx|ve3%E^(qd@!iE2uCLKKhP{r!BNszO0s3=q*qg z=Ijf0Q~<`prN_d{3&9rLc<5o{y10r&(e>tqU>fTSMgs}7>vc4A0dN;D!6GdyDbl82 zku7v$Fz7FAVA5QU3Z@*5U9)UzXEcy=b18NMHD*kwQAlS~%tC&~=fFPPi-SC=6x9th08(JgT&SH{CCCi9e ziliFBkLaG)a1Sgjpx7-m)?je0g6&kHQP)sSh5%|7v1e{-CfcVzm~vwu5X|+ zBOz+9_zif3X<)~<1GyQv23jMR2{`nyNa~}Wr!8p}revsS-t9_BxyvS&XCwrG9WlK3LwTyNVB7Qe6(T-uLs?Mh}4&DGnOJ&_3D8WAl?Lo{Wnb=O+!TWcp>2v?>`3oP2e diff --git a/latest/.doctrees/generated/malariagen_data.ag3.Ag3.gene_cnv_frequencies.doctree b/latest/.doctrees/generated/malariagen_data.ag3.Ag3.gene_cnv_frequencies.doctree index 4021d7fdd9822c837e1e3b7c69e2275c024dc4b1..fa71d18816368be51887d3bc27a24f083db0dbdd 100644 GIT binary patch literal 46463 zcmeHQ3y>T~c|JYvPPdXymTU{#vh1;qty4IiWc(me426*~II@K?1{7pvJ-0h|GppU1 z)y%APXKb(u*j79|DlEaIjPt0FRKNwP5E5`DR0sv-kdQ|ufl44yHhlf|Jm=pfBZfE$Hv5e!4|J?TK3YM-fr7Y+wg|LhPKlh z^bFe{zI(X)f#H3_nPAG*PkPS4Z5hL03@KWs)or_mJv=%LrYX5^b-lST|D+QGaz7K~eV+gMU0C532SiprapK?GOe?@Ijb z!ryLU1bFF^fFNnG(6SdH=-@>}OS+_)-P%kn_5@{G&p<8PyNAJSK?yuo|vnL%u66URAxOiyOpWS48Ba$m!@YyB>uovHS_R4uN@nU^e|oCjB6}H$M{)hG z77YI1W9-)~+Xu|m`)0MCzJyOFpu~$t^8~pEyM+V`T}M}7_RYO;RGw!L`4OXEBi)5y z3UNwuI8l1rb^1-qmf-$=ZQgOZDE&@%fJ#_)t2<~zZ=HcnxZ%f}^{$7nEpuQW!&{;^ z!j4LovKW1l3|3@yK<{?-d5G&sCWlN59*=S>`EqfOg5X_HTl9`-Ad6?XCyXK4 z^ergm<)NqikFnXmso3m; zHTF{!o?@Y^2^s z-)LD2R%>`Fm_ktNIqd;8$j{9Lw8d*E+%E5zXopBaJ_;6o1Pby?BNi6O=1-Ygd?=%L zBpHHzM+|%KNaXh_%=tS8_7^j-q+FG#{W=3%OzrPP)Q&_sAvH-M_&*qAwUeYs)BJQS zO7k-bA?`@aNa;=t8R43rTd5#BjWuIqOdX23QzpyK1w8V~#o4)vM=qv0E78f&qsJoc zT+5?ZkZQ2bneQacb2{0xIzz&|g(tn3F{Q$MJ&(K!VH!MgG0jD@d|) z01yci-53f|6tyCgRCs-4WIx1{UCiq&N0PCp^Bx|#0z*;`OW?1F3uO_e^P4=a z#d@LeH#f+1evd~k=5Hy@pW%^%u-ZKzwzQ)&~m_emN{SJ@33Zbq; z|8_+YGAq=aXtR|^uOQW|k2)>EM&URHdTH!^d$8uH;-;?TDPIN0ui=qbp(Qu+$g80F zRXlPr%~>rO7oA6i(?@yi73s*PFpkNxR^-AJ4apB=$9cMoxt--nDv-UIN3Ot;vlqzT z&C^<}847>%1KF?e$i@6E4P+nTk&9{0N-i77{(uLsFT7_Uko_fJhhhem3iYcz@+yS- zO&+3_qt^r8{k*L@tr(!F~?&qS%-?Vh+eWl^L-K2Ov}F6y1nsB2Hjv$Hj=z$!H8FNY7P<9rt*S zQq*L|j7R?_!`aQKilgV4g|Fu;np=U+Ymg~9n3X$L+A(383eTou;mH#EP<6VI|f%bk>t{}T^hfitJ0t(n7%{Al() zo?Mm}r3N&)o(+{X)iA~A^Lg-Rj?wu+ayL&d$LLi2xCMRC^|7+CJ1~-U3(oZh z{XQ0BHoczi`o{+jEjT`fN%_wA)hee%uIOBGJeX14JGVA76By3R%NdC>|6?rO?c;1? zAzxd!Aybt=@q8XU-;IRerKa#g9z0)bLhv|HY*ZG%7DkHolt?j&oA{y?c~=Y-vVhtS z=A}{&rK~#4)0@w#5WF;2Eb!p@Las`=&x5m+m&b~?@aPrfc-mrxWJt9^~d|5di8`D1~dFCkMEZ~sjmJl_$7;HAp^ z10FnInM3f{+poj=SIMTVa}eKRR&AbO1EV6$iauW8*LLw!AOky`Dva4iaw=uzF1}_Q zD=Ybh>sWl&FI3fr18flmenEnF5`JOr)%zl|p`Wq%U(J@V5}zQ8Ux`oHU3te%#z&l= zn>DI(!Pl4z9hM6P{$c@{s`!f~9z5S)gy5x0{vZ#YujC@PN{o0>xAWv zM9Gkp`^aw~R<)6D@wLn6odmBG2!6=ovw@&$6*f(>QJSqnA`q;@e#OWwir=vlyofDh zC80ppE+tDvnTnf-b75a!?x-x?NtuZU8-zS9N zrQYmSJb1oRgy6C7zo?kIg^^%Glt&2$I!}!v_M(Pl)`x5f7lw_Bs~s7RW(1W#Yd7Gj z&lgk(p7pP($)umnDs z)Ty{BwSzfiBGYb~P9~0;PU+Wi>#4)mw4n90fJ{|dPfI*_z9R_1OI_H5Jb1n`hv0GR zX+0frA=#AU9mL0&S&#BXD&j0^BBj~^vh>=nVJP@tX|Sy-H-DS28pq8_uHg?^eAYEo zt-_zNMHILO37#BmTTkb=M5ZGjVjcK0TgpmYgCt=kuHjw~?ueZ&)|QM%sMe5Q3NbhOIn!zBY&8EA$Ol@I{_A-*74Ds5lT`m76c-tHyD& zl5aT3;|1HK!`&U*W-7%5$WcI2ESz4IX?2QY8G^t<?&S0}}bd2p8U ztQ0d_b$^V9uOP?lV8rUS>UOfmlRq5$5}tIH?OD#Gywt5ccm=+sx?yM5OWndC5ePR{h zr9yp@2WN#^YCTW!;Ah!-N_p{Ro?Mm}ivHz?=6~VAS>-OJ{6Becmhv1aCL6XBn^qf@ z(>`!D4ck&)T*Q;h@}g9VGd%d}qQp zd=W|TN^_9gSbTO4vT7AHwupi`$gm2DrAr&4>sq2YwfIFmt2W1$wvw4hNlHqpik~Q6 z!gOKbtumR}!cA(@sD8KuZ{Gl#Vn zFAex26+xca#Y@Kp|0^wCs>;oG@>S!wS;;xPpT%dLL)9vLh%KVPIY{v20tI&Q(kIwb zR^k*S36-4!pD?(vhZ8NVrnrJ?be9SqaS}V7USalel3#d*lX9n!yl~1jaQB++spo54 zTzX%XnQbRc#Wz~Tp5{v|=w6v9WZxFRYAR9N=I+Q_eXb>wH(`5@2FHS znVcg1TXgllscO_)4>-L(u5Z*(f4z%iB>T&nJ?PCFt~S4{(XCsvnr|95zQ}ZV(4vbc zmvI$XgRZ`#8&$+5Ii805)U-D4{t{Q*;r2C+uEBF$;JZe2O64pNoSyc|+iugu-Ih^U ze0C5M8_AYwwvDFfBb`LEnNsfz{y*HrhBJg3Vcnr!8>0g$q8m%kiCzSa+oOxm!YfF( zCtk&@ysQo@=?>7&C8Hdjo%HjPgX5rOD%gT^f-Ku2{gRF}zAGuBZz{kIPKiWK%Qt$8 z-XEsRK;#8dn!K&7EQMLs#CJpxx8Myne zWsrg4g3~#yR%V`jl|d$@1aXoIL@hIaWIW#aqx zztO`*NB(_#-iXVV?z?>VED>t8;Rs-tFl11#hb1)@3~{5U=3z0Nro&u?jZ+5S)orik zT76%VgIgUPNs|}e8>!70bBlAc4Pwb|LY4G+@(5nK$aXz$z*E^AM7MH&O%8s+itDJwx6QZ zl2;-3B+FtWQCKF8s56Z`BQyWXkAVK-28XB5L^Yqj|FL{Sefs|QKLe&3>rk_n4$0^i zncgJS=`Q5w+Gu33Z=f)J#vGV`lNS)J?f&qygh9G+kuJMhd& z&5f5^@V73!ob;jEqIH69FeN8UE>^lmT&gN80ghEdYS`r+IlIgCHjewby4izcHZOS=;UP?d`Oz$(-#mdInZB$71fO;DBhA%8uCrd(3N>KHVsB^k8ryd;hKarI2a*s|%Y zQ8a7B#o2ndaib=Co0_8V;Ig@#OYR5#@1XI5Y^+h>r1nA3k-i_=L1JqN=7f)IXcq%qYC zO-5YGB~_-5fsR#ce1C5SLg`tX&h~Su1LRcz&KrcpjX|zDYg{*@fdL}S86Svl% zw7Oj~+P?02urc3sox!3>(Nh|@h@Q(c!atH>&!ELboe+F>aS=Km>_uGfKC5+|mfmer zS+m+=*O`wV8n`gs>7Fp$`~aMPN^5At`5$9(ez%r5leWAKEdF;P&ZI4G&*x)g%tfDL zqQX)lD1Bphd? z!4(=rG(64nH2mW=;2S9V;!zw1o!fTKoVFQSZRUL}jcaR3BWbYP!J&OZ8cBn_sF)X# z(Q-**;$BvZxX^HkqUwhG+A}8{nBW;gk2&<3S{zCm)AJy{+lBb*gip#PgjwmoD)%N7WT4$ZYP49zG%QwTuY}hMPsRD7;Or$to;<6 zK^a<6!Pi(A$7=~AX-gM^K|LXiq%B=pi3yQeRZJa|{N`FDhZaV3R=2Phtwunwp%v$k zYx%BPwM<&cMG(x}g<$Gf3FVUFtYaml1VvWzP}s<%)Apzn7!5#EsF36Exm}*dt0 ztz%o1OR7N~+al#DvaMsu6O~|IbSO}6bB>OUY231)(Z2{puG0^r49v=QFfBHZKG+HL z+blU&A_r9P9Jc3j?I(S7Q)oiz*D=%owHDKpR&)s%@ioEpq!sOC>l~R*NvfE{@6{qP zv=^eQy1m@6YB|6*RtFN-w{Z?guRJK7w1Z0_l1b#R*R7#kQjm4*fW%*92M;8V3F7QP z9Ffwv#cp*6ZCb?89rSDuV;4TAP`h0O7Q7qKmC zv0*v8^Q|LERiuf!4D7byc9*FDf(`SFgroUKuWz)h1(8PAuxMiu6OBFe=`c7-BPDWhb5`4R&Axrw zZPv?n&C>WKK4>8^2(*CKmqYI(7FCJC5?W=|wlK2l(TWj_pJJs5R(Mb!5R2Yu42I~{ z2fnilgQX}{RHzMV$fKD9`YwSm?wqgJ>)_Xx~DwK9sRol|w-TX`|tC z5m~|op}@kZnAL7bouuk<<7CnKRADC=QOgA-BghqS3%YPY$q4dL(%w~`DBj`B zyMZWvKC)_hp1%LrSK*ePzW-4he&dAk^!@Ks&O7jGu|AB8#P7;+@$h$W^ZawZ@Ht=j zqv;FH?T2@wb#gWgKsE8x-XH*Y*d%}hIlYYnKvS?M+|q^t)lmfSMC#MkI2fVt6Yz+G zqc?a_tC29ucy&c6HM++QDbe57 zQKvUT&5nZJNN}gR;g0Loi_xvyGYbzytLkprpwJXe?U~(o&ox9lBE9ZMEhuVe6z%N$ z)mofQHnR4iwvP+WCL38L!&6~{uOwA0{NJiYV%QiVx+*tDf~%^rTXGv+@8=bySDH|t zN>NQa1boZy8qLuvdu4HRFrAd_NNlRS74$zzq4TQ!$CP?Uhe*N#>+QjsIRz?BD6j8H z+qxR4pA@J(0dI)cabUj$<&t{Cmz7*@OWGFO7N2u(qC8rt8|~T{%*Q!{23G4}wJkOW zc(~U&T=1KEy9-yp>^>@XI5mLNAY?JZ7%e%b-5<;<9+rJ6wBhOTCzy`kn16f zD}*fS_z=n^B^cXtWWi=^v#BNfB=_kGWhMOw<%%pW;Xfv$t+284P+rAUnE9RqHp>&g zft*dao6_7VokKFmOt7}UJPan_#7w81-aFcMdRS>Z?7SXT4kod`l&o*qIZTfm+J@Is zpKWK4g^|Lg;i+KKcA}rt(d#`}9O*9O%f zF^DAh8NWpM(jDfeZ1sZKp5CRkBiM_!hrHDueeoLcN4r1wwCodm6knwHZzW%o^35Ti z_@jJHxv=RX5V!dF+A!G@52V) zao_Rv?(pDP(1_9)Z9ERJp~PGhOt%Iuw%qy65bIE|DSAVjvxkR*4I#t4VX(FBvb~OwX$sshuqCh8$HPX~aeR=9 z;pnAdux2mL1(GDtrto7(&B`hl6R1yIcJx2CBs(TLA8mZ!k$E-ZW{}swwu$p)x2h%+RHFFumC18hyw0 zn_c6C0d}qp8m8VIJ&p%kjU@|Q#3=Z{ixQ0o<85Ppu!!u_Cw13`+93r-*?V|11#z?t zsuIyB#^RgU`{=YuIfJQzzp&@W_lVuuxcvhR9er$y#ez*N1#EW>9M?TTq+;WCutjoy zln`7JD8pc9>Prfu^C(&5w8V{Rh;mY`4=U~^Zu7YDE$aJ-G@ zwT3+m&UG>H?6#Y2qYuqNF$m${!vqX<0h`dl5vv_3ggFsRQ}4SOzY5k`P`AzPL9gE& zsU#RHUSJs0aBZw!0n8ThMkqT;KYrEsj6vIJF7-&E&M}tyj%PI0oI*=le)ELoSyE-U zVCl3+qtmEJNabW?DlofEsEh}1BJ2*Jo5N(y1qY*@Y(3n|Z9+X_9FK7nr`^_xA7I zi`U*@mZgvkZShlmUmZ*YtZ`6gK7S^RS|}Zw?P`2zEjzd(Dw?j`|!;uTL6sDmcemwtao6 zX|?gdz_YKFF*%Ezp#xQg*TW_C9`^@yIn_@#<*U%B&ZDb|F>bm%Mh+< z7&xmUIKPEd$C?HLUAL*X+vIlz)msS}b579J?t=7br-F5cePVcMFduA?-UQ|gO+>7- zU>kl@PJ9Wy*$SedSw7q?FtCuAym_!K@s@V#iPu0|7(GmoOKpqylk`&lp6MKejdx7? z-}lja?|hg3caR=miT@3PDM~BiBZUo-`jkj{N~FT69GB610zkC9!F;(ypni=&5G|BJ zuvrzkAYyaNl2e1EX7UYLc9c%mR(&JW!FHe`y?LiQ(jt-cywuB4>Zt_cR8*?Sv@L-z zc7+dNa_6V9!Y_!G@H=Ad0y)@?SlK{3q96%Gp2-8WrUCEY4Mx3fcn54qY`SPd7#`F{ m7C3T0iPsxPuZ83{MvEG{<Mr8ZdMaEm07{r#Ql5?tcLvF;*%7 literal 41532 zcmeHQdyE}ddH34h*WLB{k;Ei84#U#mU3K?*Z6{6Q#!%aYKpmUZ4b;?e#BiifQZl$Hx>D@sdBTeV2#6-58&OGQPrM5r&R5Rj_oA3&w05-mk-srviQ zna7#OJ@>J;Ny|oB=gygPzVAEV^URrV&iC}_2M#>DiTxLD_u7VOuU55s-FE7_*9j-; zPAzEZw%>VwXa1Sa<<49<>1vleCvax8OoHFj#<{{JK;i?9!xLt5Ie@$DZiry z#*Z3{DOXP!cR+TS%vNZ2tuU84+?k;}s%JtZe&C9ldFBttHf@UaFpqD})mNb7hn2Va zYi&%mdepWZpICm@^IhdBnD!8j)Xc_e6C`cP07 zlxnqlZb8}isIB0?h+wCo_=c`Phjo}tO;;dQsB2X@uGz}6u4qclv3+wzA;n%mKVpso zPGD{v&|JfDTQDKLu2|*;U73B7kGOpJNzd0@|MKFKx?R6KJHMbfu42}qOlHH>T?MGM z2pxyi(3zwZFQ^%c=JC5ajq+X1_G+%#_BmmikGl_DnbWH))di5?`STnc;B#`l zDsR|_+1DJyaeZ$=@w65=slxfVYe!BwHYO)FsZN_*ofq9|nYPM@LZhD0j~rM^x_i1G z_o};2TQ%*AzL@vz%+M(;IM=is4+s=yu>MPo|PTFMie>nfh%1Xi5{Q#UU{(sjb;MAM993~6cr;az|zS^%dJo2$wj8_GTy zs(Df0x1a=`t^{yWuC+#37;Mff)=|sopV!uFW`lLq6e!$^?!(oz9CuA2Q7tH3G4>r= zT2fA$#{k~d=|)5rNK`<(w&rmHFPXlfV6+aqfC)e`Fc}0*kMtgsfvQ70eZ%w^cuu(% z_znPDK+UFB2T66E17w6pefc!&<=r_!tfzu#1k~1=0^^FvQ;0GSvI}_;7a8~^kOLFi zXLDpJKxp6^Gx>&zs34MH}K;f*h-c1IV{;s`PH1Yeo( z7^-FB{#-bPh`HECEFg&CHbTJGLF`)3tP3VrTh?K(t*KDV4=$7tP+iQnuam0cVDL}4gHSKvc9`ialuhTkTO?6ps+;L)rEiEP) zbMu_Nxop`JbGrOy%K7s$&QB2MIol@)b&=!7S>sV+?_()@jdNJnae8+#da?9{C#i?E$eJzD;~BNE<3@eoZvSLub4SiZ9c3 z&)d4Md%_XBqlwE(THri|1MzwD^@``~?}tb`j%y z5{${dk;<30!m4^iNpL9wuHTU1x>UsV;Rx4dz6ooLo>_)QZ)o!M-u+25dAf}qDeNq$ ztJwDvlquQ>-5pLQ!Vtv#neJj1^%r~UdZX^NG}G>co7-#HKScxfaPXA0#aV84SO>mQ z(Fu3tcNsh36uR?G4YSs{8cyOVr{&ZG+H<|B@PxB+h@QRH4zp)8>}SJxJ`MHyIE?4L zv3i9gXA`|WD@^El$%KBjV3TAa1opWYY{IQAaGnC#7bIZCZDoN^#^(ekjqLwLqFGh*A5*H>Y$T&C#5i?g{XpF?*B3FcBN(dLiKA+JNIZYCi{xxItlWEob2vQ=_$xHIplQ+^4)UC-Dxfgaw{!c1u1?& z4tj7YPDN5=c!qMV0;5X)BLO)azEV2daCOeV47c))7o7r1pbzL zq_4;!cjs@DTh3WP)owh zAvyGZqtOer<&e9xTcEkz?rU<$>!A5@Ippp%7wvwO zZLA2Ke!Cp@;0iJwMKF%&`h>9e%ZcvJ>LNpOA?zb^$o;V6hJ~=t$Z74a7Clw@b8^Vt z`P(yu{k0r&cbbcmD~7OtkOLoFct3y;_8s{gx-+P!P)D{%gX21cx?K*rJIzI*mV~gq za_Id?_4IN}vvSv22CLkc^e<;M3xDR`r+S?ifhB;#sf?=^ZWl!;t?4Mm`eEb|#+1X;b34biq}wqgya2SZ;n5lT7TSi$rgc!f$>Z zAoAAQj6@n?`Id-9D#};MaeXh3tGE0(3B$;5S26FqAh_+hKC#RS?Wwr#mrk+V^EL17 zUtB*ag)bFXge4=c%?Fm^Nzu=A9%tluh7c7;Ka8k$MD~-U;}--qCG?2rlW9vQ_PBIn zT?EwXUqEk{!j}pt!jch?)SliW$2EkII0?fD>86q|Bnonx$##lGm2Xa^_1n@Jc9GVz z{Y&dPDSWB4A}m>HQ4V)JtF7!Joy(ueaSb6YPQozKx~=P{D+QU|Qrb11WS6_?tiLLq zbr%W#eg6{trWC$Zf)SRC1h?Spop^5ScRG{*kYgG`ew=_IwcXNd3l4US8*=P*;>*=+&55nvjFvYBF~*_6#Y6;Poo*Q2aa^R&KUor6Hq4>;4;p{e?+{X8j^lkIT z_mMB%?;|76R(u~*mUG*Djodc~J8CRLElRr;(@Bl&8<~OfZA;S-n}-WdvpoChw4C;G zrx^h+vS$lcS;C|Dc{%WY7?XQ@Oz;PNhaU5yr;qpL#P%@50g4tpm|a^O-%r<6-FA}l!qDfKCWE=dtj ztOIyY9lRn3-Y08D%B|;va^O<7^rZZwa^OX3v(bMu@Ee9^O{FHKuJHJbgKuUdzpo=>{c0GYVd~JZ23-z&e0PiVO zOAcHr)SlM!gdF${ww|86c(0sXDK7;5D-X&ak^`42cTdWHPYzs4d5ILWPu+hY2R?)p z*R!PU$&2UZ$( zL~qK;T_2-Y<-nzkPAQix)7~XVAf-M<&}Es{xt_qEy*9whh5Ctg0Pkr%e=G+s6KeBa zLN4iuXj+TE7(r>obzsTt*58NDhU!R)%w-mlKRkzIaFs0Vl03EwO*!y#rRJ1pp2)(ve(M>;4x;}7sq^@xlv-)TEpod&;{J&gMVE-nf#-a4 zdBpA4+x)GZj&i|p;C)5hf0V+PM%;d<@NFpyLpp^_#O0q$MMpm5zn%KN6w5G?md`II zO~EbXBCWh*cv}mfAe$;H36dOajZ2*KN1q!TZG5&KRn3UYItUQ&*QhWT%9G(R_RCkE#`{<}$#Op_`p?pY%Dng+& zRgIl7je;*IL{mqd5mpC^$^=m@AXJuN+2u(cDOUaH4JS{cWD6?X#V+loK}_l{4?%R2 zAUv>)O&CEf3b244iTtEbA>id#UHlEbqaUH4PoWsxKK(|cyM>7DP`RQgRqV& z|22;#BbrC)=N%_TLCa*g9j6eOwn_TLtv)?kJf?3l#DV9TPAX1xX$g9MW(B7w^7GaY zvjSnzNOB=m{|0;fq@d9$_QDO`QaO$SLoLTceK(XiYQ-hfW)D6@#o5S0Se3V={pf>7 zA6{Cz=it3d(S4_7)+!t~EQ88|)mc?4n3Utr>8ilIM6WITTx?QgW!}W!F&&sdADW zDOG)9=Q((BEvUBZ@Umm9m=ke@DxUHBPw0cHVyt%ACDXDhC{hO4z=ldks9hJA2|GJ` z==AJ@GJEKu*>l{Qskr4p?>$W-7aG1heEhol3-I{RX>fEwpI&~^Gp*Kbh$FCY2c0RbR4s2vsuU| zY}14j>!wlMy5+deWJZxscr(M*d@KH!82v#QeYDn55^q;GYkmb48{kS)ER{mTFX6)8d9?ac7sIuFa ztDFcT2N8l7pKNJuICd)Xsh}FBZhojcBNxKmX+Hazj11bl@N=bXv2A zmD!pTpw{i0as*ZUjs@-o#5Cpgn&<3et3kp_w`c@4RD5j}RUxS}#s^P4VVe79FP}dj z1&*dFaI&AHrhbb=!m0)j?$oCtz>hEi!Y(VUgaRwGDw^a}v_K$+#TJ-pOZE0M1CjD+ z>do;-iim@S95lvyR2ENehiYvoQ7R;kEMeJc=Y(xwzd8Wx-J%65y z!^$>T>gO0#IRV+QLZi5Uk>kpS74k|HR`}C>CbWbf5l=kh!3C9DS=nXHsvK3?@UU3O zvkJ{o#ouTtPYZaeGOW|`pH}aRwt{jycnG3rdJeXNBA6Omtnq*|TjHykQ}62XXG`69 z_ME+FCo0>RdeQGiQ#bYw?$CFEb^pf1)O-&Ai#=($4Ng4eQ>?tX)|7;?sX<~&xEV5R66V%~m zjF+7%NlVDA)zT=gM1xo@sa`j${iJBM@sWnGUcLwu%$FLl(?R8?X*n2`RHj9u=401@ zTX4Hj`B=32IeJW~kd@Ej0g3DwPQgW)VO-cN*nU9CZEP4=Do4IzIm^if$`Lyjs;+yb zR$P9dVr0$bH&c_kdmu4ppS^DZYY#9nX03WA%fHyH^UWy{#|I)JvTMTJzg_?QQ6|-w zju2tqFDaT*X*@EJG_sbx8!GWrOeF@1$25v7(jb;i>etP(Pvj1=gi+&6h{{Q9S+;^! z{7~hgMDPNFujO2dH`e$Ox-fCHg)&#?1c6YIXY$NFAg-rte)NmhQ60EbPzqIQCtjz=qU-W zo1T70IL9;HlMwd6)74SsI1*#AP{c+Bz1+dtQ1=zHju%Vp**Mv&KKkH+rKP0@7mvOv z+M$lO)GMXql1=Wjv+>AduU|Y$`xV0VvDtIcHk*sLNVNN0g85Jto9k>dE=Gwo&V29k z7?wG^G*akHTPpUC4Hi@`$SbE$<8e zuXF*<;LH6@2CDsu$3gD|@OJUm8d+ zvi@oh6!(ivaR>2NG>WVHApVMsq?^A|v*+2uW$|pgWUY+t9XbVefkjU|RIDkkbIC(= z#ilwv(c)jzQ)~y%yW~M?Y=0Fs%1!p7x-{1256g|*L%um>^tT3Lbk;-MfysY^F*@rZ zX0r2)eL}uDCE`B^A|mnvgt>n&@Y-v^Y#86V;iR*kn#KhB-u2Du_$$Er35*}?sgOo- zfeoVLB<5~9e!lelU#NP+ax`qtC%S%GZ#fs^JsM9j8(3H3DNS3Uce&7L(r$gVrt5Wj zQiR&GH@wvfQ=Yl(j(V44g(F?>ayRAs{6Kuqs=NYT+{yT!Rr&3?`Nle5Xiv$wXCN{n zr6=6|EB!q~ay_Pg=<(?+-!RZDvr7I-F#7?<>_Hqkjp8C2M9E38sglb_{&c!ah8z!i zgBE9g1k35jutMod*p0+q1S(HNZ~bzu`;dY-e~x8ERRE_-keN$}H*G0{M3T)iewu&# z6H6?)P9@+CA_11i(oROiRQw2D>pUWCMnSNuz79!Iucz5#KbJOR z8}ys@gN~nii;~H=Qs!_u&$iU!q$_0(zve4(juzhBQ8owL;%)0STEW+&r&7GqqZf(@ zn+nR5@KhE`-y$qHD@U&o@cjg>G+J)1H)6)o&y;6Z5)KT$e|sn7_ztGESr@S*&zcx@ z@kUC>2L~b~auS5Sedlyo^XZpaEbzw9rHu{VU8;`z>68x9Ylu}`oJ1@8mIq?hR@AmK{(D+?RcEnt` zxxLm2$KXc|r=CxFjm~{-ei>5^$B`CGM&D_Eg)S$kgpqh{JBy}W*H=4N!*Sb*f6m0s zi`X4-*Kl(>x*1>ZM2{#f)k`{Ux1G2x?njUaANCr2(_Z1Zy{}>Je2+0*oL;!l(kxp0 zAPH`foaCama)|v=O5S44zPKp3KtTk;IF-g#F^>JwI2Gg6?6|C)j4eFE7z+qqn`H~g zaLjW8w}zS(3*pVatJ$8#o;+0K+pS=q-RoRNUh=5#_?p!@u_>&?ee^mm1H6?mM#7m| z;JRRu8o@dhPRA{j5ZyTyPDBjzIw(8k)B@kMyeiUbDG|61(Z7WbOZSp@!r_<``0c>& zoHDkb3MXmKyg(H$zzrQ4gRM5ePPvZbgH+@zu6Dwa{Wu<#lR$~s7to;+T?Vd&t8J9< zysXtO&|Q!+%EcP)Y5 zw5~4)D;Pd=Npo$e9hCsowH8_?A�(QzH6I8$46-6zL#g6N%)Lf!|oXcabHP-=4jx z>aOd!s)0yq={Qz)j7UZ1NVuJIUVt*npmf5$xjQ)!&D*xYB4;?? z19ZV(@Y&0Yy$IpBC5*PC^_6W-+NHRPkJb-fME0UE3vz=tsyY6H3R;D}j| z6~Y(`XSBd~)U+wwY(m|()q_@BO;i$$WewO7*Iiq)2;g?s!jzq)pEk8UJ*YeCYKs(V zhrZf&JY5w>GA*g09GU5vR8tMG@D9t+Lj? zk7**cEMwzRCDRCRHGIGA9p1km&0e*=21jgH9d`v5bqn=m1fZvigk^}whd3tCzIf-- zUEt@8+oQA$RZ)#NW?FtHsr3K(r_F|EzQf6q0)g{a&7CjHZ*f132q^YqVO;GZCzq`oXZQrKX@^k~H(uoX%WZWBe$h}c#$p*S=P5XM``vg3YywqgtK2OdC0TFZ`=Xc6mr zbFMMzJ(+KbhvKq?t*6%Cu`%P$x}WA)zDb8y+%pCbSF)maG2@7uF$& diff --git a/latest/.doctrees/generated/malariagen_data.ag3.Ag3.gene_cnv_frequencies_advanced.doctree b/latest/.doctrees/generated/malariagen_data.ag3.Ag3.gene_cnv_frequencies_advanced.doctree index 52b8238dd0d8f6b1a7eac09273802e81f262c2b2..08dd6c5fe1c6950dd85ae16d5109e6a83e861e9a 100644 GIT binary patch literal 57230 zcmeHw3y>VgdEVi5hg-Y|zC;QHH3UuKAl~f(Bo&K@UJyu0ERcvoF*G6&TF&jx-OOTl zW;ru^xFZRgvMoz6Ct(t;V<`@0yIht^R$?hp7?o0yQ;DR=v6ZAOC$X$bA{OmfuE7p2`;*_C68{DJyn$)iYfZh= zv7L_Lje?yWr#nK9pC z6yxDm+g^RRwd@*?4h_3)8Q#M!y|b#@ZKE?HqM*6`L1T@WRY^_dNlg){DV5YzLh1t} z+0yBOj&}JYbAK?~iUnbA3#P;NpANS7EZZ2J9xmxYL-&2xS{nM08_8*#)$vFsGwq)4 zc}T?X9k$+=zjk(pgXCdJZ=ZLKWy&)QW_*2xUX9Fs<^glJd4svlJQzH)XgYmk(H+{h z;Vxcq-1Ccxuog&G3xjpvbnLQZG{9Swj4zTjUEMc2O6I(fNJgrNVhJ@}4^p}D)YjpW zITh@%?2fUfs8MRzd>y1<-UO}OjDNS_-(mbaLK1;cU1$%jor5ebdj(byyp5PDt#a;& zHkY(F#jDmg(C*HWQSgS69Kw1^Nsr9w)BZ>wnzxw?iNH^rH$tsw-gY=bJJ-57yxB`{ zTAl@M`9oJV?eU=Za>zzHk zZs_jedF}9{L)}FZ{p>ro4+ELkJiQM_TAty1$Ky7?M|!;AkC>K?J?+?r_GXR##N~ht zu4Dn(N;9;a0ihCV=vZw(o3n4(t+r!2t`FrtW*pZn+ebaej?QZx*BP`ddzC=S_K#~z zj?=@d2i+l92vb|-JoNQ7P+o-;R*aU+-Uj{Uo}(*V9Btk{ui4I$*Xjd>6Dh>Dh?F`ICiTRH<2kXZvVgRUtHO{h@ z$=wvWn^Eo)RMzMj-bs7)9btT4KVj>=bE zPDwjSNm4^QiJ81|%(Ldhq>1+>nlR5H6v`G{DO!MT1C$J4>j9V*>p9~fD!hvMuVVhI zm>>3KVl=;Om>)yB?5xGEskmjZl=jKE$CdQ7lpa?0Ek#Dz4B08kzLzbF*$}`_ea2Q6 z=cXkW5uinn335GIj$FYOd!(x|gdpk(K-8K5)~f|9QKf^S-S&rwl&K+Eu;qAEEq*06 zKEu^G$k+I{;u_6M;2S(dkw%Vgh!7M^HI*daaOkI@=*DH5WXJY-hq;{GN|V!Ho?M;X zTY1XmJm)n!6C!$|((au+^$J=IwmD1Pw0rJN57jS|GVkSCFBi;MW&RjXc>~Hcc*^BG z=aspgP+ifa$CIw0$?i#zNV({)P?4gliCj{V_1PE%&nj$xkY~GG)_IAfV^8;IdCC<8 zk^wA1eSzdFmCkn#ZV32{wwvF-cELDc1&D&M7c;3(xrm zBz^}^c>`8*f~ULzp8pz8xt!;`mFy6MM@7=-c-j-$$ZmDKJy~}|v5?|G_9)MHxwP{# z$po?==P6f^$jcYVKFsr4ZW)Sviv!s&@s!KuJ2sGgnx|aOb6#`#K=uWmczxx)0)gze z`8JdbXslAd$y45dQoqAfF6TL~)Pg|v5>LH?Rxf`bn~ww8yaKQLFbB^Jfj1!WgFNMO zi6>UF4J)Y;*W!0P7uUUwr(Vu?LLC9UD74=-A!Q@A!ew5{&Dew!kePgnZA6PHtC-qx zF=KQgnu7^;tBc8k>p3%->6;1PM$L(z6LI|*->5=nyYE4v^u$%+ylB_pi5Kc3B0d(4 zJ)U@>8AZes5s45gw4L|oOnChOU!kHeb()fy*qUgZ*nPhcetOxo*r>wRPGVP0Wm`hL zoL;^iA!m8Barwyhl$6B!KFN!;*!q4&2tb`SEw;YT@x+U*FC;$J`o7E)FSfprcw&7w zSC?(xJZHkf3TXc>&s7BzEe|(QZFMI$y1$dtS8>Pq+dT8d`U;6p1+R(MZhCV2OiQlG zD~k`owA@h>nPl{s*yBqq3&9pIx4zQ-Gb(bRppnI4wXwZ^SdEB}HOlLF;>AWOCD{FQ zv?C5Hv+* zg{pLDeugJrY>grDvDWwzo_Mh}hQyPQ^4fCghGNY}lATc*C6xRs&yAw?vffTUlnAq#b^-{A8YadnI~Rs93k(j31`_V zO3*)S!pGDmu&8gbwRC?q+mP{4FImWFQ!%GFl}V(GKEP_+r4W~(T{1xdV{ z!iBBJjz(@nKNIzTfvsT@Opw)2f(ZwhukdrIus5AKYF#!tY3YAqTUvq%UqhiPnD7TY z@nTE}iI2sEKjDcN8*)fI!G!Jf#e5kk$d`$*w(n$PYJF6Y71V}>De!?qSSsvD>Q+l6Xpk&S0u5u&;K<>_ zp46!wQ5!R@ku_fqm4uz_qgToUqMu(92Sai6^6EC*ska&U)6U-4l!&h7%BPQEl z_Ow*OSULSN&u+1tLgHfwhyR2pUaaA&oc}AHILmpy|CgO3{P#Td3ToW6!J!mL1|NzC zhgH4fTYT$^WhaSOLi-n4`YhU4ZNj!$HWsr@NOc0)Il}#HEt892l5+4h1@8F3STS-Vf2?M*;BdbE; z<{@N<$fb-T&hV8hO0PJG3~Q*}UwlxiVyv`!Jj2D(3W<*m29NQ?i}hTU^AGXFSxyM3iB}2+zs}NUgF)3Me3h-Dr0X9xAr%a^ z;WWAk7RB!b1i!)7F-a(p3}kev7*lyDII5hN7jHg~kHjlDCodNfW@8FbbCr~&(cfbm zU4s1o3x%p6|CR70#51Glyetyr0VMho zdg2}Z2fdw#bd=!gS60a1b zo@ME?L8@vKKE+m15~RW=q=Ho9HsOA@Bq6bl&$G2n60RgG8LcYNRUWQd$|0>Wpl;&f ztRWO9uss`B7fxm9%ZX20r-&kSTlVKPrTSni=?$LbAoduv|M^3yZhL>H$`^uWvker>`b0`b=gfH z7KdF&B8wgqNv*OqZHlCRimhUUlKOi*@#>P=8J+eW$tp=mr1gtzZJQ#kUt_D-ptSxa zPrSOccB@CGM-odXCQ|!Nw$_?bEAFa(ovmVnQu{-mI43pr8~5UGYrfAD=Yq=E<4n6- zceCM^Zsa; zcd%8Ij5@+5WJVp~T?vt^7lGr0Y;BW_IwUI@ttw_!KI#}2-PjPH!L8n?fZxdt4RMab zQ@Z1~YI$)ZMR+5FkdFG*^R#3ml3MhbKx3bkS;;8GLZK?7kjHuA#n2KGAKSgV#1k)e zkC1pW3c+>e$$sENTMla@+0RMkj+OtXd3KBC z9}*wCUh@T>c(LVF<@~pJ;w-K6WqqL&Wb%RnG8zZ#S^a}mzNc#?&sOv zn0=q+iL-(pi?0?>oaMYgi)oa)z!RT9iyJ{H1xSkLiJs=!-I$<1$`fY=op8>aC-@1z z0+#!vf|4TzpW6WOu{QWco_IykY$+ai{x(mX70X!8zsVD4InR5~&Zvj3Y_RzbUqb~K z$_I$(bep)kN#nj^HpMYw%U(8mvcexreBTC$=Y^jO%?Ek%6G{GM3eCrO)>*OVC6fuw zZ{>+skjrL5lF9 zc;XXiaU&huv9g%i$A)267Gt$|4NrVyTD+Mj&T^jDVlKuX8bt4%SrsdO-?+sW>vfrS#_!9fAf44 zt4I>Bv=aIMSo-WrWYs3@xnhDq8#W=c5~;4W;qE4Eos!p~D{}(}*xDvpiIl8lw5s4l z`AX#VrI)nlRttBlS)(<>bYik{cqiM&l9j`wC{$(T@a;VDVxJ9(kA?Pk^TdnIIV7H} z9M<}He~GVBQDnuny$L_wf1i+lrH}WkO7jW6X`D1Gfy2+R^jUDI+Juj=Rg`Q~ki=_z zy#H~wmPtTCvQQZm_>95zeH=4twR)CqwBpOV@rbKG=}1v?fU9Hfk@xwS=gb>VZGj_C z1-r!=uCCz^UE5O+J-y+{HQjaf^=8{~jb=ypbrpP{u}~x_uo)6aspIT@+RH983%#l!f9(|6g2Sv1>AOP;Pf{m z)yQe~;%W5mx1A6dP%jUAJ#q1Qa1#=mD+biswpUxru7NXM?Y3ojExog<+ijzR`dYrz zCbj$CsQYd38j?B4m-`@Y;}s=kO*fCNY3|5~Z0V$VP}&eg@;0(5#g^KR?Hky+kX&Rg z?}?r>XL0ei?&>S9J}{Nnf$>h)84fgg7@?;vt!uu%=GgNZU0$TkiF?tHXu93eCOSoclG9-rKz+>5&H49rDoL60_Zy?MuJW7L5g z+BIicOK6MSO_949_d z;)*CCXuKQt(Kmd<^`icZnv}?N?|!yFs5mg0>pn2BD=yJ((9auB?Eo*c!9E<&Y}uA? zIkp7LBD=jhlc|LZX8MW=pP?J3U1J4AwBs7YsyVJEFGZ(c;bq$Nlkk`X&gJokgPy@< zYDA=$$ptiAZg04N1Ve)lz-pSYuPf;v}F*MH8qwE9g)M(JZzZLbT}Qo z0Pn8mySnYQU2EV=cJ!X-NS-_iV1_nlG*_DQ4HC%_qAL0Gq^A;GY=1<057V%cn~@^SqS5Z@o+lct=sD0iy={taqqe;aH6>!Z ztCrY)lyXa1h0>EEOPoXznRN2*OYr~L&Hwukf&F4=`NHLB<_k~#!(vB$;i+d|0as0I z=)PJuB*R?fdNVMmdxh&|#x`jn@4l1jh#i(nNrzSXVd#XZ{Vj6yn^L97&2JQSbr0cB zY?OZ-UX>^Tym8X$4g0o0PR+6f&dLsohWMmYNY#8t8+r!)SxI$Z&|&c{z1LfBHtr#W z6S)rQ9h|y(tYvx5A;QP#nV|VlLIa(jp0R55v||lX0N99|6|7Z5>sYInhXCUVJf?~z ziQ8LcByKMy5khQtP8C3WH)Qx_X#AY$xJ!~mch5XnA6|Ds?#oi{Z&a%lXHYb~6D(i9rK;$fT1rvPepdU89a!M`Wa77n9*k zJF%Zjwd^MiNxNaLKaKL^`VeVIqEgbx>p&8@20@Y>Nu^=w!T26c0Mq00`oeiFzMT(0 z`{?7Dhc7nnGwc=Lq>dB~j}qBO<0^DnaoLE#CDF;4OS`{vJ!j~RN=hQrPt=lWx`%ZI z+WE^urri_-+`zRf>JZI6{=!oqp$kY~c&`&5&gfd)ta<9?}zBWC`4Z;!cr-zusY^UYA!S94~AC`U^2<0NE?j> zk|9yp!=?k*5$OgrFw=XD`=W7^-lxHlD2^F{MZk`WktrspyxcegV_V7^muMuJ3j<*4 zKEcojQfY}Q{-BmB(q3>S#PhsRMcNDIstP0ah{^>L#{Z-iRzl&<1cEjMZf} zIU7LH0uu%X-BP8~lz_gXTQ;UDXnrB|ps3%Ac{iuw!Rgw5JZC41TXwrQ?4WemVV2X% zc&6@hq06N&mlEpl1@A5wNU<>h4SkJKPn|nrjCP>p_Mu4=T!%dZt8)fikoB*oN}H@ zFDU-G>tfc;T^aT<4d=ltbzj3LwLNm$0Vb;8W4?(&=!!|6EFHWd9DEK_Yp!tYIZO}G zj2m9Np5fxbUcq9~yw-DY{9B9an%7o(&QkQya1GDttzt5^(07Y32nv0;_+_Hb_tjEo z+Ly0`h~F#JnfB#ti{%(ObJ^>Jsa`FnLT@Hcs(bU(Cxo{D;wTmV{TGU-L>m`tX(R3N z*TX~}6DCr}YdDob$Jb{UtdUFEPc_EDtkBp4R|2&~z0Z#g&tVuA95) zCG^@{dZLY=uceK&!`=W1{hZK7+F@T?E{n)%xhx5DpRC1P=(xmDb;tc1mrprx!OKKF zk(%^XUsp;7fD?N1-#(Eewr&mo@qeA9I~S zbl-ue*$!6VmJk6~lb)*V&f+=rrb4gD-h>i5O*T0Z`qyg-J?%5EgCPEs5PI5Y4zg{I z+-6L!gvCFs#bW3=#8-9CdDDjV00-F^k)*wUTC2TjKhU6(?+caG@dGL)6%13Lp zGVLWl0>#)uF?GCzN=bFr@e(qE5-&OPSFpDzK5-q+@pyC;Hr9TYtu>=__+nunD9YBj z-@rz(j)wg{8V369VGj$+*!D$Jd)U?EV2Gmocy}S$O-HZQy>r^V%Z)=Q+cP>?tEPNn z;Tr^!afp1aQ6`K-<~6HnVCg%4--z7wf`vsY+p!n=7B<+RBHBviuMZ4juIFiD8|$EF zp)-b6!`qvvTRSA$c?e^h!m1ke51uLArM;aDpb9iU4f}*Yc(qLd1^^@pZ~KTZeugAJ+lSwx;a9?LU^Qf zETtEl{^j&K)E}DJv$Z`hf#6@OWprr>z7?MIDd9)tNnWK(6CEHM;WfIEgt7v*#U5t@OYG5HroEWx+FW&! z`TT9#5sDWAb&ScUO`-m!RmGpWZe#B@Z+OiUPd|4a4Qvc*}b_`6POT z`clt0dlnr;z+W>y;xl!?Dof{FVGk+#>a%e-ZT~kk)42ea@F9szz=$*axbP_=f+Za*d)Sf9i_eV0BQOp1-)!QEp=a`%H&Saq1`du-a1u4 zWW(|zqfYXm7v8{VTgxI3_L=JLis575Y2U#@Agv0>g*>3%9Y>F9_gim2JWp$Nc%g;N zU;$oyz2#w*5Z!GQ#D*|h7{IO?EI?ruk+zc3S|L6Gz}9^l9^;!OT5lkJ^`Y+oW_zer zG^hh^IwA3JSwgm}lgZi0<vHG zSY(Brk_AzZj%*&|F{^Dh^mf}A_%wlm!IsXrXst zbsEwp&7pmsTN8>77Y+k`^q55XgI5EeCY;<`04!XO^4ZC~52pQHm5G85mmdZquzz~P z{Jikg$Ik(B#?mQPL?8AKNZytE2WMW~IyLnw7QTvwKb%;Iar;5^ zPF@ZNP+fe}I|Lveb_r;3vZ5SKv*x;!%1u(nMF_F3}aJGa8{%vI9|PG(z2ulF>-; zpn6&g1|;mdI=({AZn6`-sz+#a&=S4cxg(D>8=@bPnQ=~^z!G+^(us*=-&;$v>8X_C zXzfEnvgxUmF`EHGj>hClSTt*~76z!TFmN|E z!sFYO#)BBmVZ=@+wqUeR+vAZ+le<1`yO(niCIVYBe$)=hU4h;q8sjw%McXzGHMNIy z*P;=lrwuUoMJs}G)E|~W0gV2SEyT3&IgL6Fr`k1r$-y|C2AN?s^YJ(Rlt|ykVw%}- zEvJM1|8zV@g9f{)ordBx+%r6Oxg&0$vkW+8<&r8s%`Kcnj}OI(OfWP81y6n}HmLgF z)xH&O@f86A<34sh^L1F@tCmMIU%U(arL{Z^WBzzD9n)H)*mdmD2e*VUNQvZtq;fBc zONxT8EYc)A*JdVa>t#b5@FwskJrn(U`(dlJLA3{kQ+krsn=9zzyjxGw%xr#myOqZAowhq=u z!8H0Z*l3eI@T=qW5!6TBJ=fq^t{EH(Mw?wm-M#dkVnJ4MNI1+Fn8yh7rY@k z8cH5JrLWwvK>z5Vp9P!{wV-SiT8K|1OLUyAs^!9mr3s!bWMF&?dgADdn8OqBK1$!`k;bTiyYmE+n8ht3(OY2Po ztgH9Mhh-pmK&D_1mq=;R`cX?9hJ?nTzOVqDjwBLxy9VtlXo*uxMyIw04HI3k=y6A| z-&nICMXZJmy(D!<$5J9gZ;69NejGeTf zBn>=c*l}8GeKM#kj5Tzvjh0$cSV`M&(E&8lWcT57L6629a{mZ%ITN`G+-^4-gZ&z` zl;PNTwKe)^7(hzxx7Wvk7p+H! z@M;f&x=K9D$CmhpQ;POr+r+rK4aG};gOr5`QTqIFfGYNaJGoUt!oVe1kJGm7W!ON7 z3s(|Qc*CVkHmgsz+jDg3jN1hy!DR3)S_dAy4&|DLfdfZ_Yud9vQhj3SL zy`Lx(8sn3jWr=B*f^CMqI>K>n!A^-La9>y=qMrrd@LO^LT-eQiFa^u<0k@!mkLL)@ zgDX?1boz`)2DRn*VVWSdBhqImQU0Fm-UJ`--bnxZ4EiM9e@y?|LXZEKx+uXc(^b literal 46085 zcmeHQ3y>T~dDcm~lWrxQ9=2tSEPH&$+$p|Wog^D1%qYOBeP>=*tA%s*C3K9Z@7+0!NNl`#>NTmpb ze1G>mdS1Oddy;J8bJfW^J>7r*{lEI}p1=Elbo5={e`*c;&)@2Fb;De$s*Q$eH8iK^ zZ){j~ucMi6?}^@?pX;6LP5a}vde*T#yRP;8HK#7)+ z+tauESUecLd#-Z5`p^((6D+Qz)+f^I~obwnrx`IRmVXgevg`J zhyU8x@VfECyjnkFYfY--`5RnyfnN3Wt@9R&`AQ!y(dD z<%nu3^O~Y6b<1>(1%-rv2K9(I3MhfGaX`~e%kDtUw1(0)&S=Wy!@R}0gAY5dYP;uV zAJ)vqxyd~pN`rAQEQIoI){!~ zCWaZ5z@pj9IYl+AOZGFY-7(Bs-O?@Fh1@-)9ojcHqb!oeG~JpAqG4Oznqda74&7&a z=&GYGq46R#e?hD9S9R^sTy_79Qa5T`iw;elh55G3DU|7+dB(|;PQ!E|CxMIxLdc~h zdc#FPkftMQyRFVcpiYKj8@1qdL9wW{&@QUQdyMK%azfv(HDQ4j-8zfbUC&j>5`tf( z51@ZTY1&ptc}TTw#nCOV-5_2zj711XgZi_AVFqFW0Z;+LIRjbj0Gvw1uPS#nl_@B> zv8aJAo}(!qOrG6drd}9qPAgVXO^B@1)#^r*Ra6zo=z`|LUUe*cSs@0_C|s7N4$RFd z_ZYVUysgoT04<;hIkMGdha-5_aCHT(HK-D_1`>q9V19N;RWKN62L#&H4Tpi}n5&*^ z0dN~#v!OMBQbXea8R9`*KFmgbb&e3LsbG>r*X?Bm`WT?65M~@?0eS%y8TdJ%1Ff4f zd1o;|NaZrK5={ehjEG`1OcBn$zHs1wSZ0GG&%xyan(GgVVWg-4#$o0n=Tw!$P#-8y zXwzJ>qGW&|Y}$fmJIpr0)&=^YoYjqbKsmKu*SfC52*AZH6a!|W_)H0cFEE#k;bLo; zdQ384i)!0wFa`^lIaKUvfmND3tsD{r*)Yj_sWJJ=Q}cPtYQu=%OYTbpNZFRR0O7K@ z6g@zi#T!rWd7wH)u*uHsVXhd>kDJ;2NX{gAGob^ikNWFrYUCc<&fp>NxiJ48$t|9w0=&@HAhF7e=^Rf zoF?&ZsW%nUzE7=~DG$h)vXPj=IkJ(E$udJfsh=Xszd5G7ei{xWAHfbb0yx`XstdD< zc~y{>6JLTa#b?(%Azk&9Fk`HGO7`-qr^NjA$cI|>lvX_@=C?8*tG|D<>M31nPbqSg z_(noB0g97fYb2ih(%S>a!;OG=13*~#r{B`jo-d~Ol$n0d?Zu0G(H?Pxd6u-bQ%gHm zV|=y^J*e<8c9q^z>?-*qW=|EJRPu=)flsu=Jh{u6A4HvYJ+tn5Z1E`wgFkXG>=wV` z9^WDBv77Djm!ck{9jqF6lm#DsM2Y%RgudP@>+5W`uip&%I>&d9_0bdakmyxOzS!GO zktA>KVoMDB6tyL6ya~b-Y|`%Z$0KG4Z2nj=n??D>#{jL_usW(?_WZToW$f*u06Rih zbFH)HTRm2RZ+rCoZRu^!p1%pz`4)*$@16I@v1aO64UhJNFUzc#77ox#ZuuZv@nO>) z%JUS&>qAhUw};~8kDQF;_M|YN&r1gMWJV`RLkR3gL$DFG*1>oRV80>(D{grUbkaX9 z5NVW;B|#?Eg@iKt=ZdKCo)BHXKzqL}LH7?bR3P0=5%-aZxQ_@__@M-BF>(80+u8(6 zA%R?saF%Uje71{mZe1k@J^=Ide@n1!S6W_$&3c)j56{lltb7c`1QOIGm!qv$$swW0AY5xDx(a_EC__0JProk)ITxk!vWBS*WKD18~ZEQh=TM!roBxftgx zBiEDLDsb^#a?s_uxGCTw>t`s_DiAt%f@%Gp9Oq&}XUUPAV_HwkArC^0q@}ue6HM!` zs4r7T)=4MF6)<(H z9C9(vS*GSpVY}tf2jS|)ox*0KDQreCto!6>uYlaIkwY#fcPt|75cU>g&3;FFw5@yO z(2Mbop<^n~o77KU0Lb~YHim`V*Iu2KLoTNE8vn{@le}#pSU_#pc!Y(pwdw!Qi#YHw zl#v%T4Pw1}n^e;L5hwG>qV*Ux$?SaQE8nk3!Rv);ttH}`^z)g$*WjyAs-9q#!;qRq zplV~Q`fRlKyCDcX<&qG6c=40vJLBh=S|61UCl}4uhtUWD@W~Mkgz0z`8Jos6{RW>Y z;<_=upC1O_&kl|6wsiO|Lwj0}X}n3O5o%(hEXMs`hQa+AhC5>Gwnt{r0%26wvPA

>VO}d8 zX1;#6cA=3s-+B%tj+D26bF)(TtsenI+Jv+M)&;$+2ZX2>Da&3Z?`s=gC;IBoCyv4} ze7Z_xLL$N|!>`Nps)l^ae;M=dKIxbX_;)WF4amQFDSRpaf?fvaUsvAO5d7mP48y-2 z*#iq1#%)d233-+&kJ)uzI>Z8YJvKPI-YtbMWmnKkf?aF(&4q)apYb?8An#`gR`KqK zVpaAWNrqKh5_Q5crAp)BeNsBS0yh28;B5N56uy*AK`#k5Nv+~n>(b@R(W4TaEqfb z47aW-Ja?7h*%i4}!$B6jjYmB#9d!W*Uxr2l&SI~S!k2O|=q16ybvSw!j*b0}M{>Ko zry=;q5g3MlJFVyLlO5$OimJX|cL2nwIL1(1!r3?ysNib+*co;AoR9p~` zX<6Rq5Uk>;48f`sPs0xmk1a-FZ6~9U_$UH4D&aw|D36aP@)%jvhyv)N+C}YgbaC}K z;_7ikYcBO>%Ul zv=F}B=X3EkIq;Qn@m@J_Ddt%&W&+&aEC)XbACqQkWdUxXS_(AJH&M16Zz;{QWJ#H* zN9Di=ARa*-q}azD6of|oU`Wkk|7i1=Xf_S|gbt&ch0>6I+z_XOk zOv(*8`0`}GM3eH89B(Pjvt&t4%5RkeAA~3ua8edTB;TArDMwdIi@uuwyK>-C&5tpc znDdXzJCI@@cTix?KXWmGf8oLa&u8j0D*)b?so#Tui#O2j#$r;NnVL+P<_nCP!CF3&D!yyH=;e_(AxX^s6q>1n+med6Qq#XDlM7e+yd|%=Ipd4MPi1ZciPso8w3Eda- z&&h#HG0)**(nNh(4txkMuEazMgwCJQzbQv|WrY5|9JrLwG3F9CZR5Cfnv`N6cTnJ_ z?Yx-4Uv^=D=QDNx3V`?3p4ZBO%b41Fs}Lf7;$}RohMTO0o2-VL;O5&hw_gXLB&!Ov zdVM^5O)8cl=jvdA|jZN zGsRV5Nl<(k_E<8>K^!kPTyldTmM03r^EZp|L!u-LW2JdYN|=I(#SfuT@`lU&h{ZpZ z1JC#A1K@p~*T0bi&ljKocucHYhbDhO_v|V%H-_pPa%=^`xpXm9|CC{4{`aTv$#KtT zV*or$p7kW=f@-d-NEd#CP$s!o!aFGaH7-ky{1w@ia(t!K=quDW$bshzHOD-$BJ-yQ z&5;rsh`}4g#^Zn#Tj`9OrFQ;|dsx~r*?yzO(hNn{ z+v5?pebPC8y^G5$f=oPNJ{SSwt5r%Jh)jyO620eFD9a4)ltx0yUNY0qnDokMT+_P_ z`G#K;t*MPO_^jhx+p#v~|a^}1ZcV4rWyr=8?_B6eRB_%qd z@8%=`NnT5_otX2(6iSrkPRzk6Cea)xx-QsiR~PSO(C$RCrf!g2&Qa!(R7+j5OrDfZ znP#`W?_mj~__Z3!w2L%i$eV`@eP)pROsh~1A?3)i`%&PT$V)}ZuY~NI(OpNEsJGY_ zeoQL&;tl1r?s$r7@AiMJQ$69fiw_5bhG1+8Z*mBescs7k{K~yy9wjH7ZN#FOhJR6p zhLno5^_i$e>(lh}nxmt@W!&G2OFRtIpj3HWx8pPdA%5dNk{cu{)o^=LM-bT)3%Dtj z=TJ{F%!q7yzGnQ$uZdo=i&qqp5Cu+U_?t?eobn7j*-n9Sb zS^T*5mbsg6o!mqCsTJx5nbKIwHwJ*ExHRfY+p4o{4$1=@rk99i(J>Xc)~)K29Bsgxe|HiIMi{F1dy^GB6DNAg7k)fjoy$W4T&YcWA(oc2g^^-SWP^l4wOX;U8FEt*_#Lq0;-`3@%Ain5nBAvD#k8WSNJ_vQnO6 zew`2{msXi>Anzq*e#QS56229DDc3+U&*f_64we^~YE7yQ+-kG0W;oU)iDdXp6U1Z; z1AbXsTh!Xhz6xsq%Z|IekY<*psHLQ?JY8rEa(}G|#Qs7MfxT~iLnOcex4}(q0{vO` z@$$BKGw6Oj+H+gXvYfC~%%Uc-OM-)yP3pqnSC;DfW~$Bm3*-eCTKtDF+8nd*fBi+k zb6AOgztF>kIf#WDW`V>zE+grr!bnZZhGh@Lhc6I9^Rxw`bO#gN zGUka|ae*&mo=8o|Jn;oz(nQ@C-FOHi_3-4frrPAeJ?Oz>)Y#7s)`j}yxys#|xq!UT z@RVs47t@}bFys@~I=DxV*(f$aO(#u(aJ6EfjY3IG(`G4}CS9}b80S2rY3mjEUu1@_ zmW?Z%Os5})V9@X(5o|gNNDw|UGT`ByFh9AakPQq7VK}$}xv?zSp^c^5#H4?$)M%38 zyaS~Fd9;^Z(MfZ3a<-*boMC0enb=$;&d&w+^En!J67m)pNQ}*L-K*`&kuZC9FbSiL zf|TW^%jS@1DR%hIeRFejcg`MuL$Ck~SB#b1cF`K{GVKumxefIyAEWiYOd9VS&@z7F+ z5K(p;%K8gB;6T(f-RBE?EEj)PN-mQ2>T(F~r80^T#yuXcI#ECkQb~ims^idxF7}tb1)UsgQR}D4 zCRa$yr?JmPdW_e$qe1@RkQ=5p!}fjKHQxC`+nPtZ0{&oYj@4e&?0g>~|GMHpoAY1B zDz$qvUr*?}%P-qs3esMM_EHnE{MdfOeD%^Hnrk{R7SH&{E9UDbn2RDC^fsJG1BRK@C~Ztb@2H^$EER# zV?3l)mBZ$8P=K$XTH87cWi}l45=yTr*mia?L+8$=nG2``1fOoK-3G~#$?~V1#&aw2fph;iY;iLUMXx%4L20| zOnHpPwWZJqWS;sST;^Z75~4%ahi)H_a<0@UlQRA?5POypyNrxeE6$=aGER&wlJUQc zuDOR?KRjt#c1LZ~{y8ELH3yNN*sW@_f_Z#4rx(}@b1aj7%^RlGsUeceojfP3#P88u z-NF)^e_e0lV`AOvbUl~0(-6qi49q=zV9kai;CpyxQC@ifQBD>BtKG8 zE3QrQzLFt9q=T`6lehd5eVdO$kSLfa41)FM;KjGh*=6 ziEkoe63)p%Wl6Pdb-8*wqEGROwsIfBrZ5js5G$-VMNQF%TMBih&mTNURmV4z2BH*9 z7Tu&w^4%I|l6I>rli@;YvZ~xqzR-Ldk+)sM;TcO|Om5Hu4X`NKHygpiXJdv9Rt*M% zAy~|oI&XRWt4q)g0&cy!t^f!66hkp!m`^m@un;KAw$UpT#jz)QTIw*s}(#lTvxwT&J(Qch&?*|cU2v!N~Z&ifloEBrYT z7SCdyw3qR6bMP{J-i{hHBhv@rsM1!`3d_QJ1c~~CmqQ*8KhyY=Y)566zBxNQ|7I+g z$*sY$pjmQIX4QoQ?2is9&DPDuS>brytlC(l&7g+B3jsil08{~h{Skl~0MrBkH32}9 zbNV{I?W51&5Z78+WS~FhSe{)+qQx2ias;QF4tEM_SYXqd-|3yh3C&U0a@BV4=o-Hg z)&bf_*LVml)JOb@x@X%US}lNe%-a+Mf2`!2Hse79!f-#O zhjyaiaeoYc9X1Ji$Mmho{BasQ&w-5xkOg}TYNrdZn{3N+fhzfrJ%3~`5=C$n=t$}r zRHy`xp54aN7CP}cuh!4dTc9$^8SU?A0*s0D)56Qg{VfiTqMBZ(wuD`aPVaGlf}()B z*ktIiPyztl#Y^C@v632jrZpA}kHMh7ph26$45(nUt+9mH>`*}O=vu#`!}F^JkE8x} zZOH%?vD@J}ap`D7oA(ybeB!KXn-E0QfM?r5$vD_i*JwzDpJ9S#HEf?-IMjwCwd0=K zoV{h19k0DQ`Ld?jwq@6JxWjD?2{y(ERh+!_w{pr0P(~S)p1(WwCIzB(FX`w6ha2M% zw!S*~BGuU6Mq_~NIXXzx#+Z8kmbPjxc+e$Kyn*Mnn%VO&v$Zz z2Gwoi6fr1bG(v&U$NUM^bFErjeX8 zj^;J2+ERxEYMZtMk6x>ZEt!u-Sc^(kZ)Zob+bmujI)IPg zy?eGz`4e5O8=rP!l1L@9b_mR zZ$4Gc=#cE<;{aF2^~@weWIFR&0~)*x40KJyNqPT@I%=J%X&u#Q!>BjN?t=4=``ZaJ zqynp=|Bf72DE1MFh(X7%RW@!K!yDGbnANPcuS#w-VdLo^*;J%9X+nWKb}8Mb=izb z(*~=3p4B|hYT-_R>!_RnVE%lyeg}s@doBzD^I1H9i^y_@#Fn}N!J$zAFK=&z)5N4^rgkpa1{> diff --git a/latest/generated/malariagen_data.af1.Af1.gene_cnv.html b/latest/generated/malariagen_data.af1.Af1.gene_cnv.html index 4d2550a4d..e92c1718d 100644 --- a/latest/generated/malariagen_data.af1.Af1.gene_cnv.html +++ b/latest/generated/malariagen_data.af1.Af1.gene_cnv.html @@ -367,35 +367,49 @@

malariagen_data.af1.Af1.gene_cnv#

-Af1.gene_cnv(region: Annotated[str | Region | Mapping | List[str | Region | Mapping] | Tuple[str | Region | Mapping, ...], '\n    Region of the reference genome. Can be a contig name, region string\n    (formatted like "{contig}:{start}-{end}"), or identifier of a genome\n    feature such as a gene or transcript. Can also be a sequence (e.g., list)\n    of regions.\n    '], sample_sets=None, sample_query=None, sample_query_options=None, max_coverage_variance=0.2, chunks: Annotated[int | str | Tuple[int | str, ...] | Callable[[Tuple[int, ...]], int | str | Tuple[int | str, ...]], "\n    Define how input data being read from zarr should be divided into chunks\n    for a dask computation. If 'native', use underlying zarr chunks. If a string\n    specifying a target memory size, e.g., '300 MiB', resize chunks in arrays\n    with more than one dimension to match this size. If 'auto', let dask decide\n    chunk size.  If 'ndauto', let dask decide chunk size but only for arrays with\n    more than one dimension. If 'ndauto0', as 'ndauto' but only vary the first\n    chunk dimension. If 'ndauto1', as 'ndauto' but only vary the second chunk\n    dimension. If 'ndauto01', as 'ndauto' but only vary the first and second\n    chunk dimensions. Also, can be a tuple of integers, or a callable which\n    accepts the native chunks as a single argument and returns a valid dask\n    chunks value.\n    "] = 'native', inline_array: Annotated[bool, 'Passed through to dask `from_array()`.'] = True)#
+Af1.gene_cnv(region: str | Region | Mapping | List[str | Region | Mapping] | Tuple[str | Region | Mapping, ...], sample_sets: Sequence[str] | str | None = None, sample_query: str | None = None, sample_query_options: dict | None = None, max_coverage_variance: float | None = 0.2, chunks: int | str | Tuple[int | str, ...] | Callable[[Tuple[int, ...]], int | str | Tuple[int | str, ...]] = 'native', inline_array: bool = True) Dataset#

Compute modal copy number by gene, from HMM data.

Parameters#

-
region: str or list of str or Region or list of Region

Chromosome arm (e.g., “2L”), gene name (e.g., “AGAP007280”), genomic -region defined with coordinates (e.g., “2L:44989425-44998059”) or a -named tuple with genomic location Region(contig, start, end). -Multiple values can be provided as a list, in which case data will -be concatenated, e.g., [“3R”, “3L”].

+
regionstr or Region or Mapping or list of str or Region or Mapping or tuple of str or Region or Mapping

Region of the reference genome. Can be a contig name, region string +(formatted like “{contig}:{start}-{end}”), or identifier of a genome +feature such as a gene or transcript. Can also be a sequence (e.g., +list) of regions.

-
sample_setsstr or list of str

Can be a sample set identifier (e.g., “AG1000G-AO”) or a list of -sample set identifiers (e.g., [“AG1000G-BF-A”, “AG1000G-BF-B”]) or -a release identifier (e.g., “3.0”) or a list of release identifiers.

+
sample_setssequence of str or str or None, optional

List of sample sets and/or releases. Can also be a single sample set +or release.

-
sample_querystr, optional

A pandas query string which will be evaluated against the sample -metadata e.g., “taxon == ‘coluzzii’ and country == ‘Burkina Faso’”.

+
sample_querystr or None, optional

A pandas query string to be evaluated against the sample metadata, to +select samples to be included in the returned data.

-
sample_query_optionsdict, optional

A dictionary of arguments that will be passed through to pandas query() or -eval(), e.g. parser, engine, local_dict, global_dict, resolvers.

+
sample_query_optionsdict or None, optional

A dictionary of arguments that will be passed through to pandas +query() or eval(), e.g. parser, engine, local_dict, global_dict, +resolvers.

-
max_coverage_variancefloat, optional

Remove samples if coverage variance exceeds this value.

+
max_coverage_variancefloat or None, optional, default: 0.2

Remove samples if coverage variance exceeds this value.

+
+
chunksint or str or tuple of int or str or Callable[[typing.Tuple[int, …]], int or str or tuple of int or str], optional, default: ‘native’

Define how input data being read from zarr should be divided into +chunks for a dask computation. If ‘native’, use underlying zarr +chunks. If a string specifying a target memory size, e.g., ‘300 MiB’, +resize chunks in arrays with more than one dimension to match this +size. If ‘auto’, let dask decide chunk size. If ‘ndauto’, let dask +decide chunk size but only for arrays with more than one dimension. If +‘ndauto0’, as ‘ndauto’ but only vary the first chunk dimension. If +‘ndauto1’, as ‘ndauto’ but only vary the second chunk dimension. If +‘ndauto01’, as ‘ndauto’ but only vary the first and second chunk +dimensions. Also, can be a tuple of integers, or a callable which +accepts the native chunks as a single argument and returns a valid +dask chunks value.

+
+
inline_arraybool, optional, default: True

Passed through to dask from_array().

Returns#

-
dsxarray.Dataset

A dataset of modal copy number per gene and associated data.

+
Dataset

A dataset of modal copy number per gene and associated data.

diff --git a/latest/generated/malariagen_data.af1.Af1.gene_cnv_frequencies.html b/latest/generated/malariagen_data.af1.Af1.gene_cnv_frequencies.html index a50e5067d..ae0e09e56 100644 --- a/latest/generated/malariagen_data.af1.Af1.gene_cnv_frequencies.html +++ b/latest/generated/malariagen_data.af1.Af1.gene_cnv_frequencies.html @@ -367,46 +367,62 @@

malariagen_data.af1.Af1.gene_cnv_frequencies#

-Af1.gene_cnv_frequencies(region: Annotated[str | Region | Mapping | List[str | Region | Mapping] | Tuple[str | Region | Mapping, ...], '\n    Region of the reference genome. Can be a contig name, region string\n    (formatted like "{contig}:{start}-{end}"), or identifier of a genome\n    feature such as a gene or transcript. Can also be a sequence (e.g., list)\n    of regions.\n    '], cohorts, sample_query=None, sample_query_options=None, min_cohort_size=10, sample_sets=None, drop_invariant=True, max_coverage_variance=0.2, chunks: Annotated[int | str | Tuple[int | str, ...] | Callable[[Tuple[int, ...]], int | str | Tuple[int | str, ...]], "\n    Define how input data being read from zarr should be divided into chunks\n    for a dask computation. If 'native', use underlying zarr chunks. If a string\n    specifying a target memory size, e.g., '300 MiB', resize chunks in arrays\n    with more than one dimension to match this size. If 'auto', let dask decide\n    chunk size.  If 'ndauto', let dask decide chunk size but only for arrays with\n    more than one dimension. If 'ndauto0', as 'ndauto' but only vary the first\n    chunk dimension. If 'ndauto1', as 'ndauto' but only vary the second chunk\n    dimension. If 'ndauto01', as 'ndauto' but only vary the first and second\n    chunk dimensions. Also, can be a tuple of integers, or a callable which\n    accepts the native chunks as a single argument and returns a valid dask\n    chunks value.\n    "] = 'native', inline_array: Annotated[bool, 'Passed through to dask `from_array()`.'] = True)#
+Af1.gene_cnv_frequencies(region: str | Region | Mapping | List[str | Region | Mapping] | Tuple[str | Region | Mapping, ...], cohorts: str | Mapping[str, str], sample_query: str | None = None, sample_query_options: dict | None = None, min_cohort_size: int = 10, max_coverage_variance: float | None = 0.2, sample_sets: Sequence[str] | str | None = None, drop_invariant: bool = True, include_counts: bool = False, chunks: int | str | Tuple[int | str, ...] | Callable[[Tuple[int, ...]], int | str | Tuple[int | str, ...]] = 'native', inline_array: bool = True) DataFrame#

Compute modal copy number by gene, then compute the frequency of amplifications and deletions in one or more cohorts, from HMM data.

Parameters#

-
region: str or list of str or Region or list of Region

Chromosome arm (e.g., “2L”), gene name (e.g., “AGAP007280”), genomic -region defined with coordinates (e.g., “2L:44989425-44998059”) or a -named tuple with genomic location Region(contig, start, end). -Multiple values can be provided as a list, in which case data will -be concatenated, e.g., [“3R”, “3L”].

+
regionstr or Region or Mapping or list of str or Region or Mapping or tuple of str or Region or Mapping

Region of the reference genome. Can be a contig name, region string +(formatted like “{contig}:{start}-{end}”), or identifier of a genome +feature such as a gene or transcript. Can also be a sequence (e.g., +list) of regions.

-
cohortsstr or dict

If a string, gives the name of a predefined cohort set, e.g., one of -{“admin1_month”, “admin1_year”, “admin2_month”, “admin2_year”}. -If a dict, should map cohort labels to sample queries, e.g., -{"bf_2012_col": "country == 'Burkina Faso' and year == 2012 and -taxon == 'coluzzii'"}.

+
cohortsstr or Mapping[str, str]

Either a string giving the name of a predefined cohort set (e.g., +“admin1_month”) or a dict mapping custom cohort labels to sample +queries.

-
sample_querystr, optional

A pandas query string which will be evaluated against the sample -metadata e.g., “taxon == ‘coluzzii’ and country == ‘Burkina Faso’”.

+
sample_querystr or None, optional

A pandas query string to be evaluated against the sample metadata, to +select samples to be included in the returned data.

-
sample_query_optionsdict, optional

A dictionary of arguments that will be passed through to pandas query() or -eval(), e.g. parser, engine, local_dict, global_dict, resolvers.

+
sample_query_optionsdict or None, optional

A dictionary of arguments that will be passed through to pandas +query() or eval(), e.g. parser, engine, local_dict, global_dict, +resolvers.

-
min_cohort_sizeint

Minimum cohort size, below which cohorts are dropped.

+
min_cohort_sizeint, optional, default: 10

Minimum cohort size. Raise an error if the number of samples is less +than this value.

-
sample_setsstr or list of str, optional

Can be a sample set identifier (e.g., “AG1000G-AO”) or a list of -sample set identifiers (e.g., [“AG1000G-BF-A”, “AG1000G-BF-B”]) or a -release identifier (e.g., “3.0”) or a list of release identifiers.

+
max_coverage_variancefloat or None, optional, default: 0.2

Remove samples if coverage variance exceeds this value.

-
drop_invariantbool, optional

If True, drop any rows where there is no evidence of variation.

+
sample_setssequence of str or str or None, optional

List of sample sets and/or releases. Can also be a single sample set +or release.

-
max_coverage_variancefloat, optional

Remove samples if coverage variance exceeds this value.

+
drop_invariantbool, optional, default: True

If True, drop variants not observed in the selected samples.

+
+
include_countsbool, optional, default: False

Include columns with allele counts and number of non-missing allele +calls (nobs).

+
+
chunksint or str or tuple of int or str or Callable[[typing.Tuple[int, …]], int or str or tuple of int or str], optional, default: ‘native’

Define how input data being read from zarr should be divided into +chunks for a dask computation. If ‘native’, use underlying zarr +chunks. If a string specifying a target memory size, e.g., ‘300 MiB’, +resize chunks in arrays with more than one dimension to match this +size. If ‘auto’, let dask decide chunk size. If ‘ndauto’, let dask +decide chunk size but only for arrays with more than one dimension. If +‘ndauto0’, as ‘ndauto’ but only vary the first chunk dimension. If +‘ndauto1’, as ‘ndauto’ but only vary the second chunk dimension. If +‘ndauto01’, as ‘ndauto’ but only vary the first and second chunk +dimensions. Also, can be a tuple of integers, or a callable which +accepts the native chunks as a single argument and returns a valid +dask chunks value.

+
+
inline_arraybool, optional, default: True

Passed through to dask from_array().

Returns#

-
dfpandas.DataFrame

A dataframe of CNV amplification (amp) and deletion (del) +

DataFrame

A dataframe of CNV amplification (amp) and deletion (del) frequencies in the specified cohorts, one row per gene and CNV type (amp/del).

diff --git a/latest/generated/malariagen_data.af1.Af1.gene_cnv_frequencies_advanced.html b/latest/generated/malariagen_data.af1.Af1.gene_cnv_frequencies_advanced.html index 2217a6bcf..c7fcd61e8 100644 --- a/latest/generated/malariagen_data.af1.Af1.gene_cnv_frequencies_advanced.html +++ b/latest/generated/malariagen_data.af1.Af1.gene_cnv_frequencies_advanced.html @@ -367,52 +367,72 @@

malariagen_data.af1.Af1.gene_cnv_frequencies_advanced#

-Af1.gene_cnv_frequencies_advanced(region: Annotated[str | Region | Mapping | List[str | Region | Mapping] | Tuple[str | Region | Mapping, ...], '\n    Region of the reference genome. Can be a contig name, region string\n    (formatted like "{contig}:{start}-{end}"), or identifier of a genome\n    feature such as a gene or transcript. Can also be a sequence (e.g., list)\n    of regions.\n    '], area_by, period_by, sample_sets=None, sample_query=None, sample_query_options=None, min_cohort_size=10, variant_query=None, drop_invariant=True, max_coverage_variance=0.2, ci_method='wilson', chunks: Annotated[int | str | Tuple[int | str, ...] | Callable[[Tuple[int, ...]], int | str | Tuple[int | str, ...]], "\n    Define how input data being read from zarr should be divided into chunks\n    for a dask computation. If 'native', use underlying zarr chunks. If a string\n    specifying a target memory size, e.g., '300 MiB', resize chunks in arrays\n    with more than one dimension to match this size. If 'auto', let dask decide\n    chunk size.  If 'ndauto', let dask decide chunk size but only for arrays with\n    more than one dimension. If 'ndauto0', as 'ndauto' but only vary the first\n    chunk dimension. If 'ndauto1', as 'ndauto' but only vary the second chunk\n    dimension. If 'ndauto01', as 'ndauto' but only vary the first and second\n    chunk dimensions. Also, can be a tuple of integers, or a callable which\n    accepts the native chunks as a single argument and returns a valid dask\n    chunks value.\n    "] = 'native', inline_array: Annotated[bool, 'Passed through to dask `from_array()`.'] = True)#
+Af1.gene_cnv_frequencies_advanced(region: str | Region | Mapping | List[str | Region | Mapping] | Tuple[str | Region | Mapping, ...], area_by: str, period_by: Literal['year', 'quarter', 'month'], sample_sets: Sequence[str] | str | None = None, sample_query: str | None = None, sample_query_options: dict | None = None, min_cohort_size: int = 10, drop_invariant: bool = True, variant_query: str | None = None, max_coverage_variance: float | None = 0.2, nobs_mode: Literal['called', 'fixed'] = 'called', ci_method: Literal['normal', 'agresti_coull', 'beta', 'wilson', 'binom_test'] | None = 'wilson', chunks: int | str | Tuple[int | str, ...] | Callable[[Tuple[int, ...]], int | str | Tuple[int | str, ...]] = 'native', inline_array: bool = True) Dataset#

Group samples by taxon, area (space) and period (time), then compute gene CNV counts and frequencies.

Parameters#

-
region: str or list of str or Region or list of Region

Chromosome arm (e.g., “2L”), gene name (e.g., “AGAP007280”), genomic -region defined with coordinates (e.g., “2L:44989425-44998059”) or a -named tuple with genomic location Region(contig, start, end). -Multiple values can be provided as a list, in which case data will -be concatenated, e.g., [“3R”, “3L”].

+
regionstr or Region or Mapping or list of str or Region or Mapping or tuple of str or Region or Mapping

Region of the reference genome. Can be a contig name, region string +(formatted like “{contig}:{start}-{end}”), or identifier of a genome +feature such as a gene or transcript. Can also be a sequence (e.g., +list) of regions.

area_bystr

Column name in the sample metadata to use to group samples spatially. E.g., use “admin1_iso” or “admin1_name” to group by level 1 administrative divisions, or use “admin2_name” to group by level 2 administrative divisions.

-
period_by{“year”, “quarter”, “month”}

Length of time to group samples temporally.

+
period_by{‘year’, ‘quarter’, ‘month’}

Length of time to group samples temporally.

-
sample_setsstr or list of str, optional

Can be a sample set identifier (e.g., “AG1000G-AO”) or a list of -sample set identifiers (e.g., [“AG1000G-BF-A”, “AG1000G-BF-B”]) or a -release identifier (e.g., “3.0”) or a list of release identifiers.

+
sample_setssequence of str or str or None, optional

List of sample sets and/or releases. Can also be a single sample set +or release.

-
sample_querystr, optional

A pandas query string which will be evaluated against the sample -metadata e.g., “taxon == ‘coluzzii’ and country == ‘Burkina Faso’”.

+
sample_querystr or None, optional

A pandas query string to be evaluated against the sample metadata, to +select samples to be included in the returned data.

-
sample_query_optionsdict, optional

A dictionary of arguments that will be passed through to pandas query() or -eval(), e.g. parser, engine, local_dict, global_dict, resolvers.

+
sample_query_optionsdict or None, optional

A dictionary of arguments that will be passed through to pandas +query() or eval(), e.g. parser, engine, local_dict, global_dict, +resolvers.

-
min_cohort_sizeint, optional

Minimum cohort size. Any cohorts below this size are omitted.

+
min_cohort_sizeint, optional, default: 10

Minimum cohort size. Raise an error if the number of samples is less +than this value.

-
variant_querystr, optional

A pandas query string which will be evaluated against variants.

+
drop_invariantbool, optional, default: True

If True, drop variants not observed in the selected samples.

-
drop_invariantbool, optional

If True, drop any rows where there is no evidence of variation.

+
variant_querystr or None, optional

A pandas query to be evaluated against variants.

-
max_coverage_variancefloat, optional

Remove samples if coverage variance exceeds this value.

+
max_coverage_variancefloat or None, optional, default: 0.2

Remove samples if coverage variance exceeds this value.

-
ci_method{“normal”, “agresti_coull”, “beta”, “wilson”, “binom_test”}, optional

Method to use for computing confidence intervals, passed through to +

nobs_mode{‘called’, ‘fixed’}, optional, default: ‘called’

Method for calculating the denominator when computing frequencies. If +“called” then use the number of called alleles, i.e., number of +samples with non-missing genotype calls multiplied by 2. If “fixed” +then use the number of samples multiplied by 2.

+
+
ci_method{‘normal’, ‘agresti_coull’, ‘beta’, ‘wilson’, ‘binom_test’} or None, optional, default: ‘wilson’

Method to use for computing confidence intervals, passed through to statsmodels.stats.proportion.proportion_confint.

+
chunksint or str or tuple of int or str or Callable[[typing.Tuple[int, …]], int or str or tuple of int or str], optional, default: ‘native’

Define how input data being read from zarr should be divided into +chunks for a dask computation. If ‘native’, use underlying zarr +chunks. If a string specifying a target memory size, e.g., ‘300 MiB’, +resize chunks in arrays with more than one dimension to match this +size. If ‘auto’, let dask decide chunk size. If ‘ndauto’, let dask +decide chunk size but only for arrays with more than one dimension. If +‘ndauto0’, as ‘ndauto’ but only vary the first chunk dimension. If +‘ndauto1’, as ‘ndauto’ but only vary the second chunk dimension. If +‘ndauto01’, as ‘ndauto’ but only vary the first and second chunk +dimensions. Also, can be a tuple of integers, or a callable which +accepts the native chunks as a single argument and returns a valid +dask chunks value.

+
+
inline_arraybool, optional, default: True

Passed through to dask from_array().

+

Returns#

-
dsxarray.Dataset

The resulting dataset contains data has dimensions “cohorts” and +

Dataset

The resulting dataset contains data has dimensions “cohorts” and “variants”. Variables prefixed with “cohort” are 1-dimensional arrays with data about the cohorts, such as the area, period, taxon and cohort size. Variables prefixed with “variant” are 1-dimensional diff --git a/latest/generated/malariagen_data.ag3.Ag3.gene_cnv.html b/latest/generated/malariagen_data.ag3.Ag3.gene_cnv.html index ce489335f..eb5fa3d72 100644 --- a/latest/generated/malariagen_data.ag3.Ag3.gene_cnv.html +++ b/latest/generated/malariagen_data.ag3.Ag3.gene_cnv.html @@ -367,35 +367,49 @@

malariagen_data.ag3.Ag3.gene_cnv#

-Ag3.gene_cnv(region: Annotated[str | Region | Mapping | List[str | Region | Mapping] | Tuple[str | Region | Mapping, ...], '\n    Region of the reference genome. Can be a contig name, region string\n    (formatted like "{contig}:{start}-{end}"), or identifier of a genome\n    feature such as a gene or transcript. Can also be a sequence (e.g., list)\n    of regions.\n    '], sample_sets=None, sample_query=None, sample_query_options=None, max_coverage_variance=0.2, chunks: Annotated[int | str | Tuple[int | str, ...] | Callable[[Tuple[int, ...]], int | str | Tuple[int | str, ...]], "\n    Define how input data being read from zarr should be divided into chunks\n    for a dask computation. If 'native', use underlying zarr chunks. If a string\n    specifying a target memory size, e.g., '300 MiB', resize chunks in arrays\n    with more than one dimension to match this size. If 'auto', let dask decide\n    chunk size.  If 'ndauto', let dask decide chunk size but only for arrays with\n    more than one dimension. If 'ndauto0', as 'ndauto' but only vary the first\n    chunk dimension. If 'ndauto1', as 'ndauto' but only vary the second chunk\n    dimension. If 'ndauto01', as 'ndauto' but only vary the first and second\n    chunk dimensions. Also, can be a tuple of integers, or a callable which\n    accepts the native chunks as a single argument and returns a valid dask\n    chunks value.\n    "] = 'native', inline_array: Annotated[bool, 'Passed through to dask `from_array()`.'] = True)#
+Ag3.gene_cnv(region: str | Region | Mapping | List[str | Region | Mapping] | Tuple[str | Region | Mapping, ...], sample_sets: Sequence[str] | str | None = None, sample_query: str | None = None, sample_query_options: dict | None = None, max_coverage_variance: float | None = 0.2, chunks: int | str | Tuple[int | str, ...] | Callable[[Tuple[int, ...]], int | str | Tuple[int | str, ...]] = 'native', inline_array: bool = True) Dataset#

Compute modal copy number by gene, from HMM data.

Parameters#

-
region: str or list of str or Region or list of Region

Chromosome arm (e.g., “2L”), gene name (e.g., “AGAP007280”), genomic -region defined with coordinates (e.g., “2L:44989425-44998059”) or a -named tuple with genomic location Region(contig, start, end). -Multiple values can be provided as a list, in which case data will -be concatenated, e.g., [“3R”, “3L”].

+
regionstr or Region or Mapping or list of str or Region or Mapping or tuple of str or Region or Mapping

Region of the reference genome. Can be a contig name, region string +(formatted like “{contig}:{start}-{end}”), or identifier of a genome +feature such as a gene or transcript. Can also be a sequence (e.g., +list) of regions.

-
sample_setsstr or list of str

Can be a sample set identifier (e.g., “AG1000G-AO”) or a list of -sample set identifiers (e.g., [“AG1000G-BF-A”, “AG1000G-BF-B”]) or -a release identifier (e.g., “3.0”) or a list of release identifiers.

+
sample_setssequence of str or str or None, optional

List of sample sets and/or releases. Can also be a single sample set +or release.

-
sample_querystr, optional

A pandas query string which will be evaluated against the sample -metadata e.g., “taxon == ‘coluzzii’ and country == ‘Burkina Faso’”.

+
sample_querystr or None, optional

A pandas query string to be evaluated against the sample metadata, to +select samples to be included in the returned data.

-
sample_query_optionsdict, optional

A dictionary of arguments that will be passed through to pandas query() or -eval(), e.g. parser, engine, local_dict, global_dict, resolvers.

+
sample_query_optionsdict or None, optional

A dictionary of arguments that will be passed through to pandas +query() or eval(), e.g. parser, engine, local_dict, global_dict, +resolvers.

-
max_coverage_variancefloat, optional

Remove samples if coverage variance exceeds this value.

+
max_coverage_variancefloat or None, optional, default: 0.2

Remove samples if coverage variance exceeds this value.

+
+
chunksint or str or tuple of int or str or Callable[[typing.Tuple[int, …]], int or str or tuple of int or str], optional, default: ‘native’

Define how input data being read from zarr should be divided into +chunks for a dask computation. If ‘native’, use underlying zarr +chunks. If a string specifying a target memory size, e.g., ‘300 MiB’, +resize chunks in arrays with more than one dimension to match this +size. If ‘auto’, let dask decide chunk size. If ‘ndauto’, let dask +decide chunk size but only for arrays with more than one dimension. If +‘ndauto0’, as ‘ndauto’ but only vary the first chunk dimension. If +‘ndauto1’, as ‘ndauto’ but only vary the second chunk dimension. If +‘ndauto01’, as ‘ndauto’ but only vary the first and second chunk +dimensions. Also, can be a tuple of integers, or a callable which +accepts the native chunks as a single argument and returns a valid +dask chunks value.

+
+
inline_arraybool, optional, default: True

Passed through to dask from_array().

Returns#

-
dsxarray.Dataset

A dataset of modal copy number per gene and associated data.

+
Dataset

A dataset of modal copy number per gene and associated data.

diff --git a/latest/generated/malariagen_data.ag3.Ag3.gene_cnv_frequencies.html b/latest/generated/malariagen_data.ag3.Ag3.gene_cnv_frequencies.html index ad61a6e6d..410d11750 100644 --- a/latest/generated/malariagen_data.ag3.Ag3.gene_cnv_frequencies.html +++ b/latest/generated/malariagen_data.ag3.Ag3.gene_cnv_frequencies.html @@ -367,46 +367,62 @@

malariagen_data.ag3.Ag3.gene_cnv_frequencies#

-Ag3.gene_cnv_frequencies(region: Annotated[str | Region | Mapping | List[str | Region | Mapping] | Tuple[str | Region | Mapping, ...], '\n    Region of the reference genome. Can be a contig name, region string\n    (formatted like "{contig}:{start}-{end}"), or identifier of a genome\n    feature such as a gene or transcript. Can also be a sequence (e.g., list)\n    of regions.\n    '], cohorts, sample_query=None, sample_query_options=None, min_cohort_size=10, sample_sets=None, drop_invariant=True, max_coverage_variance=0.2, chunks: Annotated[int | str | Tuple[int | str, ...] | Callable[[Tuple[int, ...]], int | str | Tuple[int | str, ...]], "\n    Define how input data being read from zarr should be divided into chunks\n    for a dask computation. If 'native', use underlying zarr chunks. If a string\n    specifying a target memory size, e.g., '300 MiB', resize chunks in arrays\n    with more than one dimension to match this size. If 'auto', let dask decide\n    chunk size.  If 'ndauto', let dask decide chunk size but only for arrays with\n    more than one dimension. If 'ndauto0', as 'ndauto' but only vary the first\n    chunk dimension. If 'ndauto1', as 'ndauto' but only vary the second chunk\n    dimension. If 'ndauto01', as 'ndauto' but only vary the first and second\n    chunk dimensions. Also, can be a tuple of integers, or a callable which\n    accepts the native chunks as a single argument and returns a valid dask\n    chunks value.\n    "] = 'native', inline_array: Annotated[bool, 'Passed through to dask `from_array()`.'] = True)#
+Ag3.gene_cnv_frequencies(region: str | Region | Mapping | List[str | Region | Mapping] | Tuple[str | Region | Mapping, ...], cohorts: str | Mapping[str, str], sample_query: str | None = None, sample_query_options: dict | None = None, min_cohort_size: int = 10, max_coverage_variance: float | None = 0.2, sample_sets: Sequence[str] | str | None = None, drop_invariant: bool = True, include_counts: bool = False, chunks: int | str | Tuple[int | str, ...] | Callable[[Tuple[int, ...]], int | str | Tuple[int | str, ...]] = 'native', inline_array: bool = True) DataFrame#

Compute modal copy number by gene, then compute the frequency of amplifications and deletions in one or more cohorts, from HMM data.

Parameters#

-
region: str or list of str or Region or list of Region

Chromosome arm (e.g., “2L”), gene name (e.g., “AGAP007280”), genomic -region defined with coordinates (e.g., “2L:44989425-44998059”) or a -named tuple with genomic location Region(contig, start, end). -Multiple values can be provided as a list, in which case data will -be concatenated, e.g., [“3R”, “3L”].

+
regionstr or Region or Mapping or list of str or Region or Mapping or tuple of str or Region or Mapping

Region of the reference genome. Can be a contig name, region string +(formatted like “{contig}:{start}-{end}”), or identifier of a genome +feature such as a gene or transcript. Can also be a sequence (e.g., +list) of regions.

-
cohortsstr or dict

If a string, gives the name of a predefined cohort set, e.g., one of -{“admin1_month”, “admin1_year”, “admin2_month”, “admin2_year”}. -If a dict, should map cohort labels to sample queries, e.g., -{"bf_2012_col": "country == 'Burkina Faso' and year == 2012 and -taxon == 'coluzzii'"}.

+
cohortsstr or Mapping[str, str]

Either a string giving the name of a predefined cohort set (e.g., +“admin1_month”) or a dict mapping custom cohort labels to sample +queries.

-
sample_querystr, optional

A pandas query string which will be evaluated against the sample -metadata e.g., “taxon == ‘coluzzii’ and country == ‘Burkina Faso’”.

+
sample_querystr or None, optional

A pandas query string to be evaluated against the sample metadata, to +select samples to be included in the returned data.

-
sample_query_optionsdict, optional

A dictionary of arguments that will be passed through to pandas query() or -eval(), e.g. parser, engine, local_dict, global_dict, resolvers.

+
sample_query_optionsdict or None, optional

A dictionary of arguments that will be passed through to pandas +query() or eval(), e.g. parser, engine, local_dict, global_dict, +resolvers.

-
min_cohort_sizeint

Minimum cohort size, below which cohorts are dropped.

+
min_cohort_sizeint, optional, default: 10

Minimum cohort size. Raise an error if the number of samples is less +than this value.

-
sample_setsstr or list of str, optional

Can be a sample set identifier (e.g., “AG1000G-AO”) or a list of -sample set identifiers (e.g., [“AG1000G-BF-A”, “AG1000G-BF-B”]) or a -release identifier (e.g., “3.0”) or a list of release identifiers.

+
max_coverage_variancefloat or None, optional, default: 0.2

Remove samples if coverage variance exceeds this value.

-
drop_invariantbool, optional

If True, drop any rows where there is no evidence of variation.

+
sample_setssequence of str or str or None, optional

List of sample sets and/or releases. Can also be a single sample set +or release.

-
max_coverage_variancefloat, optional

Remove samples if coverage variance exceeds this value.

+
drop_invariantbool, optional, default: True

If True, drop variants not observed in the selected samples.

+
+
include_countsbool, optional, default: False

Include columns with allele counts and number of non-missing allele +calls (nobs).

+
+
chunksint or str or tuple of int or str or Callable[[typing.Tuple[int, …]], int or str or tuple of int or str], optional, default: ‘native’

Define how input data being read from zarr should be divided into +chunks for a dask computation. If ‘native’, use underlying zarr +chunks. If a string specifying a target memory size, e.g., ‘300 MiB’, +resize chunks in arrays with more than one dimension to match this +size. If ‘auto’, let dask decide chunk size. If ‘ndauto’, let dask +decide chunk size but only for arrays with more than one dimension. If +‘ndauto0’, as ‘ndauto’ but only vary the first chunk dimension. If +‘ndauto1’, as ‘ndauto’ but only vary the second chunk dimension. If +‘ndauto01’, as ‘ndauto’ but only vary the first and second chunk +dimensions. Also, can be a tuple of integers, or a callable which +accepts the native chunks as a single argument and returns a valid +dask chunks value.

+
+
inline_arraybool, optional, default: True

Passed through to dask from_array().

Returns#

-
dfpandas.DataFrame

A dataframe of CNV amplification (amp) and deletion (del) +

DataFrame

A dataframe of CNV amplification (amp) and deletion (del) frequencies in the specified cohorts, one row per gene and CNV type (amp/del).

diff --git a/latest/generated/malariagen_data.ag3.Ag3.gene_cnv_frequencies_advanced.html b/latest/generated/malariagen_data.ag3.Ag3.gene_cnv_frequencies_advanced.html index 68ad03e08..c53bbf456 100644 --- a/latest/generated/malariagen_data.ag3.Ag3.gene_cnv_frequencies_advanced.html +++ b/latest/generated/malariagen_data.ag3.Ag3.gene_cnv_frequencies_advanced.html @@ -367,52 +367,72 @@

malariagen_data.ag3.Ag3.gene_cnv_frequencies_advanced#

-Ag3.gene_cnv_frequencies_advanced(region: Annotated[str | Region | Mapping | List[str | Region | Mapping] | Tuple[str | Region | Mapping, ...], '\n    Region of the reference genome. Can be a contig name, region string\n    (formatted like "{contig}:{start}-{end}"), or identifier of a genome\n    feature such as a gene or transcript. Can also be a sequence (e.g., list)\n    of regions.\n    '], area_by, period_by, sample_sets=None, sample_query=None, sample_query_options=None, min_cohort_size=10, variant_query=None, drop_invariant=True, max_coverage_variance=0.2, ci_method='wilson', chunks: Annotated[int | str | Tuple[int | str, ...] | Callable[[Tuple[int, ...]], int | str | Tuple[int | str, ...]], "\n    Define how input data being read from zarr should be divided into chunks\n    for a dask computation. If 'native', use underlying zarr chunks. If a string\n    specifying a target memory size, e.g., '300 MiB', resize chunks in arrays\n    with more than one dimension to match this size. If 'auto', let dask decide\n    chunk size.  If 'ndauto', let dask decide chunk size but only for arrays with\n    more than one dimension. If 'ndauto0', as 'ndauto' but only vary the first\n    chunk dimension. If 'ndauto1', as 'ndauto' but only vary the second chunk\n    dimension. If 'ndauto01', as 'ndauto' but only vary the first and second\n    chunk dimensions. Also, can be a tuple of integers, or a callable which\n    accepts the native chunks as a single argument and returns a valid dask\n    chunks value.\n    "] = 'native', inline_array: Annotated[bool, 'Passed through to dask `from_array()`.'] = True)#
+Ag3.gene_cnv_frequencies_advanced(region: str | Region | Mapping | List[str | Region | Mapping] | Tuple[str | Region | Mapping, ...], area_by: str, period_by: Literal['year', 'quarter', 'month'], sample_sets: Sequence[str] | str | None = None, sample_query: str | None = None, sample_query_options: dict | None = None, min_cohort_size: int = 10, drop_invariant: bool = True, variant_query: str | None = None, max_coverage_variance: float | None = 0.2, nobs_mode: Literal['called', 'fixed'] = 'called', ci_method: Literal['normal', 'agresti_coull', 'beta', 'wilson', 'binom_test'] | None = 'wilson', chunks: int | str | Tuple[int | str, ...] | Callable[[Tuple[int, ...]], int | str | Tuple[int | str, ...]] = 'native', inline_array: bool = True) Dataset#

Group samples by taxon, area (space) and period (time), then compute gene CNV counts and frequencies.

Parameters#

-
region: str or list of str or Region or list of Region

Chromosome arm (e.g., “2L”), gene name (e.g., “AGAP007280”), genomic -region defined with coordinates (e.g., “2L:44989425-44998059”) or a -named tuple with genomic location Region(contig, start, end). -Multiple values can be provided as a list, in which case data will -be concatenated, e.g., [“3R”, “3L”].

+
regionstr or Region or Mapping or list of str or Region or Mapping or tuple of str or Region or Mapping

Region of the reference genome. Can be a contig name, region string +(formatted like “{contig}:{start}-{end}”), or identifier of a genome +feature such as a gene or transcript. Can also be a sequence (e.g., +list) of regions.

area_bystr

Column name in the sample metadata to use to group samples spatially. E.g., use “admin1_iso” or “admin1_name” to group by level 1 administrative divisions, or use “admin2_name” to group by level 2 administrative divisions.

-
period_by{“year”, “quarter”, “month”}

Length of time to group samples temporally.

+
period_by{‘year’, ‘quarter’, ‘month’}

Length of time to group samples temporally.

-
sample_setsstr or list of str, optional

Can be a sample set identifier (e.g., “AG1000G-AO”) or a list of -sample set identifiers (e.g., [“AG1000G-BF-A”, “AG1000G-BF-B”]) or a -release identifier (e.g., “3.0”) or a list of release identifiers.

+
sample_setssequence of str or str or None, optional

List of sample sets and/or releases. Can also be a single sample set +or release.

-
sample_querystr, optional

A pandas query string which will be evaluated against the sample -metadata e.g., “taxon == ‘coluzzii’ and country == ‘Burkina Faso’”.

+
sample_querystr or None, optional

A pandas query string to be evaluated against the sample metadata, to +select samples to be included in the returned data.

-
sample_query_optionsdict, optional

A dictionary of arguments that will be passed through to pandas query() or -eval(), e.g. parser, engine, local_dict, global_dict, resolvers.

+
sample_query_optionsdict or None, optional

A dictionary of arguments that will be passed through to pandas +query() or eval(), e.g. parser, engine, local_dict, global_dict, +resolvers.

-
min_cohort_sizeint, optional

Minimum cohort size. Any cohorts below this size are omitted.

+
min_cohort_sizeint, optional, default: 10

Minimum cohort size. Raise an error if the number of samples is less +than this value.

-
variant_querystr, optional

A pandas query string which will be evaluated against variants.

+
drop_invariantbool, optional, default: True

If True, drop variants not observed in the selected samples.

-
drop_invariantbool, optional

If True, drop any rows where there is no evidence of variation.

+
variant_querystr or None, optional

A pandas query to be evaluated against variants.

-
max_coverage_variancefloat, optional

Remove samples if coverage variance exceeds this value.

+
max_coverage_variancefloat or None, optional, default: 0.2

Remove samples if coverage variance exceeds this value.

-
ci_method{“normal”, “agresti_coull”, “beta”, “wilson”, “binom_test”}, optional

Method to use for computing confidence intervals, passed through to +

nobs_mode{‘called’, ‘fixed’}, optional, default: ‘called’

Method for calculating the denominator when computing frequencies. If +“called” then use the number of called alleles, i.e., number of +samples with non-missing genotype calls multiplied by 2. If “fixed” +then use the number of samples multiplied by 2.

+
+
ci_method{‘normal’, ‘agresti_coull’, ‘beta’, ‘wilson’, ‘binom_test’} or None, optional, default: ‘wilson’

Method to use for computing confidence intervals, passed through to statsmodels.stats.proportion.proportion_confint.

+
chunksint or str or tuple of int or str or Callable[[typing.Tuple[int, …]], int or str or tuple of int or str], optional, default: ‘native’

Define how input data being read from zarr should be divided into +chunks for a dask computation. If ‘native’, use underlying zarr +chunks. If a string specifying a target memory size, e.g., ‘300 MiB’, +resize chunks in arrays with more than one dimension to match this +size. If ‘auto’, let dask decide chunk size. If ‘ndauto’, let dask +decide chunk size but only for arrays with more than one dimension. If +‘ndauto0’, as ‘ndauto’ but only vary the first chunk dimension. If +‘ndauto1’, as ‘ndauto’ but only vary the second chunk dimension. If +‘ndauto01’, as ‘ndauto’ but only vary the first and second chunk +dimensions. Also, can be a tuple of integers, or a callable which +accepts the native chunks as a single argument and returns a valid +dask chunks value.

+
+
inline_arraybool, optional, default: True

Passed through to dask from_array().

+

Returns#

-
dsxarray.Dataset

The resulting dataset contains data has dimensions “cohorts” and +

Dataset

The resulting dataset contains data has dimensions “cohorts” and “variants”. Variables prefixed with “cohort” are 1-dimensional arrays with data about the cohorts, such as the area, period, taxon and cohort size. Variables prefixed with “variant” are 1-dimensional diff --git a/latest/searchindex.js b/latest/searchindex.js index 002e8e370..31b97a689 100644 --- a/latest/searchindex.js +++ b/latest/searchindex.js @@ -1 +1 @@ -Search.setIndex({"alltitles": {"AIM data access": [[1, "aim-data-access"]], "API documentation": [[194, "api-documentation"]], "About the data": [[194, "about-the-data"]], "Af1": [[0, null]], "Ag3": [[1, null]], "Amin1": [[2, null]], "Basic data access": [[0, "basic-data-access"], [1, "basic-data-access"]], "CNV data access": [[0, "cnv-data-access"], [1, "cnv-data-access"]], "Diplotype clustering": [[0, "diplotype-clustering"], [1, "diplotype-clustering"]], "Diversity analysis": [[0, "diversity-analysis"], [1, "diversity-analysis"]], "Fst analysis": [[0, "fst-analysis"], [1, "fst-analysis"]], "Genetic distance and neighbour-joining trees (NJT)": [[0, "genetic-distance-and-neighbour-joining-trees-njt"], [1, "genetic-distance-and-neighbour-joining-trees-njt"]], "Genome-wide selection scans": [[0, "genome-wide-selection-scans"], [1, "genome-wide-selection-scans"]], "Haplotype clustering and network analysis": [[0, "haplotype-clustering-and-network-analysis"], [1, "haplotype-clustering-and-network-analysis"]], "Haplotype data access": [[0, "haplotype-data-access"], [1, "haplotype-data-access"]], "Heterozygosity analysis": [[0, "heterozygosity-analysis"], [1, "heterozygosity-analysis"]], "Installation": [[194, "installation"]], "Integrative genomics viewer (IGV)": [[0, "integrative-genomics-viewer-igv"], [1, "integrative-genomics-viewer-igv"]], "MalariaGEN Python API documentation": [[194, null]], "Notes": [[3, "notes"], [5, "notes"], [10, "notes"], [34, "notes"], [44, "notes"], [51, "notes"], [86, "notes"], [87, "notes"], [93, "notes"], [95, "notes"], [103, "notes"], [129, "notes"], [139, "notes"], [147, "notes"], [182, "notes"], [183, "notes"]], "Parameters": [[3, "parameters"], [4, "parameters"], [5, "parameters"], [6, "parameters"], [7, "parameters"], [8, "parameters"], [9, "parameters"], [10, "parameters"], [12, "parameters"], [13, "parameters"], [14, "parameters"], [15, "parameters"], [17, "parameters"], [19, "parameters"], [20, "parameters"], [21, "parameters"], [22, "parameters"], [23, "parameters"], [24, "parameters"], [25, "parameters"], [26, "parameters"], [27, "parameters"], [28, "parameters"], [29, "parameters"], [30, "parameters"], [31, "parameters"], [32, "parameters"], [33, "parameters"], [34, "parameters"], [35, "parameters"], [36, "parameters"], [37, "parameters"], [38, "parameters"], [39, "parameters"], [40, "parameters"], [41, "parameters"], [42, "parameters"], [43, "parameters"], [44, "parameters"], [46, "parameters"], [47, "parameters"], [48, "parameters"], [49, "parameters"], [50, "parameters"], [51, "parameters"], [52, "parameters"], [53, "parameters"], [54, "parameters"], [55, "parameters"], [56, "parameters"], [57, "parameters"], [58, "parameters"], [59, "parameters"], [60, "parameters"], [61, "parameters"], [62, "parameters"], [63, "parameters"], [64, "parameters"], [65, "parameters"], [66, "parameters"], [67, "parameters"], [68, "parameters"], [69, "parameters"], [70, "parameters"], [71, "parameters"], [72, "parameters"], [73, "parameters"], [74, "parameters"], [75, "parameters"], [76, "parameters"], [77, "parameters"], [78, "parameters"], [79, "parameters"], [81, "parameters"], [82, "parameters"], [83, "parameters"], [84, "parameters"], [86, "parameters"], [87, "parameters"], [88, "parameters"], [89, "parameters"], [90, "parameters"], [91, "parameters"], [92, "parameters"], [93, "parameters"], [94, "parameters"], [95, "parameters"], [96, "parameters"], [98, "parameters"], [99, "parameters"], [100, "parameters"], [101, "parameters"], [102, "parameters"], [103, "parameters"], [105, "parameters"], [106, "parameters"], [107, "parameters"], [108, "parameters"], [109, "parameters"], [111, "parameters"], [114, "parameters"], [115, "parameters"], [116, "parameters"], [117, "parameters"], [118, "parameters"], [119, "parameters"], [120, "parameters"], [121, "parameters"], [122, "parameters"], [123, "parameters"], [124, "parameters"], [125, "parameters"], [126, "parameters"], [127, "parameters"], [128, "parameters"], [129, "parameters"], [130, "parameters"], [131, "parameters"], [132, "parameters"], [133, "parameters"], [134, "parameters"], [135, "parameters"], [136, "parameters"], [137, "parameters"], [138, "parameters"], [139, "parameters"], [141, "parameters"], [142, "parameters"], [143, "parameters"], [144, "parameters"], [145, "parameters"], [146, "parameters"], [147, "parameters"], [148, "parameters"], [149, "parameters"], [150, "parameters"], [151, "parameters"], [152, "parameters"], [153, "parameters"], [154, "parameters"], [155, "parameters"], [156, "parameters"], [157, "parameters"], [158, "parameters"], [159, "parameters"], [160, "parameters"], [161, "parameters"], [162, "parameters"], [163, "parameters"], [164, "parameters"], [165, "parameters"], [166, "parameters"], [167, "parameters"], [168, "parameters"], [169, "parameters"], [170, "parameters"], [171, "parameters"], [172, "parameters"], [173, "parameters"], [174, "parameters"], [175, "parameters"], [177, "parameters"], [178, "parameters"], [179, "parameters"], [180, "parameters"], [182, "parameters"], [183, "parameters"], [184, "parameters"], [185, "parameters"], [186, "parameters"], [187, "parameters"], [188, "parameters"], [190, "parameters"], [191, "parameters"], [193, "parameters"]], "Principal components analysis (PCA)": [[0, "principal-components-analysis-pca"], [1, "principal-components-analysis-pca"]], "Reference genome data access": [[0, "reference-genome-data-access"], [1, "reference-genome-data-access"], [2, "reference-genome-data-access"]], "Returns": [[3, "returns"], [4, "returns"], [6, "returns"], [7, "returns"], [8, "returns"], [9, "returns"], [10, "returns"], [12, "returns"], [13, "returns"], [14, "returns"], [15, "returns"], [17, "returns"], [19, "returns"], [20, "returns"], [21, "returns"], [22, "returns"], [23, "returns"], [24, "returns"], [25, "returns"], [26, "returns"], [27, "returns"], [28, "returns"], [29, "returns"], [30, "returns"], [31, "returns"], [32, "returns"], [33, "returns"], [34, "returns"], [35, "returns"], [36, "returns"], [37, "returns"], [38, "returns"], [39, "returns"], [40, "returns"], [41, "returns"], [42, "returns"], [43, "returns"], [44, "returns"], [46, "returns"], [47, "returns"], [48, "returns"], [50, "returns"], [51, "returns"], [52, "returns"], [53, "returns"], [54, "returns"], [55, "returns"], [56, "returns"], [57, "returns"], [58, "returns"], [59, "returns"], [60, "returns"], [61, "returns"], [62, "returns"], [63, "returns"], [65, "returns"], [66, "returns"], [67, "returns"], [69, "returns"], [70, "returns"], [71, "returns"], [72, "returns"], [73, "returns"], [74, "returns"], [75, "returns"], [76, "returns"], [77, "returns"], [78, "returns"], [79, "returns"], [81, "returns"], [82, "returns"], [83, "returns"], [84, "returns"], [86, "returns"], [87, "returns"], [88, "returns"], [89, "returns"], [91, "returns"], [92, "returns"], [93, "returns"], [94, "returns"], [96, "returns"], [98, "returns"], [99, "returns"], [100, "returns"], [101, "returns"], [102, "returns"], [103, "returns"], [105, "returns"], [106, "returns"], [107, "returns"], [108, "returns"], [109, "returns"], [111, "returns"], [113, "returns"], [114, "returns"], [115, "returns"], [116, "returns"], [117, "returns"], [118, "returns"], [119, "returns"], [120, "returns"], [121, "returns"], [122, "returns"], [123, "returns"], [124, "returns"], [125, "returns"], [126, "returns"], [127, "returns"], [128, "returns"], [129, "returns"], [130, "returns"], [131, "returns"], [132, "returns"], [133, "returns"], [134, "returns"], [135, "returns"], [136, "returns"], [137, "returns"], [138, "returns"], [139, "returns"], [141, "returns"], [142, "returns"], [143, "returns"], [144, "returns"], [146, "returns"], [147, "returns"], [148, "returns"], [149, "returns"], [150, "returns"], [151, "returns"], [152, "returns"], [153, "returns"], [154, "returns"], [155, "returns"], [156, "returns"], [157, "returns"], [158, "returns"], [159, "returns"], [161, "returns"], [162, "returns"], [163, "returns"], [165, "returns"], [166, "returns"], [167, "returns"], [168, "returns"], [169, "returns"], [170, "returns"], [171, "returns"], [172, "returns"], [173, "returns"], [174, "returns"], [175, "returns"], [177, "returns"], [178, "returns"], [179, "returns"], [180, "returns"], [182, "returns"], [183, "returns"], [184, "returns"], [185, "returns"], [187, "returns"], [188, "returns"], [190, "returns"], [191, "returns"], [192, "returns"], [193, "returns"]], "SNP and CNV frequency analysis": [[0, "snp-and-cnv-frequency-analysis"], [1, "snp-and-cnv-frequency-analysis"]], "SNP data access": [[0, "snp-data-access"], [1, "snp-data-access"], [2, "snp-data-access"]], "Sample metadata access": [[0, "sample-metadata-access"], [1, "sample-metadata-access"], [2, "sample-metadata-access"]], "Training": [[194, "training"]], "malariagen_data.af1.Af1.aa_allele_frequencies": [[3, null]], "malariagen_data.af1.Af1.aa_allele_frequencies_advanced": [[4, null]], "malariagen_data.af1.Af1.add_extra_metadata": [[5, null]], "malariagen_data.af1.Af1.average_fst": [[6, null]], "malariagen_data.af1.Af1.biallelic_diplotype_pairwise_distances": [[7, null]], "malariagen_data.af1.Af1.biallelic_diplotypes": [[8, null]], "malariagen_data.af1.Af1.biallelic_snp_calls": [[9, null]], "malariagen_data.af1.Af1.biallelic_snps_to_plink": [[10, null]], "malariagen_data.af1.Af1.clear_extra_metadata": [[11, null]], "malariagen_data.af1.Af1.cnv_coverage_calls": [[12, null]], "malariagen_data.af1.Af1.cnv_hmm": [[13, null]], "malariagen_data.af1.Af1.cohort_diversity_stats": [[14, null]], "malariagen_data.af1.Af1.cohorts": [[15, null]], "malariagen_data.af1.Af1.contigs": [[16, null]], "malariagen_data.af1.Af1.count_samples": [[17, null]], "malariagen_data.af1.Af1.coverage_calls_analysis_ids": [[18, null]], "malariagen_data.af1.Af1.diversity_stats": [[19, null]], "malariagen_data.af1.Af1.fst_gwss": [[20, null]], "malariagen_data.af1.Af1.g123_calibration": [[21, null]], "malariagen_data.af1.Af1.g123_gwss": [[22, null]], "malariagen_data.af1.Af1.gene_cnv": [[23, null]], "malariagen_data.af1.Af1.gene_cnv_frequencies": [[24, null]], "malariagen_data.af1.Af1.gene_cnv_frequencies_advanced": [[25, null]], "malariagen_data.af1.Af1.genome_features": [[26, null]], "malariagen_data.af1.Af1.genome_sequence": [[27, null]], "malariagen_data.af1.Af1.h12_calibration": [[28, null]], "malariagen_data.af1.Af1.h12_gwss": [[29, null]], "malariagen_data.af1.Af1.h1x_gwss": [[30, null]], "malariagen_data.af1.Af1.haplotype_pairwise_distances": [[31, null]], "malariagen_data.af1.Af1.haplotype_sites": [[32, null]], "malariagen_data.af1.Af1.haplotypes": [[33, null]], "malariagen_data.af1.Af1.haplotypes_frequencies": [[34, null]], "malariagen_data.af1.Af1.haplotypes_frequencies_advanced": [[35, null]], "malariagen_data.af1.Af1.igv": [[36, null]], "malariagen_data.af1.Af1.ihs_gwss": [[37, null]], "malariagen_data.af1.Af1.is_accessible": [[38, null]], "malariagen_data.af1.Af1.lookup_release": [[39, null]], "malariagen_data.af1.Af1.lookup_sample": [[40, null]], "malariagen_data.af1.Af1.lookup_study": [[41, null]], "malariagen_data.af1.Af1.njt": [[42, null]], "malariagen_data.af1.Af1.pairwise_average_fst": [[43, null]], "malariagen_data.af1.Af1.pca": [[44, null]], "malariagen_data.af1.Af1.phasing_analysis_ids": [[45, null]], "malariagen_data.af1.Af1.plot_cnv_hmm_coverage": [[46, null]], "malariagen_data.af1.Af1.plot_cnv_hmm_heatmap": [[47, null]], "malariagen_data.af1.Af1.plot_diplotype_clustering": [[48, null]], "malariagen_data.af1.Af1.plot_diplotype_clustering_advanced": [[49, null]], "malariagen_data.af1.Af1.plot_diversity_stats": [[50, null]], "malariagen_data.af1.Af1.plot_frequencies_heatmap": [[51, null]], "malariagen_data.af1.Af1.plot_frequencies_interactive_map": [[52, null]], "malariagen_data.af1.Af1.plot_frequencies_time_series": [[53, null]], "malariagen_data.af1.Af1.plot_fst_gwss": [[54, null]], "malariagen_data.af1.Af1.plot_g123_calibration": [[55, null]], "malariagen_data.af1.Af1.plot_g123_gwss": [[56, null]], "malariagen_data.af1.Af1.plot_genes": [[57, null]], "malariagen_data.af1.Af1.plot_h12_calibration": [[58, null]], "malariagen_data.af1.Af1.plot_h12_gwss": [[59, null]], "malariagen_data.af1.Af1.plot_h12_gwss_multi_overlay": [[60, null]], "malariagen_data.af1.Af1.plot_h12_gwss_multi_panel": [[61, null]], "malariagen_data.af1.Af1.plot_h1x_gwss": [[62, null]], "malariagen_data.af1.Af1.plot_haplotype_clustering": [[63, null]], "malariagen_data.af1.Af1.plot_haplotype_network": [[64, null]], "malariagen_data.af1.Af1.plot_heterozygosity": [[65, null]], "malariagen_data.af1.Af1.plot_ihs_gwss": [[66, null]], "malariagen_data.af1.Af1.plot_njt": [[67, null]], "malariagen_data.af1.Af1.plot_pairwise_average_fst": [[68, null]], "malariagen_data.af1.Af1.plot_pca_coords": [[69, null]], "malariagen_data.af1.Af1.plot_pca_coords_3d": [[70, null]], "malariagen_data.af1.Af1.plot_pca_variance": [[71, null]], "malariagen_data.af1.Af1.plot_roh": [[72, null]], "malariagen_data.af1.Af1.plot_sample_location_geo": [[73, null]], "malariagen_data.af1.Af1.plot_sample_location_mapbox": [[74, null]], "malariagen_data.af1.Af1.plot_samples_bar": [[75, null]], "malariagen_data.af1.Af1.plot_samples_interactive_map": [[76, null]], "malariagen_data.af1.Af1.plot_snps": [[77, null]], "malariagen_data.af1.Af1.plot_transcript": [[78, null]], "malariagen_data.af1.Af1.plot_xpehh_gwss": [[79, null]], "malariagen_data.af1.Af1.releases": [[80, null]], "malariagen_data.af1.Af1.roh_hmm": [[81, null]], "malariagen_data.af1.Af1.sample_metadata": [[82, null]], "malariagen_data.af1.Af1.sample_sets": [[83, null]], "malariagen_data.af1.Af1.site_annotations": [[84, null]], "malariagen_data.af1.Af1.site_mask_ids": [[85, null]], "malariagen_data.af1.Af1.snp_allele_counts": [[86, null]], "malariagen_data.af1.Af1.snp_allele_frequencies": [[87, null]], "malariagen_data.af1.Af1.snp_allele_frequencies_advanced": [[88, null]], "malariagen_data.af1.Af1.snp_calls": [[89, null]], "malariagen_data.af1.Af1.view_alignments": [[90, null]], "malariagen_data.af1.Af1.wgs_data_catalog": [[91, null]], "malariagen_data.af1.Af1.xpehh_gwss": [[92, null]], "malariagen_data.ag3.Ag3.aa_allele_frequencies": [[93, null]], "malariagen_data.ag3.Ag3.aa_allele_frequencies_advanced": [[94, null]], "malariagen_data.ag3.Ag3.add_extra_metadata": [[95, null]], "malariagen_data.ag3.Ag3.aim_calls": [[96, null]], "malariagen_data.ag3.Ag3.aim_ids": [[97, null]], "malariagen_data.ag3.Ag3.aim_variants": [[98, null]], "malariagen_data.ag3.Ag3.average_fst": [[99, null]], "malariagen_data.ag3.Ag3.biallelic_diplotype_pairwise_distances": [[100, null]], "malariagen_data.ag3.Ag3.biallelic_diplotypes": [[101, null]], "malariagen_data.ag3.Ag3.biallelic_snp_calls": [[102, null]], "malariagen_data.ag3.Ag3.biallelic_snps_to_plink": [[103, null]], "malariagen_data.ag3.Ag3.clear_extra_metadata": [[104, null]], "malariagen_data.ag3.Ag3.cnv_coverage_calls": [[105, null]], "malariagen_data.ag3.Ag3.cnv_discordant_read_calls": [[106, null]], "malariagen_data.ag3.Ag3.cnv_hmm": [[107, null]], "malariagen_data.ag3.Ag3.cohort_diversity_stats": [[108, null]], "malariagen_data.ag3.Ag3.cohorts": [[109, null]], "malariagen_data.ag3.Ag3.contigs": [[110, null]], "malariagen_data.ag3.Ag3.count_samples": [[111, null]], "malariagen_data.ag3.Ag3.coverage_calls_analysis_ids": [[112, null]], "malariagen_data.ag3.Ag3.cross_metadata": [[113, null]], "malariagen_data.ag3.Ag3.diversity_stats": [[114, null]], "malariagen_data.ag3.Ag3.fst_gwss": [[115, null]], "malariagen_data.ag3.Ag3.g123_calibration": [[116, null]], "malariagen_data.ag3.Ag3.g123_gwss": [[117, null]], "malariagen_data.ag3.Ag3.gene_cnv": [[118, null]], "malariagen_data.ag3.Ag3.gene_cnv_frequencies": [[119, null]], "malariagen_data.ag3.Ag3.gene_cnv_frequencies_advanced": [[120, null]], "malariagen_data.ag3.Ag3.genome_features": [[121, null]], "malariagen_data.ag3.Ag3.genome_sequence": [[122, null]], "malariagen_data.ag3.Ag3.h12_calibration": [[123, null]], "malariagen_data.ag3.Ag3.h12_gwss": [[124, null]], "malariagen_data.ag3.Ag3.h1x_gwss": [[125, null]], "malariagen_data.ag3.Ag3.haplotype_pairwise_distances": [[126, null]], "malariagen_data.ag3.Ag3.haplotype_sites": [[127, null]], "malariagen_data.ag3.Ag3.haplotypes": [[128, null]], "malariagen_data.ag3.Ag3.haplotypes_frequencies": [[129, null]], "malariagen_data.ag3.Ag3.haplotypes_frequencies_advanced": [[130, null]], "malariagen_data.ag3.Ag3.igv": [[131, null]], "malariagen_data.ag3.Ag3.ihs_gwss": [[132, null]], "malariagen_data.ag3.Ag3.is_accessible": [[133, null]], "malariagen_data.ag3.Ag3.lookup_release": [[134, null]], "malariagen_data.ag3.Ag3.lookup_sample": [[135, null]], "malariagen_data.ag3.Ag3.lookup_study": [[136, null]], "malariagen_data.ag3.Ag3.njt": [[137, null]], "malariagen_data.ag3.Ag3.pairwise_average_fst": [[138, null]], "malariagen_data.ag3.Ag3.pca": [[139, null]], "malariagen_data.ag3.Ag3.phasing_analysis_ids": [[140, null]], "malariagen_data.ag3.Ag3.plot_aim_heatmap": [[141, null]], "malariagen_data.ag3.Ag3.plot_cnv_hmm_coverage": [[142, null]], "malariagen_data.ag3.Ag3.plot_cnv_hmm_heatmap": [[143, null]], "malariagen_data.ag3.Ag3.plot_diplotype_clustering": [[144, null]], "malariagen_data.ag3.Ag3.plot_diplotype_clustering_advanced": [[145, null]], "malariagen_data.ag3.Ag3.plot_diversity_stats": [[146, null]], "malariagen_data.ag3.Ag3.plot_frequencies_heatmap": [[147, null]], "malariagen_data.ag3.Ag3.plot_frequencies_interactive_map": [[148, null]], "malariagen_data.ag3.Ag3.plot_frequencies_time_series": [[149, null]], "malariagen_data.ag3.Ag3.plot_fst_gwss": [[150, null]], "malariagen_data.ag3.Ag3.plot_g123_calibration": [[151, null]], "malariagen_data.ag3.Ag3.plot_g123_gwss": [[152, null]], "malariagen_data.ag3.Ag3.plot_genes": [[153, null]], "malariagen_data.ag3.Ag3.plot_h12_calibration": [[154, null]], "malariagen_data.ag3.Ag3.plot_h12_gwss": [[155, null]], "malariagen_data.ag3.Ag3.plot_h12_gwss_multi_overlay": [[156, null]], "malariagen_data.ag3.Ag3.plot_h12_gwss_multi_panel": [[157, null]], "malariagen_data.ag3.Ag3.plot_h1x_gwss": [[158, null]], "malariagen_data.ag3.Ag3.plot_haplotype_clustering": [[159, null]], "malariagen_data.ag3.Ag3.plot_haplotype_network": [[160, null]], "malariagen_data.ag3.Ag3.plot_heterozygosity": [[161, null]], "malariagen_data.ag3.Ag3.plot_ihs_gwss": [[162, null]], "malariagen_data.ag3.Ag3.plot_njt": [[163, null]], "malariagen_data.ag3.Ag3.plot_pairwise_average_fst": [[164, null]], "malariagen_data.ag3.Ag3.plot_pca_coords": [[165, null]], "malariagen_data.ag3.Ag3.plot_pca_coords_3d": [[166, null]], "malariagen_data.ag3.Ag3.plot_pca_variance": [[167, null]], "malariagen_data.ag3.Ag3.plot_roh": [[168, null]], "malariagen_data.ag3.Ag3.plot_sample_location_geo": [[169, null]], "malariagen_data.ag3.Ag3.plot_sample_location_mapbox": [[170, null]], "malariagen_data.ag3.Ag3.plot_samples_bar": [[171, null]], "malariagen_data.ag3.Ag3.plot_samples_interactive_map": [[172, null]], "malariagen_data.ag3.Ag3.plot_snps": [[173, null]], "malariagen_data.ag3.Ag3.plot_transcript": [[174, null]], "malariagen_data.ag3.Ag3.plot_xpehh_gwss": [[175, null]], "malariagen_data.ag3.Ag3.releases": [[176, null]], "malariagen_data.ag3.Ag3.roh_hmm": [[177, null]], "malariagen_data.ag3.Ag3.sample_metadata": [[178, null]], "malariagen_data.ag3.Ag3.sample_sets": [[179, null]], "malariagen_data.ag3.Ag3.site_annotations": [[180, null]], "malariagen_data.ag3.Ag3.site_mask_ids": [[181, null]], "malariagen_data.ag3.Ag3.snp_allele_counts": [[182, null]], "malariagen_data.ag3.Ag3.snp_allele_frequencies": [[183, null]], "malariagen_data.ag3.Ag3.snp_allele_frequencies_advanced": [[184, null]], "malariagen_data.ag3.Ag3.snp_calls": [[185, null]], "malariagen_data.ag3.Ag3.view_alignments": [[186, null]], "malariagen_data.ag3.Ag3.wgs_data_catalog": [[187, null]], "malariagen_data.ag3.Ag3.xpehh_gwss": [[188, null]], "malariagen_data.amin1.Amin1.contigs": [[189, null]], "malariagen_data.amin1.Amin1.genome_features": [[190, null]], "malariagen_data.amin1.Amin1.genome_sequence": [[191, null]], "malariagen_data.amin1.Amin1.sample_metadata": [[192, null]], "malariagen_data.amin1.Amin1.snp_calls": [[193, null]]}, "docnames": ["Af1", "Ag3", "Amin1", "generated/malariagen_data.af1.Af1.aa_allele_frequencies", "generated/malariagen_data.af1.Af1.aa_allele_frequencies_advanced", "generated/malariagen_data.af1.Af1.add_extra_metadata", "generated/malariagen_data.af1.Af1.average_fst", "generated/malariagen_data.af1.Af1.biallelic_diplotype_pairwise_distances", "generated/malariagen_data.af1.Af1.biallelic_diplotypes", "generated/malariagen_data.af1.Af1.biallelic_snp_calls", "generated/malariagen_data.af1.Af1.biallelic_snps_to_plink", "generated/malariagen_data.af1.Af1.clear_extra_metadata", "generated/malariagen_data.af1.Af1.cnv_coverage_calls", "generated/malariagen_data.af1.Af1.cnv_hmm", "generated/malariagen_data.af1.Af1.cohort_diversity_stats", "generated/malariagen_data.af1.Af1.cohorts", "generated/malariagen_data.af1.Af1.contigs", "generated/malariagen_data.af1.Af1.count_samples", "generated/malariagen_data.af1.Af1.coverage_calls_analysis_ids", "generated/malariagen_data.af1.Af1.diversity_stats", "generated/malariagen_data.af1.Af1.fst_gwss", "generated/malariagen_data.af1.Af1.g123_calibration", "generated/malariagen_data.af1.Af1.g123_gwss", "generated/malariagen_data.af1.Af1.gene_cnv", "generated/malariagen_data.af1.Af1.gene_cnv_frequencies", "generated/malariagen_data.af1.Af1.gene_cnv_frequencies_advanced", "generated/malariagen_data.af1.Af1.genome_features", "generated/malariagen_data.af1.Af1.genome_sequence", "generated/malariagen_data.af1.Af1.h12_calibration", "generated/malariagen_data.af1.Af1.h12_gwss", "generated/malariagen_data.af1.Af1.h1x_gwss", "generated/malariagen_data.af1.Af1.haplotype_pairwise_distances", "generated/malariagen_data.af1.Af1.haplotype_sites", "generated/malariagen_data.af1.Af1.haplotypes", "generated/malariagen_data.af1.Af1.haplotypes_frequencies", "generated/malariagen_data.af1.Af1.haplotypes_frequencies_advanced", "generated/malariagen_data.af1.Af1.igv", "generated/malariagen_data.af1.Af1.ihs_gwss", "generated/malariagen_data.af1.Af1.is_accessible", "generated/malariagen_data.af1.Af1.lookup_release", "generated/malariagen_data.af1.Af1.lookup_sample", "generated/malariagen_data.af1.Af1.lookup_study", "generated/malariagen_data.af1.Af1.njt", "generated/malariagen_data.af1.Af1.pairwise_average_fst", "generated/malariagen_data.af1.Af1.pca", "generated/malariagen_data.af1.Af1.phasing_analysis_ids", "generated/malariagen_data.af1.Af1.plot_cnv_hmm_coverage", "generated/malariagen_data.af1.Af1.plot_cnv_hmm_heatmap", "generated/malariagen_data.af1.Af1.plot_diplotype_clustering", "generated/malariagen_data.af1.Af1.plot_diplotype_clustering_advanced", "generated/malariagen_data.af1.Af1.plot_diversity_stats", "generated/malariagen_data.af1.Af1.plot_frequencies_heatmap", "generated/malariagen_data.af1.Af1.plot_frequencies_interactive_map", "generated/malariagen_data.af1.Af1.plot_frequencies_time_series", "generated/malariagen_data.af1.Af1.plot_fst_gwss", "generated/malariagen_data.af1.Af1.plot_g123_calibration", "generated/malariagen_data.af1.Af1.plot_g123_gwss", "generated/malariagen_data.af1.Af1.plot_genes", "generated/malariagen_data.af1.Af1.plot_h12_calibration", "generated/malariagen_data.af1.Af1.plot_h12_gwss", "generated/malariagen_data.af1.Af1.plot_h12_gwss_multi_overlay", "generated/malariagen_data.af1.Af1.plot_h12_gwss_multi_panel", "generated/malariagen_data.af1.Af1.plot_h1x_gwss", "generated/malariagen_data.af1.Af1.plot_haplotype_clustering", "generated/malariagen_data.af1.Af1.plot_haplotype_network", "generated/malariagen_data.af1.Af1.plot_heterozygosity", "generated/malariagen_data.af1.Af1.plot_ihs_gwss", "generated/malariagen_data.af1.Af1.plot_njt", "generated/malariagen_data.af1.Af1.plot_pairwise_average_fst", "generated/malariagen_data.af1.Af1.plot_pca_coords", "generated/malariagen_data.af1.Af1.plot_pca_coords_3d", "generated/malariagen_data.af1.Af1.plot_pca_variance", "generated/malariagen_data.af1.Af1.plot_roh", "generated/malariagen_data.af1.Af1.plot_sample_location_geo", "generated/malariagen_data.af1.Af1.plot_sample_location_mapbox", "generated/malariagen_data.af1.Af1.plot_samples_bar", "generated/malariagen_data.af1.Af1.plot_samples_interactive_map", "generated/malariagen_data.af1.Af1.plot_snps", "generated/malariagen_data.af1.Af1.plot_transcript", "generated/malariagen_data.af1.Af1.plot_xpehh_gwss", "generated/malariagen_data.af1.Af1.releases", "generated/malariagen_data.af1.Af1.roh_hmm", "generated/malariagen_data.af1.Af1.sample_metadata", "generated/malariagen_data.af1.Af1.sample_sets", "generated/malariagen_data.af1.Af1.site_annotations", "generated/malariagen_data.af1.Af1.site_mask_ids", "generated/malariagen_data.af1.Af1.snp_allele_counts", "generated/malariagen_data.af1.Af1.snp_allele_frequencies", "generated/malariagen_data.af1.Af1.snp_allele_frequencies_advanced", "generated/malariagen_data.af1.Af1.snp_calls", "generated/malariagen_data.af1.Af1.view_alignments", "generated/malariagen_data.af1.Af1.wgs_data_catalog", "generated/malariagen_data.af1.Af1.xpehh_gwss", "generated/malariagen_data.ag3.Ag3.aa_allele_frequencies", "generated/malariagen_data.ag3.Ag3.aa_allele_frequencies_advanced", "generated/malariagen_data.ag3.Ag3.add_extra_metadata", "generated/malariagen_data.ag3.Ag3.aim_calls", "generated/malariagen_data.ag3.Ag3.aim_ids", "generated/malariagen_data.ag3.Ag3.aim_variants", "generated/malariagen_data.ag3.Ag3.average_fst", "generated/malariagen_data.ag3.Ag3.biallelic_diplotype_pairwise_distances", "generated/malariagen_data.ag3.Ag3.biallelic_diplotypes", "generated/malariagen_data.ag3.Ag3.biallelic_snp_calls", "generated/malariagen_data.ag3.Ag3.biallelic_snps_to_plink", "generated/malariagen_data.ag3.Ag3.clear_extra_metadata", "generated/malariagen_data.ag3.Ag3.cnv_coverage_calls", "generated/malariagen_data.ag3.Ag3.cnv_discordant_read_calls", "generated/malariagen_data.ag3.Ag3.cnv_hmm", "generated/malariagen_data.ag3.Ag3.cohort_diversity_stats", "generated/malariagen_data.ag3.Ag3.cohorts", "generated/malariagen_data.ag3.Ag3.contigs", "generated/malariagen_data.ag3.Ag3.count_samples", "generated/malariagen_data.ag3.Ag3.coverage_calls_analysis_ids", "generated/malariagen_data.ag3.Ag3.cross_metadata", "generated/malariagen_data.ag3.Ag3.diversity_stats", "generated/malariagen_data.ag3.Ag3.fst_gwss", "generated/malariagen_data.ag3.Ag3.g123_calibration", "generated/malariagen_data.ag3.Ag3.g123_gwss", "generated/malariagen_data.ag3.Ag3.gene_cnv", "generated/malariagen_data.ag3.Ag3.gene_cnv_frequencies", "generated/malariagen_data.ag3.Ag3.gene_cnv_frequencies_advanced", "generated/malariagen_data.ag3.Ag3.genome_features", "generated/malariagen_data.ag3.Ag3.genome_sequence", "generated/malariagen_data.ag3.Ag3.h12_calibration", "generated/malariagen_data.ag3.Ag3.h12_gwss", "generated/malariagen_data.ag3.Ag3.h1x_gwss", "generated/malariagen_data.ag3.Ag3.haplotype_pairwise_distances", "generated/malariagen_data.ag3.Ag3.haplotype_sites", "generated/malariagen_data.ag3.Ag3.haplotypes", "generated/malariagen_data.ag3.Ag3.haplotypes_frequencies", "generated/malariagen_data.ag3.Ag3.haplotypes_frequencies_advanced", "generated/malariagen_data.ag3.Ag3.igv", "generated/malariagen_data.ag3.Ag3.ihs_gwss", "generated/malariagen_data.ag3.Ag3.is_accessible", "generated/malariagen_data.ag3.Ag3.lookup_release", "generated/malariagen_data.ag3.Ag3.lookup_sample", "generated/malariagen_data.ag3.Ag3.lookup_study", "generated/malariagen_data.ag3.Ag3.njt", "generated/malariagen_data.ag3.Ag3.pairwise_average_fst", "generated/malariagen_data.ag3.Ag3.pca", "generated/malariagen_data.ag3.Ag3.phasing_analysis_ids", "generated/malariagen_data.ag3.Ag3.plot_aim_heatmap", "generated/malariagen_data.ag3.Ag3.plot_cnv_hmm_coverage", "generated/malariagen_data.ag3.Ag3.plot_cnv_hmm_heatmap", "generated/malariagen_data.ag3.Ag3.plot_diplotype_clustering", "generated/malariagen_data.ag3.Ag3.plot_diplotype_clustering_advanced", "generated/malariagen_data.ag3.Ag3.plot_diversity_stats", "generated/malariagen_data.ag3.Ag3.plot_frequencies_heatmap", "generated/malariagen_data.ag3.Ag3.plot_frequencies_interactive_map", "generated/malariagen_data.ag3.Ag3.plot_frequencies_time_series", "generated/malariagen_data.ag3.Ag3.plot_fst_gwss", "generated/malariagen_data.ag3.Ag3.plot_g123_calibration", "generated/malariagen_data.ag3.Ag3.plot_g123_gwss", "generated/malariagen_data.ag3.Ag3.plot_genes", "generated/malariagen_data.ag3.Ag3.plot_h12_calibration", "generated/malariagen_data.ag3.Ag3.plot_h12_gwss", "generated/malariagen_data.ag3.Ag3.plot_h12_gwss_multi_overlay", "generated/malariagen_data.ag3.Ag3.plot_h12_gwss_multi_panel", "generated/malariagen_data.ag3.Ag3.plot_h1x_gwss", "generated/malariagen_data.ag3.Ag3.plot_haplotype_clustering", "generated/malariagen_data.ag3.Ag3.plot_haplotype_network", "generated/malariagen_data.ag3.Ag3.plot_heterozygosity", "generated/malariagen_data.ag3.Ag3.plot_ihs_gwss", "generated/malariagen_data.ag3.Ag3.plot_njt", "generated/malariagen_data.ag3.Ag3.plot_pairwise_average_fst", "generated/malariagen_data.ag3.Ag3.plot_pca_coords", "generated/malariagen_data.ag3.Ag3.plot_pca_coords_3d", "generated/malariagen_data.ag3.Ag3.plot_pca_variance", "generated/malariagen_data.ag3.Ag3.plot_roh", "generated/malariagen_data.ag3.Ag3.plot_sample_location_geo", "generated/malariagen_data.ag3.Ag3.plot_sample_location_mapbox", "generated/malariagen_data.ag3.Ag3.plot_samples_bar", "generated/malariagen_data.ag3.Ag3.plot_samples_interactive_map", "generated/malariagen_data.ag3.Ag3.plot_snps", "generated/malariagen_data.ag3.Ag3.plot_transcript", "generated/malariagen_data.ag3.Ag3.plot_xpehh_gwss", "generated/malariagen_data.ag3.Ag3.releases", "generated/malariagen_data.ag3.Ag3.roh_hmm", "generated/malariagen_data.ag3.Ag3.sample_metadata", "generated/malariagen_data.ag3.Ag3.sample_sets", "generated/malariagen_data.ag3.Ag3.site_annotations", "generated/malariagen_data.ag3.Ag3.site_mask_ids", "generated/malariagen_data.ag3.Ag3.snp_allele_counts", "generated/malariagen_data.ag3.Ag3.snp_allele_frequencies", "generated/malariagen_data.ag3.Ag3.snp_allele_frequencies_advanced", "generated/malariagen_data.ag3.Ag3.snp_calls", "generated/malariagen_data.ag3.Ag3.view_alignments", "generated/malariagen_data.ag3.Ag3.wgs_data_catalog", "generated/malariagen_data.ag3.Ag3.xpehh_gwss", "generated/malariagen_data.amin1.Amin1.contigs", "generated/malariagen_data.amin1.Amin1.genome_features", "generated/malariagen_data.amin1.Amin1.genome_sequence", "generated/malariagen_data.amin1.Amin1.sample_metadata", "generated/malariagen_data.amin1.Amin1.snp_calls", "index"], "envversion": {"sphinx": 64, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2}, "filenames": ["Af1.rst", "Ag3.rst", "Amin1.rst", "generated/malariagen_data.af1.Af1.aa_allele_frequencies.rst", "generated/malariagen_data.af1.Af1.aa_allele_frequencies_advanced.rst", "generated/malariagen_data.af1.Af1.add_extra_metadata.rst", "generated/malariagen_data.af1.Af1.average_fst.rst", "generated/malariagen_data.af1.Af1.biallelic_diplotype_pairwise_distances.rst", "generated/malariagen_data.af1.Af1.biallelic_diplotypes.rst", "generated/malariagen_data.af1.Af1.biallelic_snp_calls.rst", "generated/malariagen_data.af1.Af1.biallelic_snps_to_plink.rst", "generated/malariagen_data.af1.Af1.clear_extra_metadata.rst", "generated/malariagen_data.af1.Af1.cnv_coverage_calls.rst", "generated/malariagen_data.af1.Af1.cnv_hmm.rst", "generated/malariagen_data.af1.Af1.cohort_diversity_stats.rst", "generated/malariagen_data.af1.Af1.cohorts.rst", "generated/malariagen_data.af1.Af1.contigs.rst", "generated/malariagen_data.af1.Af1.count_samples.rst", "generated/malariagen_data.af1.Af1.coverage_calls_analysis_ids.rst", "generated/malariagen_data.af1.Af1.diversity_stats.rst", "generated/malariagen_data.af1.Af1.fst_gwss.rst", "generated/malariagen_data.af1.Af1.g123_calibration.rst", "generated/malariagen_data.af1.Af1.g123_gwss.rst", "generated/malariagen_data.af1.Af1.gene_cnv.rst", "generated/malariagen_data.af1.Af1.gene_cnv_frequencies.rst", "generated/malariagen_data.af1.Af1.gene_cnv_frequencies_advanced.rst", "generated/malariagen_data.af1.Af1.genome_features.rst", "generated/malariagen_data.af1.Af1.genome_sequence.rst", "generated/malariagen_data.af1.Af1.h12_calibration.rst", "generated/malariagen_data.af1.Af1.h12_gwss.rst", "generated/malariagen_data.af1.Af1.h1x_gwss.rst", "generated/malariagen_data.af1.Af1.haplotype_pairwise_distances.rst", "generated/malariagen_data.af1.Af1.haplotype_sites.rst", "generated/malariagen_data.af1.Af1.haplotypes.rst", "generated/malariagen_data.af1.Af1.haplotypes_frequencies.rst", "generated/malariagen_data.af1.Af1.haplotypes_frequencies_advanced.rst", "generated/malariagen_data.af1.Af1.igv.rst", "generated/malariagen_data.af1.Af1.ihs_gwss.rst", "generated/malariagen_data.af1.Af1.is_accessible.rst", "generated/malariagen_data.af1.Af1.lookup_release.rst", "generated/malariagen_data.af1.Af1.lookup_sample.rst", "generated/malariagen_data.af1.Af1.lookup_study.rst", "generated/malariagen_data.af1.Af1.njt.rst", "generated/malariagen_data.af1.Af1.pairwise_average_fst.rst", "generated/malariagen_data.af1.Af1.pca.rst", "generated/malariagen_data.af1.Af1.phasing_analysis_ids.rst", "generated/malariagen_data.af1.Af1.plot_cnv_hmm_coverage.rst", "generated/malariagen_data.af1.Af1.plot_cnv_hmm_heatmap.rst", "generated/malariagen_data.af1.Af1.plot_diplotype_clustering.rst", "generated/malariagen_data.af1.Af1.plot_diplotype_clustering_advanced.rst", "generated/malariagen_data.af1.Af1.plot_diversity_stats.rst", "generated/malariagen_data.af1.Af1.plot_frequencies_heatmap.rst", "generated/malariagen_data.af1.Af1.plot_frequencies_interactive_map.rst", "generated/malariagen_data.af1.Af1.plot_frequencies_time_series.rst", "generated/malariagen_data.af1.Af1.plot_fst_gwss.rst", "generated/malariagen_data.af1.Af1.plot_g123_calibration.rst", "generated/malariagen_data.af1.Af1.plot_g123_gwss.rst", "generated/malariagen_data.af1.Af1.plot_genes.rst", "generated/malariagen_data.af1.Af1.plot_h12_calibration.rst", "generated/malariagen_data.af1.Af1.plot_h12_gwss.rst", "generated/malariagen_data.af1.Af1.plot_h12_gwss_multi_overlay.rst", "generated/malariagen_data.af1.Af1.plot_h12_gwss_multi_panel.rst", "generated/malariagen_data.af1.Af1.plot_h1x_gwss.rst", "generated/malariagen_data.af1.Af1.plot_haplotype_clustering.rst", "generated/malariagen_data.af1.Af1.plot_haplotype_network.rst", "generated/malariagen_data.af1.Af1.plot_heterozygosity.rst", "generated/malariagen_data.af1.Af1.plot_ihs_gwss.rst", "generated/malariagen_data.af1.Af1.plot_njt.rst", "generated/malariagen_data.af1.Af1.plot_pairwise_average_fst.rst", "generated/malariagen_data.af1.Af1.plot_pca_coords.rst", "generated/malariagen_data.af1.Af1.plot_pca_coords_3d.rst", "generated/malariagen_data.af1.Af1.plot_pca_variance.rst", "generated/malariagen_data.af1.Af1.plot_roh.rst", "generated/malariagen_data.af1.Af1.plot_sample_location_geo.rst", "generated/malariagen_data.af1.Af1.plot_sample_location_mapbox.rst", "generated/malariagen_data.af1.Af1.plot_samples_bar.rst", "generated/malariagen_data.af1.Af1.plot_samples_interactive_map.rst", "generated/malariagen_data.af1.Af1.plot_snps.rst", "generated/malariagen_data.af1.Af1.plot_transcript.rst", "generated/malariagen_data.af1.Af1.plot_xpehh_gwss.rst", "generated/malariagen_data.af1.Af1.releases.rst", "generated/malariagen_data.af1.Af1.roh_hmm.rst", "generated/malariagen_data.af1.Af1.sample_metadata.rst", "generated/malariagen_data.af1.Af1.sample_sets.rst", "generated/malariagen_data.af1.Af1.site_annotations.rst", "generated/malariagen_data.af1.Af1.site_mask_ids.rst", "generated/malariagen_data.af1.Af1.snp_allele_counts.rst", "generated/malariagen_data.af1.Af1.snp_allele_frequencies.rst", "generated/malariagen_data.af1.Af1.snp_allele_frequencies_advanced.rst", "generated/malariagen_data.af1.Af1.snp_calls.rst", "generated/malariagen_data.af1.Af1.view_alignments.rst", "generated/malariagen_data.af1.Af1.wgs_data_catalog.rst", "generated/malariagen_data.af1.Af1.xpehh_gwss.rst", "generated/malariagen_data.ag3.Ag3.aa_allele_frequencies.rst", "generated/malariagen_data.ag3.Ag3.aa_allele_frequencies_advanced.rst", "generated/malariagen_data.ag3.Ag3.add_extra_metadata.rst", "generated/malariagen_data.ag3.Ag3.aim_calls.rst", "generated/malariagen_data.ag3.Ag3.aim_ids.rst", "generated/malariagen_data.ag3.Ag3.aim_variants.rst", "generated/malariagen_data.ag3.Ag3.average_fst.rst", "generated/malariagen_data.ag3.Ag3.biallelic_diplotype_pairwise_distances.rst", "generated/malariagen_data.ag3.Ag3.biallelic_diplotypes.rst", "generated/malariagen_data.ag3.Ag3.biallelic_snp_calls.rst", "generated/malariagen_data.ag3.Ag3.biallelic_snps_to_plink.rst", "generated/malariagen_data.ag3.Ag3.clear_extra_metadata.rst", "generated/malariagen_data.ag3.Ag3.cnv_coverage_calls.rst", "generated/malariagen_data.ag3.Ag3.cnv_discordant_read_calls.rst", "generated/malariagen_data.ag3.Ag3.cnv_hmm.rst", "generated/malariagen_data.ag3.Ag3.cohort_diversity_stats.rst", "generated/malariagen_data.ag3.Ag3.cohorts.rst", "generated/malariagen_data.ag3.Ag3.contigs.rst", "generated/malariagen_data.ag3.Ag3.count_samples.rst", "generated/malariagen_data.ag3.Ag3.coverage_calls_analysis_ids.rst", "generated/malariagen_data.ag3.Ag3.cross_metadata.rst", "generated/malariagen_data.ag3.Ag3.diversity_stats.rst", "generated/malariagen_data.ag3.Ag3.fst_gwss.rst", "generated/malariagen_data.ag3.Ag3.g123_calibration.rst", "generated/malariagen_data.ag3.Ag3.g123_gwss.rst", "generated/malariagen_data.ag3.Ag3.gene_cnv.rst", "generated/malariagen_data.ag3.Ag3.gene_cnv_frequencies.rst", "generated/malariagen_data.ag3.Ag3.gene_cnv_frequencies_advanced.rst", "generated/malariagen_data.ag3.Ag3.genome_features.rst", "generated/malariagen_data.ag3.Ag3.genome_sequence.rst", "generated/malariagen_data.ag3.Ag3.h12_calibration.rst", "generated/malariagen_data.ag3.Ag3.h12_gwss.rst", "generated/malariagen_data.ag3.Ag3.h1x_gwss.rst", "generated/malariagen_data.ag3.Ag3.haplotype_pairwise_distances.rst", "generated/malariagen_data.ag3.Ag3.haplotype_sites.rst", "generated/malariagen_data.ag3.Ag3.haplotypes.rst", "generated/malariagen_data.ag3.Ag3.haplotypes_frequencies.rst", "generated/malariagen_data.ag3.Ag3.haplotypes_frequencies_advanced.rst", "generated/malariagen_data.ag3.Ag3.igv.rst", "generated/malariagen_data.ag3.Ag3.ihs_gwss.rst", "generated/malariagen_data.ag3.Ag3.is_accessible.rst", "generated/malariagen_data.ag3.Ag3.lookup_release.rst", "generated/malariagen_data.ag3.Ag3.lookup_sample.rst", "generated/malariagen_data.ag3.Ag3.lookup_study.rst", "generated/malariagen_data.ag3.Ag3.njt.rst", "generated/malariagen_data.ag3.Ag3.pairwise_average_fst.rst", "generated/malariagen_data.ag3.Ag3.pca.rst", "generated/malariagen_data.ag3.Ag3.phasing_analysis_ids.rst", "generated/malariagen_data.ag3.Ag3.plot_aim_heatmap.rst", "generated/malariagen_data.ag3.Ag3.plot_cnv_hmm_coverage.rst", "generated/malariagen_data.ag3.Ag3.plot_cnv_hmm_heatmap.rst", "generated/malariagen_data.ag3.Ag3.plot_diplotype_clustering.rst", "generated/malariagen_data.ag3.Ag3.plot_diplotype_clustering_advanced.rst", "generated/malariagen_data.ag3.Ag3.plot_diversity_stats.rst", "generated/malariagen_data.ag3.Ag3.plot_frequencies_heatmap.rst", "generated/malariagen_data.ag3.Ag3.plot_frequencies_interactive_map.rst", "generated/malariagen_data.ag3.Ag3.plot_frequencies_time_series.rst", "generated/malariagen_data.ag3.Ag3.plot_fst_gwss.rst", "generated/malariagen_data.ag3.Ag3.plot_g123_calibration.rst", "generated/malariagen_data.ag3.Ag3.plot_g123_gwss.rst", "generated/malariagen_data.ag3.Ag3.plot_genes.rst", "generated/malariagen_data.ag3.Ag3.plot_h12_calibration.rst", "generated/malariagen_data.ag3.Ag3.plot_h12_gwss.rst", "generated/malariagen_data.ag3.Ag3.plot_h12_gwss_multi_overlay.rst", "generated/malariagen_data.ag3.Ag3.plot_h12_gwss_multi_panel.rst", "generated/malariagen_data.ag3.Ag3.plot_h1x_gwss.rst", "generated/malariagen_data.ag3.Ag3.plot_haplotype_clustering.rst", "generated/malariagen_data.ag3.Ag3.plot_haplotype_network.rst", "generated/malariagen_data.ag3.Ag3.plot_heterozygosity.rst", "generated/malariagen_data.ag3.Ag3.plot_ihs_gwss.rst", "generated/malariagen_data.ag3.Ag3.plot_njt.rst", "generated/malariagen_data.ag3.Ag3.plot_pairwise_average_fst.rst", "generated/malariagen_data.ag3.Ag3.plot_pca_coords.rst", "generated/malariagen_data.ag3.Ag3.plot_pca_coords_3d.rst", "generated/malariagen_data.ag3.Ag3.plot_pca_variance.rst", "generated/malariagen_data.ag3.Ag3.plot_roh.rst", "generated/malariagen_data.ag3.Ag3.plot_sample_location_geo.rst", "generated/malariagen_data.ag3.Ag3.plot_sample_location_mapbox.rst", "generated/malariagen_data.ag3.Ag3.plot_samples_bar.rst", "generated/malariagen_data.ag3.Ag3.plot_samples_interactive_map.rst", "generated/malariagen_data.ag3.Ag3.plot_snps.rst", "generated/malariagen_data.ag3.Ag3.plot_transcript.rst", "generated/malariagen_data.ag3.Ag3.plot_xpehh_gwss.rst", "generated/malariagen_data.ag3.Ag3.releases.rst", "generated/malariagen_data.ag3.Ag3.roh_hmm.rst", "generated/malariagen_data.ag3.Ag3.sample_metadata.rst", "generated/malariagen_data.ag3.Ag3.sample_sets.rst", "generated/malariagen_data.ag3.Ag3.site_annotations.rst", "generated/malariagen_data.ag3.Ag3.site_mask_ids.rst", "generated/malariagen_data.ag3.Ag3.snp_allele_counts.rst", "generated/malariagen_data.ag3.Ag3.snp_allele_frequencies.rst", "generated/malariagen_data.ag3.Ag3.snp_allele_frequencies_advanced.rst", "generated/malariagen_data.ag3.Ag3.snp_calls.rst", "generated/malariagen_data.ag3.Ag3.view_alignments.rst", "generated/malariagen_data.ag3.Ag3.wgs_data_catalog.rst", "generated/malariagen_data.ag3.Ag3.xpehh_gwss.rst", "generated/malariagen_data.amin1.Amin1.contigs.rst", "generated/malariagen_data.amin1.Amin1.genome_features.rst", "generated/malariagen_data.amin1.Amin1.genome_sequence.rst", "generated/malariagen_data.amin1.Amin1.sample_metadata.rst", "generated/malariagen_data.amin1.Amin1.snp_calls.rst", "index.rst"], "indexentries": {"aa_allele_frequencies() (malariagen_data.af1.af1 method)": [[3, "malariagen_data.af1.Af1.aa_allele_frequencies", false]], "aa_allele_frequencies() (malariagen_data.ag3.ag3 method)": [[93, "malariagen_data.ag3.Ag3.aa_allele_frequencies", false]], "aa_allele_frequencies_advanced() (malariagen_data.af1.af1 method)": [[4, "malariagen_data.af1.Af1.aa_allele_frequencies_advanced", false]], "aa_allele_frequencies_advanced() (malariagen_data.ag3.ag3 method)": [[94, "malariagen_data.ag3.Ag3.aa_allele_frequencies_advanced", false]], "add_extra_metadata() (malariagen_data.af1.af1 method)": [[5, "malariagen_data.af1.Af1.add_extra_metadata", false]], "add_extra_metadata() (malariagen_data.ag3.ag3 method)": [[95, "malariagen_data.ag3.Ag3.add_extra_metadata", false]], "aim_calls() (malariagen_data.ag3.ag3 method)": [[96, "malariagen_data.ag3.Ag3.aim_calls", false]], "aim_ids (malariagen_data.ag3.ag3 property)": [[97, "malariagen_data.ag3.Ag3.aim_ids", false]], "aim_variants() (malariagen_data.ag3.ag3 method)": [[98, "malariagen_data.ag3.Ag3.aim_variants", false]], "average_fst() (malariagen_data.af1.af1 method)": [[6, "malariagen_data.af1.Af1.average_fst", false]], "average_fst() (malariagen_data.ag3.ag3 method)": [[99, "malariagen_data.ag3.Ag3.average_fst", false]], "biallelic_diplotype_pairwise_distances() (malariagen_data.af1.af1 method)": [[7, "malariagen_data.af1.Af1.biallelic_diplotype_pairwise_distances", false]], "biallelic_diplotype_pairwise_distances() (malariagen_data.ag3.ag3 method)": [[100, "malariagen_data.ag3.Ag3.biallelic_diplotype_pairwise_distances", false]], "biallelic_diplotypes() (malariagen_data.af1.af1 method)": [[8, "malariagen_data.af1.Af1.biallelic_diplotypes", false]], "biallelic_diplotypes() (malariagen_data.ag3.ag3 method)": [[101, "malariagen_data.ag3.Ag3.biallelic_diplotypes", false]], "biallelic_snp_calls() (malariagen_data.af1.af1 method)": [[9, "malariagen_data.af1.Af1.biallelic_snp_calls", false]], "biallelic_snp_calls() (malariagen_data.ag3.ag3 method)": [[102, "malariagen_data.ag3.Ag3.biallelic_snp_calls", false]], "biallelic_snps_to_plink() (malariagen_data.af1.af1 method)": [[10, "malariagen_data.af1.Af1.biallelic_snps_to_plink", false]], "biallelic_snps_to_plink() (malariagen_data.ag3.ag3 method)": [[103, "malariagen_data.ag3.Ag3.biallelic_snps_to_plink", false]], "clear_extra_metadata() (malariagen_data.af1.af1 method)": [[11, "malariagen_data.af1.Af1.clear_extra_metadata", false]], "clear_extra_metadata() (malariagen_data.ag3.ag3 method)": [[104, "malariagen_data.ag3.Ag3.clear_extra_metadata", false]], "cnv_coverage_calls() (malariagen_data.af1.af1 method)": [[12, "malariagen_data.af1.Af1.cnv_coverage_calls", false]], "cnv_coverage_calls() (malariagen_data.ag3.ag3 method)": [[105, "malariagen_data.ag3.Ag3.cnv_coverage_calls", false]], "cnv_discordant_read_calls() (malariagen_data.ag3.ag3 method)": [[106, "malariagen_data.ag3.Ag3.cnv_discordant_read_calls", false]], "cnv_hmm() (malariagen_data.af1.af1 method)": [[13, "malariagen_data.af1.Af1.cnv_hmm", false]], "cnv_hmm() (malariagen_data.ag3.ag3 method)": [[107, "malariagen_data.ag3.Ag3.cnv_hmm", false]], "cohort_diversity_stats() (malariagen_data.af1.af1 method)": [[14, "malariagen_data.af1.Af1.cohort_diversity_stats", false]], "cohort_diversity_stats() (malariagen_data.ag3.ag3 method)": [[108, "malariagen_data.ag3.Ag3.cohort_diversity_stats", false]], "cohorts() (malariagen_data.af1.af1 method)": [[15, "malariagen_data.af1.Af1.cohorts", false]], "cohorts() (malariagen_data.ag3.ag3 method)": [[109, "malariagen_data.ag3.Ag3.cohorts", false]], "contigs (malariagen_data.af1.af1 property)": [[16, "malariagen_data.af1.Af1.contigs", false]], "contigs (malariagen_data.ag3.ag3 property)": [[110, "malariagen_data.ag3.Ag3.contigs", false]], "contigs (malariagen_data.amin1.amin1 property)": [[189, "malariagen_data.amin1.Amin1.contigs", false]], "count_samples() (malariagen_data.af1.af1 method)": [[17, "malariagen_data.af1.Af1.count_samples", false]], "count_samples() (malariagen_data.ag3.ag3 method)": [[111, "malariagen_data.ag3.Ag3.count_samples", false]], "coverage_calls_analysis_ids (malariagen_data.af1.af1 property)": [[18, "malariagen_data.af1.Af1.coverage_calls_analysis_ids", false]], "coverage_calls_analysis_ids (malariagen_data.ag3.ag3 property)": [[112, "malariagen_data.ag3.Ag3.coverage_calls_analysis_ids", false]], "cross_metadata() (malariagen_data.ag3.ag3 method)": [[113, "malariagen_data.ag3.Ag3.cross_metadata", false]], "diversity_stats() (malariagen_data.af1.af1 method)": [[19, "malariagen_data.af1.Af1.diversity_stats", false]], "diversity_stats() (malariagen_data.ag3.ag3 method)": [[114, "malariagen_data.ag3.Ag3.diversity_stats", false]], "fst_gwss() (malariagen_data.af1.af1 method)": [[20, "malariagen_data.af1.Af1.fst_gwss", false]], "fst_gwss() (malariagen_data.ag3.ag3 method)": [[115, "malariagen_data.ag3.Ag3.fst_gwss", false]], "g123_calibration() (malariagen_data.af1.af1 method)": [[21, "malariagen_data.af1.Af1.g123_calibration", false]], "g123_calibration() (malariagen_data.ag3.ag3 method)": [[116, "malariagen_data.ag3.Ag3.g123_calibration", false]], "g123_gwss() (malariagen_data.af1.af1 method)": [[22, "malariagen_data.af1.Af1.g123_gwss", false]], "g123_gwss() (malariagen_data.ag3.ag3 method)": [[117, "malariagen_data.ag3.Ag3.g123_gwss", false]], "gene_cnv() (malariagen_data.af1.af1 method)": [[23, "malariagen_data.af1.Af1.gene_cnv", false]], "gene_cnv() (malariagen_data.ag3.ag3 method)": [[118, "malariagen_data.ag3.Ag3.gene_cnv", false]], "gene_cnv_frequencies() (malariagen_data.af1.af1 method)": [[24, "malariagen_data.af1.Af1.gene_cnv_frequencies", false]], "gene_cnv_frequencies() (malariagen_data.ag3.ag3 method)": [[119, "malariagen_data.ag3.Ag3.gene_cnv_frequencies", false]], "gene_cnv_frequencies_advanced() (malariagen_data.af1.af1 method)": [[25, "malariagen_data.af1.Af1.gene_cnv_frequencies_advanced", false]], "gene_cnv_frequencies_advanced() (malariagen_data.ag3.ag3 method)": [[120, "malariagen_data.ag3.Ag3.gene_cnv_frequencies_advanced", false]], "genome_features() (malariagen_data.af1.af1 method)": [[26, "malariagen_data.af1.Af1.genome_features", false]], "genome_features() (malariagen_data.ag3.ag3 method)": [[121, "malariagen_data.ag3.Ag3.genome_features", false]], "genome_features() (malariagen_data.amin1.amin1 method)": [[190, "malariagen_data.amin1.Amin1.genome_features", false]], "genome_sequence() (malariagen_data.af1.af1 method)": [[27, "malariagen_data.af1.Af1.genome_sequence", false]], "genome_sequence() (malariagen_data.ag3.ag3 method)": [[122, "malariagen_data.ag3.Ag3.genome_sequence", false]], "genome_sequence() (malariagen_data.amin1.amin1 method)": [[191, "malariagen_data.amin1.Amin1.genome_sequence", false]], "h12_calibration() (malariagen_data.af1.af1 method)": [[28, "malariagen_data.af1.Af1.h12_calibration", false]], "h12_calibration() (malariagen_data.ag3.ag3 method)": [[123, "malariagen_data.ag3.Ag3.h12_calibration", false]], "h12_gwss() (malariagen_data.af1.af1 method)": [[29, "malariagen_data.af1.Af1.h12_gwss", false]], "h12_gwss() (malariagen_data.ag3.ag3 method)": [[124, "malariagen_data.ag3.Ag3.h12_gwss", false]], "h1x_gwss() (malariagen_data.af1.af1 method)": [[30, "malariagen_data.af1.Af1.h1x_gwss", false]], "h1x_gwss() (malariagen_data.ag3.ag3 method)": [[125, "malariagen_data.ag3.Ag3.h1x_gwss", false]], "haplotype_pairwise_distances() (malariagen_data.af1.af1 method)": [[31, "malariagen_data.af1.Af1.haplotype_pairwise_distances", false]], "haplotype_pairwise_distances() (malariagen_data.ag3.ag3 method)": [[126, "malariagen_data.ag3.Ag3.haplotype_pairwise_distances", false]], "haplotype_sites() (malariagen_data.af1.af1 method)": [[32, "malariagen_data.af1.Af1.haplotype_sites", false]], "haplotype_sites() (malariagen_data.ag3.ag3 method)": [[127, "malariagen_data.ag3.Ag3.haplotype_sites", false]], "haplotypes() (malariagen_data.af1.af1 method)": [[33, "malariagen_data.af1.Af1.haplotypes", false]], "haplotypes() (malariagen_data.ag3.ag3 method)": [[128, "malariagen_data.ag3.Ag3.haplotypes", false]], "haplotypes_frequencies() (malariagen_data.af1.af1 method)": [[34, "malariagen_data.af1.Af1.haplotypes_frequencies", false]], "haplotypes_frequencies() (malariagen_data.ag3.ag3 method)": [[129, "malariagen_data.ag3.Ag3.haplotypes_frequencies", false]], "haplotypes_frequencies_advanced() (malariagen_data.af1.af1 method)": [[35, "malariagen_data.af1.Af1.haplotypes_frequencies_advanced", false]], "haplotypes_frequencies_advanced() (malariagen_data.ag3.ag3 method)": [[130, "malariagen_data.ag3.Ag3.haplotypes_frequencies_advanced", false]], "igv() (malariagen_data.af1.af1 method)": [[36, "malariagen_data.af1.Af1.igv", false]], "igv() (malariagen_data.ag3.ag3 method)": [[131, "malariagen_data.ag3.Ag3.igv", false]], "ihs_gwss() (malariagen_data.af1.af1 method)": [[37, "malariagen_data.af1.Af1.ihs_gwss", false]], "ihs_gwss() (malariagen_data.ag3.ag3 method)": [[132, "malariagen_data.ag3.Ag3.ihs_gwss", false]], "is_accessible() (malariagen_data.af1.af1 method)": [[38, "malariagen_data.af1.Af1.is_accessible", false]], "is_accessible() (malariagen_data.ag3.ag3 method)": [[133, "malariagen_data.ag3.Ag3.is_accessible", false]], "lookup_release() (malariagen_data.af1.af1 method)": [[39, "malariagen_data.af1.Af1.lookup_release", false]], "lookup_release() (malariagen_data.ag3.ag3 method)": [[134, "malariagen_data.ag3.Ag3.lookup_release", false]], "lookup_sample() (malariagen_data.af1.af1 method)": [[40, "malariagen_data.af1.Af1.lookup_sample", false]], "lookup_sample() (malariagen_data.ag3.ag3 method)": [[135, "malariagen_data.ag3.Ag3.lookup_sample", false]], "lookup_study() (malariagen_data.af1.af1 method)": [[41, "malariagen_data.af1.Af1.lookup_study", false]], "lookup_study() (malariagen_data.ag3.ag3 method)": [[136, "malariagen_data.ag3.Ag3.lookup_study", false]], "njt() (malariagen_data.af1.af1 method)": [[42, "malariagen_data.af1.Af1.njt", false]], "njt() (malariagen_data.ag3.ag3 method)": [[137, "malariagen_data.ag3.Ag3.njt", false]], "pairwise_average_fst() (malariagen_data.af1.af1 method)": [[43, "malariagen_data.af1.Af1.pairwise_average_fst", false]], "pairwise_average_fst() (malariagen_data.ag3.ag3 method)": [[138, "malariagen_data.ag3.Ag3.pairwise_average_fst", false]], "pca() (malariagen_data.af1.af1 method)": [[44, "malariagen_data.af1.Af1.pca", false]], "pca() (malariagen_data.ag3.ag3 method)": [[139, "malariagen_data.ag3.Ag3.pca", false]], "phasing_analysis_ids (malariagen_data.af1.af1 property)": [[45, "malariagen_data.af1.Af1.phasing_analysis_ids", false]], "phasing_analysis_ids (malariagen_data.ag3.ag3 property)": [[140, "malariagen_data.ag3.Ag3.phasing_analysis_ids", false]], "plot_aim_heatmap() (malariagen_data.ag3.ag3 method)": [[141, "malariagen_data.ag3.Ag3.plot_aim_heatmap", false]], "plot_cnv_hmm_coverage() (malariagen_data.af1.af1 method)": [[46, "malariagen_data.af1.Af1.plot_cnv_hmm_coverage", false]], "plot_cnv_hmm_coverage() (malariagen_data.ag3.ag3 method)": [[142, "malariagen_data.ag3.Ag3.plot_cnv_hmm_coverage", false]], "plot_cnv_hmm_heatmap() (malariagen_data.af1.af1 method)": [[47, "malariagen_data.af1.Af1.plot_cnv_hmm_heatmap", false]], "plot_cnv_hmm_heatmap() (malariagen_data.ag3.ag3 method)": [[143, "malariagen_data.ag3.Ag3.plot_cnv_hmm_heatmap", false]], "plot_diplotype_clustering() (malariagen_data.af1.af1 method)": [[48, "malariagen_data.af1.Af1.plot_diplotype_clustering", false]], "plot_diplotype_clustering() (malariagen_data.ag3.ag3 method)": [[144, "malariagen_data.ag3.Ag3.plot_diplotype_clustering", false]], "plot_diplotype_clustering_advanced() (malariagen_data.af1.af1 method)": [[49, "malariagen_data.af1.Af1.plot_diplotype_clustering_advanced", false]], "plot_diplotype_clustering_advanced() (malariagen_data.ag3.ag3 method)": [[145, "malariagen_data.ag3.Ag3.plot_diplotype_clustering_advanced", false]], "plot_diversity_stats() (malariagen_data.af1.af1 method)": [[50, "malariagen_data.af1.Af1.plot_diversity_stats", false]], "plot_diversity_stats() (malariagen_data.ag3.ag3 method)": [[146, "malariagen_data.ag3.Ag3.plot_diversity_stats", false]], "plot_frequencies_heatmap() (malariagen_data.af1.af1 method)": [[51, "malariagen_data.af1.Af1.plot_frequencies_heatmap", false]], "plot_frequencies_heatmap() (malariagen_data.ag3.ag3 method)": [[147, "malariagen_data.ag3.Ag3.plot_frequencies_heatmap", false]], "plot_frequencies_interactive_map() (malariagen_data.af1.af1 method)": [[52, "malariagen_data.af1.Af1.plot_frequencies_interactive_map", false]], "plot_frequencies_interactive_map() (malariagen_data.ag3.ag3 method)": [[148, "malariagen_data.ag3.Ag3.plot_frequencies_interactive_map", false]], "plot_frequencies_time_series() (malariagen_data.af1.af1 method)": [[53, "malariagen_data.af1.Af1.plot_frequencies_time_series", false]], "plot_frequencies_time_series() (malariagen_data.ag3.ag3 method)": [[149, "malariagen_data.ag3.Ag3.plot_frequencies_time_series", false]], "plot_fst_gwss() (malariagen_data.af1.af1 method)": [[54, "malariagen_data.af1.Af1.plot_fst_gwss", false]], "plot_fst_gwss() (malariagen_data.ag3.ag3 method)": [[150, "malariagen_data.ag3.Ag3.plot_fst_gwss", false]], "plot_g123_calibration() (malariagen_data.af1.af1 method)": [[55, "malariagen_data.af1.Af1.plot_g123_calibration", false]], "plot_g123_calibration() (malariagen_data.ag3.ag3 method)": [[151, "malariagen_data.ag3.Ag3.plot_g123_calibration", false]], "plot_g123_gwss() (malariagen_data.af1.af1 method)": [[56, "malariagen_data.af1.Af1.plot_g123_gwss", false]], "plot_g123_gwss() (malariagen_data.ag3.ag3 method)": [[152, "malariagen_data.ag3.Ag3.plot_g123_gwss", false]], "plot_genes() (malariagen_data.af1.af1 method)": [[57, "malariagen_data.af1.Af1.plot_genes", false]], "plot_genes() (malariagen_data.ag3.ag3 method)": [[153, "malariagen_data.ag3.Ag3.plot_genes", false]], "plot_h12_calibration() (malariagen_data.af1.af1 method)": [[58, "malariagen_data.af1.Af1.plot_h12_calibration", false]], "plot_h12_calibration() (malariagen_data.ag3.ag3 method)": [[154, "malariagen_data.ag3.Ag3.plot_h12_calibration", false]], "plot_h12_gwss() (malariagen_data.af1.af1 method)": [[59, "malariagen_data.af1.Af1.plot_h12_gwss", false]], "plot_h12_gwss() (malariagen_data.ag3.ag3 method)": [[155, "malariagen_data.ag3.Ag3.plot_h12_gwss", false]], "plot_h12_gwss_multi_overlay() (malariagen_data.af1.af1 method)": [[60, "malariagen_data.af1.Af1.plot_h12_gwss_multi_overlay", false]], "plot_h12_gwss_multi_overlay() (malariagen_data.ag3.ag3 method)": [[156, "malariagen_data.ag3.Ag3.plot_h12_gwss_multi_overlay", false]], "plot_h12_gwss_multi_panel() (malariagen_data.af1.af1 method)": [[61, "malariagen_data.af1.Af1.plot_h12_gwss_multi_panel", false]], "plot_h12_gwss_multi_panel() (malariagen_data.ag3.ag3 method)": [[157, "malariagen_data.ag3.Ag3.plot_h12_gwss_multi_panel", false]], "plot_h1x_gwss() (malariagen_data.af1.af1 method)": [[62, "malariagen_data.af1.Af1.plot_h1x_gwss", false]], "plot_h1x_gwss() (malariagen_data.ag3.ag3 method)": [[158, "malariagen_data.ag3.Ag3.plot_h1x_gwss", false]], "plot_haplotype_clustering() (malariagen_data.af1.af1 method)": [[63, "malariagen_data.af1.Af1.plot_haplotype_clustering", false]], "plot_haplotype_clustering() (malariagen_data.ag3.ag3 method)": [[159, "malariagen_data.ag3.Ag3.plot_haplotype_clustering", false]], "plot_haplotype_network() (malariagen_data.af1.af1 method)": [[64, "malariagen_data.af1.Af1.plot_haplotype_network", false]], "plot_haplotype_network() (malariagen_data.ag3.ag3 method)": [[160, "malariagen_data.ag3.Ag3.plot_haplotype_network", false]], "plot_heterozygosity() (malariagen_data.af1.af1 method)": [[65, "malariagen_data.af1.Af1.plot_heterozygosity", false]], "plot_heterozygosity() (malariagen_data.ag3.ag3 method)": [[161, "malariagen_data.ag3.Ag3.plot_heterozygosity", false]], "plot_ihs_gwss() (malariagen_data.af1.af1 method)": [[66, "malariagen_data.af1.Af1.plot_ihs_gwss", false]], "plot_ihs_gwss() (malariagen_data.ag3.ag3 method)": [[162, "malariagen_data.ag3.Ag3.plot_ihs_gwss", false]], "plot_njt() (malariagen_data.af1.af1 method)": [[67, "malariagen_data.af1.Af1.plot_njt", false]], "plot_njt() (malariagen_data.ag3.ag3 method)": [[163, "malariagen_data.ag3.Ag3.plot_njt", false]], "plot_pairwise_average_fst() (malariagen_data.af1.af1 method)": [[68, "malariagen_data.af1.Af1.plot_pairwise_average_fst", false]], "plot_pairwise_average_fst() (malariagen_data.ag3.ag3 method)": [[164, "malariagen_data.ag3.Ag3.plot_pairwise_average_fst", false]], "plot_pca_coords() (malariagen_data.af1.af1 method)": [[69, "malariagen_data.af1.Af1.plot_pca_coords", false]], "plot_pca_coords() (malariagen_data.ag3.ag3 method)": [[165, "malariagen_data.ag3.Ag3.plot_pca_coords", false]], "plot_pca_coords_3d() (malariagen_data.af1.af1 method)": [[70, "malariagen_data.af1.Af1.plot_pca_coords_3d", false]], "plot_pca_coords_3d() (malariagen_data.ag3.ag3 method)": [[166, "malariagen_data.ag3.Ag3.plot_pca_coords_3d", false]], "plot_pca_variance() (malariagen_data.af1.af1 method)": [[71, "malariagen_data.af1.Af1.plot_pca_variance", false]], "plot_pca_variance() (malariagen_data.ag3.ag3 method)": [[167, "malariagen_data.ag3.Ag3.plot_pca_variance", false]], "plot_roh() (malariagen_data.af1.af1 method)": [[72, "malariagen_data.af1.Af1.plot_roh", false]], "plot_roh() (malariagen_data.ag3.ag3 method)": [[168, "malariagen_data.ag3.Ag3.plot_roh", false]], "plot_sample_location_geo() (malariagen_data.af1.af1 method)": [[73, "malariagen_data.af1.Af1.plot_sample_location_geo", false]], "plot_sample_location_geo() (malariagen_data.ag3.ag3 method)": [[169, "malariagen_data.ag3.Ag3.plot_sample_location_geo", false]], "plot_sample_location_mapbox() (malariagen_data.af1.af1 method)": [[74, "malariagen_data.af1.Af1.plot_sample_location_mapbox", false]], "plot_sample_location_mapbox() (malariagen_data.ag3.ag3 method)": [[170, "malariagen_data.ag3.Ag3.plot_sample_location_mapbox", false]], "plot_samples_bar() (malariagen_data.af1.af1 method)": [[75, "malariagen_data.af1.Af1.plot_samples_bar", false]], "plot_samples_bar() (malariagen_data.ag3.ag3 method)": [[171, "malariagen_data.ag3.Ag3.plot_samples_bar", false]], "plot_samples_interactive_map() (malariagen_data.af1.af1 method)": [[76, "malariagen_data.af1.Af1.plot_samples_interactive_map", false]], "plot_samples_interactive_map() (malariagen_data.ag3.ag3 method)": [[172, "malariagen_data.ag3.Ag3.plot_samples_interactive_map", false]], "plot_snps() (malariagen_data.af1.af1 method)": [[77, "malariagen_data.af1.Af1.plot_snps", false]], "plot_snps() (malariagen_data.ag3.ag3 method)": [[173, "malariagen_data.ag3.Ag3.plot_snps", false]], "plot_transcript() (malariagen_data.af1.af1 method)": [[78, "malariagen_data.af1.Af1.plot_transcript", false]], "plot_transcript() (malariagen_data.ag3.ag3 method)": [[174, "malariagen_data.ag3.Ag3.plot_transcript", false]], "plot_xpehh_gwss() (malariagen_data.af1.af1 method)": [[79, "malariagen_data.af1.Af1.plot_xpehh_gwss", false]], "plot_xpehh_gwss() (malariagen_data.ag3.ag3 method)": [[175, "malariagen_data.ag3.Ag3.plot_xpehh_gwss", false]], "releases (malariagen_data.af1.af1 property)": [[80, "malariagen_data.af1.Af1.releases", false]], "releases (malariagen_data.ag3.ag3 property)": [[176, "malariagen_data.ag3.Ag3.releases", false]], "roh_hmm() (malariagen_data.af1.af1 method)": [[81, "malariagen_data.af1.Af1.roh_hmm", false]], "roh_hmm() (malariagen_data.ag3.ag3 method)": [[177, "malariagen_data.ag3.Ag3.roh_hmm", false]], "sample_metadata() (malariagen_data.af1.af1 method)": [[82, "malariagen_data.af1.Af1.sample_metadata", false]], "sample_metadata() (malariagen_data.ag3.ag3 method)": [[178, "malariagen_data.ag3.Ag3.sample_metadata", false]], "sample_metadata() (malariagen_data.amin1.amin1 method)": [[192, "malariagen_data.amin1.Amin1.sample_metadata", false]], "sample_sets() (malariagen_data.af1.af1 method)": [[83, "malariagen_data.af1.Af1.sample_sets", false]], "sample_sets() (malariagen_data.ag3.ag3 method)": [[179, "malariagen_data.ag3.Ag3.sample_sets", false]], "site_annotations() (malariagen_data.af1.af1 method)": [[84, "malariagen_data.af1.Af1.site_annotations", false]], "site_annotations() (malariagen_data.ag3.ag3 method)": [[180, "malariagen_data.ag3.Ag3.site_annotations", false]], "site_mask_ids (malariagen_data.af1.af1 property)": [[85, "malariagen_data.af1.Af1.site_mask_ids", false]], "site_mask_ids (malariagen_data.ag3.ag3 property)": [[181, "malariagen_data.ag3.Ag3.site_mask_ids", false]], "snp_allele_counts() (malariagen_data.af1.af1 method)": [[86, "malariagen_data.af1.Af1.snp_allele_counts", false]], "snp_allele_counts() (malariagen_data.ag3.ag3 method)": [[182, "malariagen_data.ag3.Ag3.snp_allele_counts", false]], "snp_allele_frequencies() (malariagen_data.af1.af1 method)": [[87, "malariagen_data.af1.Af1.snp_allele_frequencies", false]], "snp_allele_frequencies() (malariagen_data.ag3.ag3 method)": [[183, "malariagen_data.ag3.Ag3.snp_allele_frequencies", false]], "snp_allele_frequencies_advanced() (malariagen_data.af1.af1 method)": [[88, "malariagen_data.af1.Af1.snp_allele_frequencies_advanced", false]], "snp_allele_frequencies_advanced() (malariagen_data.ag3.ag3 method)": [[184, "malariagen_data.ag3.Ag3.snp_allele_frequencies_advanced", false]], "snp_calls() (malariagen_data.af1.af1 method)": [[89, "malariagen_data.af1.Af1.snp_calls", false]], "snp_calls() (malariagen_data.ag3.ag3 method)": [[185, "malariagen_data.ag3.Ag3.snp_calls", false]], "snp_calls() (malariagen_data.amin1.amin1 method)": [[193, "malariagen_data.amin1.Amin1.snp_calls", false]], "view_alignments() (malariagen_data.af1.af1 method)": [[90, "malariagen_data.af1.Af1.view_alignments", false]], "view_alignments() (malariagen_data.ag3.ag3 method)": [[186, "malariagen_data.ag3.Ag3.view_alignments", false]], "wgs_data_catalog() (malariagen_data.af1.af1 method)": [[91, "malariagen_data.af1.Af1.wgs_data_catalog", false]], "wgs_data_catalog() (malariagen_data.ag3.ag3 method)": [[187, "malariagen_data.ag3.Ag3.wgs_data_catalog", false]], "xpehh_gwss() (malariagen_data.af1.af1 method)": [[92, "malariagen_data.af1.Af1.xpehh_gwss", false]], "xpehh_gwss() (malariagen_data.ag3.ag3 method)": [[188, "malariagen_data.ag3.Ag3.xpehh_gwss", false]]}, "objects": {"malariagen_data.af1.Af1": [[3, 0, 1, "", "aa_allele_frequencies"], [4, 0, 1, "", "aa_allele_frequencies_advanced"], [5, 0, 1, "", "add_extra_metadata"], [6, 0, 1, "", "average_fst"], [7, 0, 1, "", "biallelic_diplotype_pairwise_distances"], [8, 0, 1, "", "biallelic_diplotypes"], [9, 0, 1, "", "biallelic_snp_calls"], [10, 0, 1, "", "biallelic_snps_to_plink"], [11, 0, 1, "", "clear_extra_metadata"], [12, 0, 1, "", "cnv_coverage_calls"], [13, 0, 1, "", "cnv_hmm"], [14, 0, 1, "", "cohort_diversity_stats"], [15, 0, 1, "", "cohorts"], [16, 1, 1, "", "contigs"], [17, 0, 1, "", "count_samples"], [18, 1, 1, "", "coverage_calls_analysis_ids"], [19, 0, 1, "", "diversity_stats"], [20, 0, 1, "", "fst_gwss"], [21, 0, 1, "", "g123_calibration"], [22, 0, 1, "", "g123_gwss"], [23, 0, 1, "", "gene_cnv"], [24, 0, 1, "", "gene_cnv_frequencies"], [25, 0, 1, "", "gene_cnv_frequencies_advanced"], [26, 0, 1, "", "genome_features"], [27, 0, 1, "", "genome_sequence"], [28, 0, 1, "", "h12_calibration"], [29, 0, 1, "", "h12_gwss"], [30, 0, 1, "", "h1x_gwss"], [31, 0, 1, "", "haplotype_pairwise_distances"], [32, 0, 1, "", "haplotype_sites"], [33, 0, 1, "", "haplotypes"], [34, 0, 1, "", "haplotypes_frequencies"], [35, 0, 1, "", "haplotypes_frequencies_advanced"], [36, 0, 1, "", "igv"], [37, 0, 1, "", "ihs_gwss"], [38, 0, 1, "", "is_accessible"], [39, 0, 1, "", "lookup_release"], [40, 0, 1, "", "lookup_sample"], [41, 0, 1, "", "lookup_study"], [42, 0, 1, "", "njt"], [43, 0, 1, "", "pairwise_average_fst"], [44, 0, 1, "", "pca"], [45, 1, 1, "", "phasing_analysis_ids"], [46, 0, 1, "", "plot_cnv_hmm_coverage"], [47, 0, 1, "", "plot_cnv_hmm_heatmap"], [48, 0, 1, "", "plot_diplotype_clustering"], [49, 0, 1, "", "plot_diplotype_clustering_advanced"], [50, 0, 1, "", "plot_diversity_stats"], [51, 0, 1, "", "plot_frequencies_heatmap"], [52, 0, 1, "", "plot_frequencies_interactive_map"], [53, 0, 1, "", "plot_frequencies_time_series"], [54, 0, 1, "", "plot_fst_gwss"], [55, 0, 1, "", "plot_g123_calibration"], [56, 0, 1, "", "plot_g123_gwss"], [57, 0, 1, "", "plot_genes"], [58, 0, 1, "", "plot_h12_calibration"], [59, 0, 1, "", "plot_h12_gwss"], [60, 0, 1, "", "plot_h12_gwss_multi_overlay"], [61, 0, 1, "", "plot_h12_gwss_multi_panel"], [62, 0, 1, "", "plot_h1x_gwss"], [63, 0, 1, "", "plot_haplotype_clustering"], [64, 0, 1, "", "plot_haplotype_network"], [65, 0, 1, "", "plot_heterozygosity"], [66, 0, 1, "", "plot_ihs_gwss"], [67, 0, 1, "", "plot_njt"], [68, 0, 1, "", "plot_pairwise_average_fst"], [69, 0, 1, "", "plot_pca_coords"], [70, 0, 1, "", "plot_pca_coords_3d"], [71, 0, 1, "", "plot_pca_variance"], [72, 0, 1, "", "plot_roh"], [73, 0, 1, "", "plot_sample_location_geo"], [74, 0, 1, "", "plot_sample_location_mapbox"], [75, 0, 1, "", "plot_samples_bar"], [76, 0, 1, "", "plot_samples_interactive_map"], [77, 0, 1, "", "plot_snps"], [78, 0, 1, "", "plot_transcript"], [79, 0, 1, "", "plot_xpehh_gwss"], [80, 1, 1, "", "releases"], [81, 0, 1, "", "roh_hmm"], [82, 0, 1, "", "sample_metadata"], [83, 0, 1, "", "sample_sets"], [84, 0, 1, "", "site_annotations"], [85, 1, 1, "", "site_mask_ids"], [86, 0, 1, "", "snp_allele_counts"], [87, 0, 1, "", "snp_allele_frequencies"], [88, 0, 1, "", "snp_allele_frequencies_advanced"], [89, 0, 1, "", "snp_calls"], [90, 0, 1, "", "view_alignments"], [91, 0, 1, "", "wgs_data_catalog"], [92, 0, 1, "", "xpehh_gwss"]], "malariagen_data.ag3.Ag3": [[93, 0, 1, "", "aa_allele_frequencies"], [94, 0, 1, "", "aa_allele_frequencies_advanced"], [95, 0, 1, "", "add_extra_metadata"], [96, 0, 1, "", "aim_calls"], [97, 1, 1, "", "aim_ids"], [98, 0, 1, "", "aim_variants"], [99, 0, 1, "", "average_fst"], [100, 0, 1, "", "biallelic_diplotype_pairwise_distances"], [101, 0, 1, "", "biallelic_diplotypes"], [102, 0, 1, "", "biallelic_snp_calls"], [103, 0, 1, "", "biallelic_snps_to_plink"], [104, 0, 1, "", "clear_extra_metadata"], [105, 0, 1, "", "cnv_coverage_calls"], [106, 0, 1, "", "cnv_discordant_read_calls"], [107, 0, 1, "", "cnv_hmm"], [108, 0, 1, "", "cohort_diversity_stats"], [109, 0, 1, "", "cohorts"], [110, 1, 1, "", "contigs"], [111, 0, 1, "", "count_samples"], [112, 1, 1, "", "coverage_calls_analysis_ids"], [113, 0, 1, "", "cross_metadata"], [114, 0, 1, "", "diversity_stats"], [115, 0, 1, "", "fst_gwss"], [116, 0, 1, "", "g123_calibration"], [117, 0, 1, "", "g123_gwss"], [118, 0, 1, "", "gene_cnv"], [119, 0, 1, "", "gene_cnv_frequencies"], [120, 0, 1, "", "gene_cnv_frequencies_advanced"], [121, 0, 1, "", "genome_features"], [122, 0, 1, "", "genome_sequence"], [123, 0, 1, "", "h12_calibration"], [124, 0, 1, "", "h12_gwss"], [125, 0, 1, "", "h1x_gwss"], [126, 0, 1, "", "haplotype_pairwise_distances"], [127, 0, 1, "", "haplotype_sites"], [128, 0, 1, "", "haplotypes"], [129, 0, 1, "", "haplotypes_frequencies"], [130, 0, 1, "", "haplotypes_frequencies_advanced"], [131, 0, 1, "", "igv"], [132, 0, 1, "", "ihs_gwss"], [133, 0, 1, "", "is_accessible"], [134, 0, 1, "", "lookup_release"], [135, 0, 1, "", "lookup_sample"], [136, 0, 1, "", "lookup_study"], [137, 0, 1, "", "njt"], [138, 0, 1, "", "pairwise_average_fst"], [139, 0, 1, "", "pca"], [140, 1, 1, "", "phasing_analysis_ids"], [141, 0, 1, "", "plot_aim_heatmap"], [142, 0, 1, "", "plot_cnv_hmm_coverage"], [143, 0, 1, "", "plot_cnv_hmm_heatmap"], [144, 0, 1, "", "plot_diplotype_clustering"], [145, 0, 1, "", "plot_diplotype_clustering_advanced"], [146, 0, 1, "", "plot_diversity_stats"], [147, 0, 1, "", "plot_frequencies_heatmap"], [148, 0, 1, "", "plot_frequencies_interactive_map"], [149, 0, 1, "", "plot_frequencies_time_series"], [150, 0, 1, "", "plot_fst_gwss"], [151, 0, 1, "", "plot_g123_calibration"], [152, 0, 1, "", "plot_g123_gwss"], [153, 0, 1, "", "plot_genes"], [154, 0, 1, "", "plot_h12_calibration"], [155, 0, 1, "", "plot_h12_gwss"], [156, 0, 1, "", "plot_h12_gwss_multi_overlay"], [157, 0, 1, "", "plot_h12_gwss_multi_panel"], [158, 0, 1, "", "plot_h1x_gwss"], [159, 0, 1, "", "plot_haplotype_clustering"], [160, 0, 1, "", "plot_haplotype_network"], [161, 0, 1, "", "plot_heterozygosity"], [162, 0, 1, "", "plot_ihs_gwss"], [163, 0, 1, "", "plot_njt"], [164, 0, 1, "", "plot_pairwise_average_fst"], [165, 0, 1, "", "plot_pca_coords"], [166, 0, 1, "", "plot_pca_coords_3d"], [167, 0, 1, "", "plot_pca_variance"], [168, 0, 1, "", "plot_roh"], [169, 0, 1, "", "plot_sample_location_geo"], [170, 0, 1, "", "plot_sample_location_mapbox"], [171, 0, 1, "", "plot_samples_bar"], [172, 0, 1, "", "plot_samples_interactive_map"], [173, 0, 1, "", "plot_snps"], [174, 0, 1, "", "plot_transcript"], [175, 0, 1, "", "plot_xpehh_gwss"], [176, 1, 1, "", "releases"], [177, 0, 1, "", "roh_hmm"], [178, 0, 1, "", "sample_metadata"], [179, 0, 1, "", "sample_sets"], [180, 0, 1, "", "site_annotations"], [181, 1, 1, "", "site_mask_ids"], [182, 0, 1, "", "snp_allele_counts"], [183, 0, 1, "", "snp_allele_frequencies"], [184, 0, 1, "", "snp_allele_frequencies_advanced"], [185, 0, 1, "", "snp_calls"], [186, 0, 1, "", "view_alignments"], [187, 0, 1, "", "wgs_data_catalog"], [188, 0, 1, "", "xpehh_gwss"]], "malariagen_data.amin1.Amin1": [[189, 1, 1, "", "contigs"], [190, 0, 1, "", "genome_features"], [191, 0, 1, "", "genome_sequence"], [192, 0, 1, "", "sample_metadata"], [193, 0, 1, "", "snp_calls"]]}, "objnames": {"0": ["py", "method", "Python method"], "1": ["py", "property", "Python property"]}, "objtypes": {"0": "py:method", "1": "py:property"}, "terms": {"": [6, 43, 51, 99, 138, 147], "0": [7, 8, 9, 10, 13, 14, 19, 20, 21, 22, 23, 24, 25, 37, 42, 44, 47, 48, 49, 51, 54, 55, 56, 63, 65, 66, 67, 68, 69, 70, 72, 79, 81, 86, 92, 100, 101, 102, 103, 107, 108, 114, 115, 116, 117, 118, 119, 120, 132, 137, 139, 141, 143, 144, 145, 147, 150, 151, 152, 159, 161, 162, 163, 164, 165, 166, 168, 175, 177, 182, 188], "001": [72, 81, 168, 177], "003": [72, 81, 168, 177], "01": [72, 81, 168, 177], "02": [69, 70, 165, 166], "03": [65, 72, 161, 168], "05": [37, 49, 66, 79, 92, 132, 145, 162, 175, 188], "1": [4, 25, 35, 76, 86, 88, 94, 120, 130, 141, 172, 182, 184, 191, 193], "10": [3, 4, 6, 7, 8, 9, 14, 19, 24, 25, 34, 35, 42, 43, 44, 67, 69, 73, 74, 86, 87, 88, 89, 93, 94, 99, 100, 101, 102, 108, 114, 119, 120, 129, 130, 137, 138, 139, 163, 165, 169, 170, 182, 183, 184, 185], "100": [6, 7, 8, 9, 14, 19, 21, 28, 37, 42, 43, 44, 51, 55, 58, 64, 66, 67, 76, 78, 79, 86, 89, 92, 99, 100, 101, 102, 108, 114, 116, 123, 132, 137, 138, 139, 147, 151, 154, 160, 162, 163, 172, 174, 175, 182, 185, 188], "1000": [21, 28, 55, 58, 116, 123, 151, 154], "10000": [28, 58, 123, 154], "100000": [191, 193], "102": [73, 74, 169, 170], "105": [73, 74, 169, 170], "110": [73, 74, 169, 170], "111": [73, 74, 169, 170], "112": [73, 74, 169, 170], "115": [73, 74, 169, 170], "120": [57, 153], "124": [73, 74, 169, 170], "133": [73, 74, 169, 170], "14": [48, 49, 63, 67, 144, 145, 159, 163], "144": [73, 74, 169, 170], "148": [73, 74, 169, 170], "15": [6, 20, 28, 29, 30, 37, 43, 54, 58, 59, 60, 61, 62, 66, 73, 74, 79, 92, 99, 115, 123, 124, 125, 132, 138, 150, 154, 155, 156, 157, 158, 162, 169, 170, 175, 188], "150": [73, 74, 169, 170], "165": [73, 74, 169, 170], "166": [73, 74, 169, 170], "170": [46, 56, 59, 60, 61, 65, 66, 72, 79, 142, 152, 155, 156, 157, 161, 162, 168, 175], "173": [73, 74, 169, 170], "175": [73, 74, 169, 170], "17becf": [60, 156], "190": [54, 62, 150, 158], "1f77b4": [60, 156], "2": [4, 6, 7, 8, 9, 10, 13, 14, 19, 23, 24, 25, 35, 42, 43, 44, 47, 49, 52, 64, 67, 76, 86, 88, 89, 94, 99, 100, 101, 102, 103, 107, 108, 114, 118, 119, 120, 130, 137, 138, 139, 141, 143, 145, 148, 160, 163, 172, 182, 184, 185], "20": [21, 22, 37, 44, 51, 52, 55, 56, 66, 76, 116, 117, 132, 139, 147, 148, 151, 152, 162, 172], "200": [6, 7, 8, 9, 14, 19, 21, 28, 37, 42, 43, 44, 55, 58, 66, 67, 79, 86, 89, 92, 99, 100, 101, 102, 108, 114, 116, 123, 132, 137, 138, 139, 151, 154, 162, 163, 175, 182, 185, 188, 191, 193], "2000": [21, 28, 55, 58, 116, 123, 151, 154], "20000": [28, 37, 58, 65, 66, 72, 79, 81, 90, 92, 123, 132, 154, 161, 162, 168, 175, 177, 186, 188], "200000": [37, 66, 77, 79, 92, 132, 162, 173, 175, 188], "2012": [24, 119], "204": [73, 74, 169, 170], "225": [73, 74, 169, 170], "237": [73, 74, 169, 170], "25": [49, 145], "283185307179586": [67, 163], "29": [73, 74, 169, 170], "2ca02c": [60, 156], "2d": [49, 51, 68, 145, 147, 164], "2f": [51, 68, 147, 164], "2l": [23, 24, 25, 118, 119, 120], "3": [6, 7, 8, 9, 14, 19, 23, 24, 25, 42, 43, 44, 52, 67, 76, 86, 89, 99, 100, 101, 102, 108, 114, 118, 119, 120, 137, 138, 139, 148, 163, 172, 182, 185], "30": [50, 146], "300": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 188], "393b79": [59, 62, 155, 158], "3d": [70, 166], "3f": [68, 164], "3l": [23, 24, 25, 118, 119, 120], "3r": [23, 24, 25, 118, 119, 120], "4": [6, 7, 8, 9, 14, 19, 42, 43, 44, 67, 86, 89, 99, 100, 101, 102, 108, 114, 137, 138, 139, 141, 163, 182, 185], "40": [51, 68, 72, 147, 164, 168], "400": [71, 167], "42": [6, 7, 8, 9, 10, 14, 19, 20, 21, 22, 28, 29, 30, 31, 33, 37, 42, 43, 44, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 66, 67, 69, 70, 79, 86, 89, 92, 99, 100, 101, 102, 103, 108, 114, 115, 116, 117, 123, 124, 125, 126, 128, 132, 137, 138, 139, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 162, 163, 165, 166, 175, 182, 185, 188], "44989425": [23, 24, 25, 118, 119, 120], "44998059": [23, 24, 25, 118, 119, 120], "450": [50, 146], "5": [6, 7, 8, 9, 14, 19, 42, 43, 44, 48, 49, 63, 67, 70, 73, 74, 86, 89, 99, 100, 101, 102, 108, 114, 137, 138, 139, 141, 144, 145, 159, 163, 166, 169, 170, 182, 185], "50": [6, 20, 21, 22, 28, 29, 30, 37, 43, 54, 55, 56, 58, 59, 60, 61, 62, 64, 66, 68, 79, 92, 99, 115, 116, 117, 123, 124, 125, 132, 138, 150, 151, 152, 154, 155, 156, 157, 158, 160, 162, 164, 175, 188], "500": [21, 28, 48, 50, 55, 58, 63, 76, 116, 123, 144, 146, 151, 154, 159, 172], "5000": [21, 28, 55, 58, 116, 123, 151, 154], "52": [73, 74, 169, 170], "5254a3": [59, 62, 155, 158], "56": [73, 74, 169, 170], "5e3c99": [49, 145], "6": [67, 163], "600": [64, 67, 69, 70, 73, 74, 75, 160, 163, 165, 166, 169, 170, 171], "62": [73, 74, 169, 170], "637939": [59, 62, 155, 158], "64": [73, 74, 169, 170], "6b6ecf": [59, 62, 155, 158], "7": [47, 143], "70": [73, 74, 169, 170], "72": [73, 74, 169, 170], "75": [37, 66, 79, 92, 132, 162, 175, 188], "7f7f7f": [60, 156], "8": [44, 73, 74, 139, 169, 170], "80": [73, 74, 77, 169, 170, 173], "800": [67, 73, 74, 75, 163, 169, 170, 171], "84": [73, 74, 169, 170], "8c564b": [60, 156], "9": [69, 165], "90": [46, 47, 54, 56, 59, 60, 61, 62, 65, 66, 72, 77, 79, 142, 143, 150, 152, 155, 156, 157, 158, 161, 162, 168, 173, 175], "900": [69, 70, 71, 165, 166, 167], "9467bd": [60, 156], "95": [14, 19, 73, 74, 108, 114, 169, 170], "9c9ede": [59, 62, 155, 158], "A": [3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 35, 37, 42, 43, 44, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 92, 93, 94, 95, 96, 98, 99, 100, 101, 102, 103, 106, 107, 108, 109, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 123, 124, 125, 126, 128, 129, 130, 132, 137, 138, 139, 141, 142, 143, 144, 145, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 177, 178, 179, 180, 182, 183, 184, 185, 188, 194], "By": 194, "For": [0, 1, 2, 96, 97, 98, 141, 194], "If": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 42, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 84, 86, 87, 88, 89, 90, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 137, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 173, 174, 175, 177, 180, 182, 183, 184, 185, 186, 188, 191, 193, 194], "It": [10, 51, 103, 147], "One": [51, 72, 81, 91, 147, 168, 177, 187], "The": [4, 5, 7, 8, 9, 10, 20, 21, 22, 25, 28, 29, 30, 35, 37, 42, 44, 48, 49, 50, 51, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 73, 74, 75, 79, 88, 92, 94, 95, 100, 101, 102, 103, 115, 116, 117, 120, 123, 124, 125, 130, 132, 137, 139, 141, 144, 145, 146, 147, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 162, 163, 164, 165, 166, 167, 169, 170, 171, 175, 184, 188, 194], "These": [18, 45, 85, 112, 140, 181], "To": [0, 1, 2], "aa_allele_frequencies_advanc": [52, 53, 148, 149], "abbrevi": [76, 172], "about": [0, 1, 2, 4, 25, 35, 37, 66, 81, 88, 94, 113, 120, 130, 132, 162, 177, 184], "abov": [57, 78, 153, 174], "accept": [3, 4, 7, 8, 9, 10, 12, 13, 14, 15, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 109, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 188], "access": [9, 12, 13, 26, 27, 32, 33, 38, 82, 83, 89, 96, 98, 102, 105, 106, 107, 121, 122, 127, 128, 133, 178, 179, 185, 190, 191, 192, 193, 194], "acid": [3, 4, 49, 93, 94, 145], "ad": [11, 44, 69, 70, 104, 139, 165, 166], "add": [5, 87, 95, 183], "addit": [5, 36, 44, 52, 64, 95, 131, 139, 148, 160], "admin1_iso": [4, 17, 25, 35, 88, 94, 111, 120, 130, 184], "admin1_month": [3, 15, 19, 24, 34, 43, 60, 61, 87, 93, 109, 114, 119, 129, 138, 156, 157, 183], "admin1_nam": [4, 17, 25, 35, 73, 74, 88, 94, 111, 120, 130, 169, 170, 184], "admin1_quart": [15, 109], "admin1_year": [15, 24, 109, 119], "admin2_month": [15, 24, 109, 119], "admin2_nam": [4, 17, 25, 35, 88, 94, 111, 120, 130, 184], "admin2_quart": [15, 109], "admin2_year": [15, 24, 109, 119], "administr": [4, 15, 25, 35, 88, 94, 109, 120, 130, 184], "advanc": [7, 8, 9, 10, 42, 44, 67, 82, 86, 89, 100, 101, 102, 103, 137, 139, 163, 178, 182, 185], "af1": [116, 117, 151, 152, 194], "africa": [73, 169, 194], "ag1000g": [23, 24, 25, 118, 119, 120], "ag3": [21, 22, 55, 56, 194], "against": [3, 4, 6, 7, 8, 9, 10, 13, 17, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 33, 34, 35, 37, 42, 43, 44, 47, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 66, 67, 73, 74, 75, 76, 77, 79, 82, 86, 87, 88, 89, 92, 93, 94, 96, 99, 100, 101, 102, 103, 106, 107, 111, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 128, 129, 130, 132, 137, 138, 139, 141, 143, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 162, 163, 169, 170, 171, 172, 173, 175, 178, 182, 183, 184, 185, 188], "agap007280": [23, 24, 25, 118, 119, 120], "agresti_coul": [4, 25, 35, 88, 94, 120, 130, 184], "aim": [96, 97, 98, 141], "aim_id": [96, 98, 141], "algorithm": [42, 48, 49, 63, 64, 67, 137, 144, 145, 159, 160, 163], "align": [90, 186], "all": [0, 1, 2, 21, 22, 26, 55, 56, 60, 61, 116, 117, 121, 151, 152, 156, 157, 190], "allel": [3, 4, 7, 8, 9, 10, 12, 25, 32, 35, 37, 42, 44, 49, 66, 67, 79, 86, 87, 88, 92, 93, 94, 96, 98, 100, 101, 102, 103, 105, 106, 120, 127, 130, 132, 137, 139, 141, 145, 162, 163, 175, 182, 183, 184, 188], "allow": 194, "also": [3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 43, 44, 46, 47, 48, 49, 51, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82, 84, 86, 87, 88, 89, 92, 93, 94, 96, 99, 100, 101, 102, 103, 105, 106, 107, 108, 111, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 138, 139, 141, 142, 143, 144, 145, 147, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 165, 168, 169, 170, 171, 172, 173, 174, 175, 177, 178, 180, 182, 183, 184, 185, 188, 191, 193, 194], "alt": [32, 127], "altern": [4, 8, 25, 32, 35, 37, 49, 66, 86, 88, 94, 101, 120, 127, 130, 132, 145, 162, 182, 184], "america": [73, 169], "amin002150": [191, 193], "amin1": 194, "amino": [3, 4, 49, 93, 94, 145], "amp": [24, 119], "amplif": [24, 119], "an": [3, 4, 6, 7, 8, 9, 12, 13, 14, 19, 20, 21, 22, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 42, 43, 44, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 76, 77, 79, 86, 87, 88, 89, 92, 93, 94, 99, 100, 101, 102, 105, 106, 107, 108, 114, 115, 116, 117, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 137, 138, 139, 142, 144, 145, 146, 147, 148, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 165, 166, 167, 168, 172, 173, 175, 182, 183, 184, 185, 188, 194], "analys": [18, 45, 112, 140, 194], "analysi": [7, 8, 9, 10, 12, 21, 22, 28, 29, 30, 31, 32, 33, 37, 42, 44, 45, 55, 56, 58, 59, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 79, 92, 100, 101, 102, 103, 105, 116, 117, 123, 124, 125, 126, 127, 128, 132, 137, 139, 140, 151, 152, 154, 155, 156, 157, 158, 159, 160, 162, 163, 165, 166, 167, 175, 188, 194], "ancestri": [96, 97, 98, 141], "angl": [67, 163], "ani": [11, 18, 24, 25, 36, 45, 85, 104, 112, 119, 120, 131, 140, 181, 194], "annot": [23, 24, 25, 26, 49, 68, 84, 87, 97, 118, 119, 120, 121, 145, 164, 180, 183, 190], "anophel": [0, 1, 2, 10, 103, 194], "ao": [23, 24, 25, 118, 119, 120], "api": [0, 1, 2, 44, 51, 139, 147], "app": [64, 160], "appear": [46, 47, 48, 49, 50, 54, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 72, 73, 74, 77, 79, 142, 143, 144, 145, 146, 150, 152, 153, 155, 156, 157, 158, 159, 160, 161, 162, 163, 165, 166, 168, 169, 170, 173, 175], "append": [10, 103], "appli": [3, 4, 6, 7, 8, 9, 10, 14, 19, 20, 21, 22, 38, 42, 43, 44, 48, 49, 54, 55, 56, 65, 67, 72, 77, 81, 84, 86, 87, 88, 89, 93, 94, 99, 100, 101, 102, 103, 108, 114, 115, 116, 117, 133, 137, 138, 139, 144, 145, 150, 151, 152, 161, 163, 168, 173, 177, 180, 182, 183, 184, 185, 193], "applic": 194, "approxim": [7, 8, 9, 10, 21, 22, 42, 44, 55, 56, 67, 100, 101, 102, 103, 116, 117, 137, 139, 151, 152, 163], "ar": [0, 4, 7, 8, 9, 10, 15, 18, 20, 24, 25, 35, 37, 42, 44, 45, 51, 54, 66, 67, 68, 73, 76, 77, 79, 82, 85, 86, 88, 89, 92, 94, 100, 101, 102, 103, 109, 112, 113, 115, 119, 120, 130, 132, 137, 139, 140, 147, 150, 162, 163, 164, 169, 172, 173, 175, 178, 181, 182, 184, 185, 188, 194], "arc_start": [67, 163], "arc_stop": [67, 163], "area": [4, 25, 35, 46, 52, 53, 54, 56, 57, 59, 60, 61, 62, 64, 65, 66, 72, 79, 88, 94, 120, 130, 142, 148, 149, 150, 152, 153, 155, 156, 157, 158, 160, 161, 162, 168, 175, 184], "area_bi": [4, 25, 35, 88, 94, 120, 130, 184], "argument": [3, 4, 7, 8, 9, 10, 12, 13, 14, 17, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 43, 44, 47, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 72, 73, 74, 75, 76, 77, 79, 81, 82, 84, 86, 87, 88, 89, 92, 93, 94, 96, 100, 101, 102, 103, 105, 106, 107, 108, 111, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 138, 139, 141, 143, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 168, 169, 170, 171, 172, 173, 175, 177, 178, 180, 182, 183, 184, 185, 188], "arm": [23, 24, 25, 118, 119, 120], "arrai": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 71, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 167, 168, 175, 177, 180, 182, 183, 184, 185, 188, 191, 193], "ascertain": [44, 139], "asia": [2, 73, 169, 194], "aspect": [51, 147], "associ": [13, 23, 33, 107, 118, 128, 194], "attempt": [48, 49, 51, 52, 53, 63, 67, 144, 145, 147, 148, 149, 159, 163], "attribut": [26, 48, 49, 53, 63, 67, 69, 70, 121, 144, 145, 149, 159, 163, 165, 166, 190], "auth": 194, "authent": 194, "auto": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 46, 48, 49, 51, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 69, 72, 73, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 142, 144, 145, 147, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 165, 168, 169, 175, 177, 180, 182, 183, 184, 185, 188, 191, 193], "automat": [54, 55, 56, 57, 59, 60, 62, 66, 78, 79, 150, 151, 152, 153, 155, 156, 158, 162, 174, 175, 194], "avail": [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 14, 17, 18, 19, 20, 21, 22, 28, 29, 30, 31, 32, 33, 37, 38, 42, 43, 44, 45, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 72, 75, 76, 77, 79, 80, 81, 84, 85, 86, 87, 88, 89, 92, 93, 94, 97, 99, 100, 101, 102, 103, 105, 108, 111, 112, 114, 115, 116, 117, 123, 124, 125, 126, 127, 128, 132, 133, 137, 138, 139, 140, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 168, 171, 172, 173, 175, 176, 177, 180, 181, 182, 183, 184, 185, 188, 194], "averag": [6, 43, 48, 49, 63, 68, 99, 138, 144, 145, 159, 164], "axi": [46, 51, 57, 65, 69, 70, 72, 75, 78, 142, 147, 153, 161, 165, 166, 168, 171, 174], "b": [6, 14, 19, 23, 24, 25, 43, 99, 108, 114, 118, 119, 120, 138], "b2abd2": [49, 145], "backend": [46, 48, 49, 54, 56, 57, 59, 60, 61, 62, 63, 65, 66, 67, 69, 72, 79, 142, 144, 145, 150, 152, 153, 155, 156, 157, 158, 159, 161, 162, 163, 165, 168, 175], "bam": [91, 187], "bar": [50, 51, 71, 75, 146, 147, 167, 171], "bar_plot_height": [50, 146], "bar_width": [50, 146], "base": [10, 37, 66, 79, 90, 92, 103, 132, 162, 175, 186, 188], "basemap": [76, 172], "basic": [46, 47, 54, 56, 57, 59, 60, 61, 62, 65, 66, 72, 77, 78, 79, 142, 143, 150, 152, 153, 155, 156, 157, 158, 161, 162, 168, 173, 174, 175], "bcbd22": [60, 156], "becom": [51, 90, 147, 186], "bed": [10, 103], "begin": [67, 163], "behaviour": [68, 164], "being": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 68, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 164, 168, 175, 177, 180, 182, 183, 184, 185, 188], "belong": [6, 7, 8, 9, 14, 19, 41, 42, 43, 44, 67, 86, 89, 99, 100, 101, 102, 108, 114, 136, 137, 138, 139, 163, 182, 185], "below": [0, 1, 2, 7, 8, 9, 10, 20, 24, 25, 37, 42, 44, 49, 52, 54, 57, 66, 67, 78, 79, 92, 100, 101, 102, 103, 115, 119, 120, 132, 137, 139, 145, 148, 150, 153, 162, 163, 174, 175, 188], "best": 194, "beta": [4, 25, 35, 88, 94, 120, 130, 184], "better": [6, 14, 19, 43, 99, 108, 114, 138], "between": [6, 7, 20, 30, 31, 37, 42, 43, 48, 49, 54, 62, 63, 64, 66, 67, 72, 79, 81, 92, 99, 100, 115, 125, 126, 132, 137, 138, 141, 144, 145, 150, 158, 159, 160, 162, 163, 168, 175, 177, 188], "beyond": [37, 66, 79, 92, 132, 162, 175, 188], "bf": [23, 24, 25, 118, 119, 120], "bf_2012_col": [24, 119], "biallel": [7, 8, 9, 10, 42, 44, 67, 100, 101, 102, 103, 137, 139, 163], "biallelic_snp_cal": [10, 103], "bim": [10, 103], "bin": [37, 66, 132, 162], "binari": [10, 103], "binom_test": [4, 25, 35, 88, 94, 120, 130, 184], "black": [48, 49, 63, 144, 145, 159], "block": [6, 14, 19, 43, 99, 108, 114, 138], "blue": [66, 79, 162, 175], "bokeh": [46, 47, 54, 55, 56, 57, 58, 59, 60, 61, 62, 65, 66, 72, 77, 78, 79, 142, 143, 150, 151, 152, 153, 154, 155, 156, 157, 158, 161, 162, 168, 173, 174, 175], "bold": [73, 74, 169, 170], "bool": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 42, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 84, 86, 87, 88, 89, 90, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 137, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 173, 174, 175, 177, 180, 182, 183, 184, 185, 186, 188, 191, 193], "boolean": [10, 38, 103, 133], "both": [7, 8, 9, 10, 42, 44, 48, 49, 63, 67, 82, 86, 89, 100, 101, 102, 103, 137, 139, 144, 145, 159, 163, 178, 182, 185], "bp": [6, 7, 8, 9, 14, 19, 42, 43, 44, 67, 86, 89, 99, 100, 101, 102, 108, 114, 137, 138, 139, 163, 182, 185], "browser": [36, 131], "burkina": [23, 24, 25, 118, 119, 120], "cach": [44, 86, 139, 182], "calcul": [4, 14, 19, 20, 21, 22, 25, 28, 29, 30, 35, 37, 54, 55, 56, 58, 59, 60, 61, 62, 66, 79, 88, 92, 94, 108, 114, 115, 116, 117, 120, 123, 124, 125, 130, 132, 150, 151, 152, 154, 155, 156, 157, 158, 162, 175, 184, 188], "calibr": [21, 28, 55, 58, 116, 123, 151, 154], "call": [0, 1, 2, 3, 4, 7, 8, 9, 10, 12, 13, 18, 36, 42, 44, 49, 67, 72, 81, 87, 88, 89, 90, 93, 94, 96, 100, 101, 102, 103, 105, 106, 107, 112, 131, 137, 139, 145, 163, 168, 177, 183, 184, 185, 186, 193], "callabl": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 188], "can": [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 42, 43, 44, 45, 46, 47, 48, 49, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 72, 73, 74, 75, 76, 77, 79, 81, 82, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 96, 99, 100, 101, 102, 103, 105, 106, 107, 108, 111, 112, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 137, 138, 139, 140, 141, 142, 143, 144, 145, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 168, 169, 170, 171, 172, 173, 175, 177, 178, 180, 181, 182, 183, 184, 185, 186, 188, 191, 193, 194], "cannot": [48, 49, 63, 67, 144, 145, 159, 163], "canon": [42, 67, 137, 163], "canva": [46, 54, 56, 57, 59, 60, 61, 62, 65, 66, 72, 79, 142, 150, 152, 153, 155, 156, 157, 158, 161, 162, 168, 175], "case": [23, 24, 25, 60, 61, 118, 119, 120, 156, 157, 191, 193], "catalog": [91, 187], "category_ord": [48, 49, 50, 63, 64, 67, 69, 70, 73, 74, 144, 145, 146, 159, 160, 163, 165, 166, 169, 170], "caus": [51, 147], "cccccc": [49, 145], "cdn": [64, 160], "cds_deg_0": [6, 7, 8, 9, 14, 19, 42, 43, 44, 67, 86, 89, 99, 100, 101, 102, 108, 114, 137, 138, 139, 163, 182, 185], "cds_deg_2_simpl": [6, 7, 8, 9, 14, 19, 42, 43, 44, 67, 86, 89, 99, 100, 101, 102, 108, 114, 137, 138, 139, 163, 182, 185], "cds_deg_4": [6, 7, 8, 9, 14, 19, 42, 43, 44, 67, 86, 89, 99, 100, 101, 102, 108, 114, 137, 138, 139, 163, 182, 185], "center": [52, 67, 76, 148, 163, 172], "center_i": [67, 163], "center_x": [67, 163], "centr": [20, 22, 29, 30, 37, 92, 115, 117, 124, 125, 132, 188], "centroid": [48, 49, 63, 144, 145, 159], "chang": [4, 7, 8, 9, 10, 29, 30, 42, 44, 67, 94, 100, 101, 102, 103, 124, 125, 137, 139, 163], "channel": [51, 68, 147, 164], "chart": [75, 171], "child": [48, 49, 63, 67, 144, 145, 159, 163], "choos": [48, 49, 63, 67, 69, 70, 144, 145, 159, 163, 165, 166], "chosen": [29, 30, 124, 125], "chromosom": [23, 24, 25, 37, 66, 79, 92, 118, 119, 120, 132, 162, 175, 188], "chunk": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 188, 191, 193], "ci_method": [4, 25, 35, 88, 94, 120, 130, 184], "circl": [46, 65, 72, 142, 161, 168], "circle_kwarg": [46, 65, 72, 142, 161, 168], "cityblock": [7, 42, 48, 49, 67, 100, 137, 144, 145, 163], "class": [6, 7, 8, 9, 14, 19, 42, 43, 44, 67, 86, 89, 99, 100, 101, 102, 108, 114, 137, 138, 139, 163, 182, 185], "clear": [11, 104], "cli": 194, "client": [44, 139], "clip": [20, 54, 115, 150], "clip_min": [20, 54, 115, 150], "cloud": 194, "cluster": [48, 49, 63, 144, 145, 159], "cnv": [12, 13, 18, 24, 25, 46, 47, 49, 105, 106, 107, 112, 119, 120, 142, 143, 145], "cnv_colorscal": [49, 145], "cnv_max_coverage_vari": [49, 145], "cnv_region": [49, 145], "cnv_row_height": [49, 145], "code": [0, 1, 2, 6, 7, 8, 9, 14, 15, 19, 42, 43, 44, 67, 86, 89, 99, 100, 101, 102, 108, 109, 114, 137, 138, 139, 163, 182, 185], "cohort": [3, 4, 6, 7, 8, 9, 14, 19, 20, 21, 22, 24, 25, 28, 29, 30, 31, 33, 34, 35, 37, 42, 43, 44, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 66, 67, 68, 77, 79, 86, 87, 88, 89, 92, 93, 94, 99, 100, 101, 102, 108, 114, 115, 116, 117, 119, 120, 123, 124, 125, 126, 128, 129, 130, 132, 137, 138, 139, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 162, 163, 164, 173, 175, 182, 183, 184, 185, 188], "cohort1_queri": [6, 20, 30, 54, 62, 79, 92, 99, 115, 125, 150, 158, 175, 188], "cohort2_queri": [6, 20, 30, 54, 62, 79, 92, 99, 115, 125, 150, 158, 175, 188], "cohort_s": [6, 7, 8, 9, 14, 19, 20, 28, 29, 30, 31, 33, 42, 43, 44, 48, 49, 54, 58, 59, 60, 61, 62, 63, 67, 77, 86, 89, 99, 100, 101, 102, 108, 114, 115, 123, 124, 125, 126, 128, 137, 138, 139, 144, 145, 150, 154, 155, 156, 157, 158, 159, 163, 173, 182, 185], "cohort_set": [15, 109], "col_width": [51, 68, 147, 164], "colab": 194, "coloni": 113, "color": [48, 49, 50, 51, 59, 60, 62, 63, 64, 67, 68, 69, 70, 73, 74, 75, 141, 144, 145, 146, 147, 155, 156, 158, 159, 160, 163, 164, 165, 166, 169, 170, 171], "color_continuous_scal": [51, 68, 147, 164], "color_discrete_map": [48, 49, 50, 63, 64, 67, 69, 70, 144, 145, 146, 159, 160, 163, 165, 166], "color_discrete_sequ": [48, 49, 50, 63, 64, 67, 69, 70, 73, 74, 144, 145, 146, 159, 160, 163, 165, 166, 169, 170], "colorbar": [51, 147], "colormap": [49, 51, 68, 145, 147, 164], "colour": [48, 49, 50, 63, 64, 67, 69, 70, 73, 74, 77, 144, 145, 146, 159, 160, 163, 165, 166, 169, 170, 173], "column": [3, 4, 5, 17, 25, 26, 32, 35, 44, 51, 53, 69, 70, 75, 76, 86, 87, 88, 91, 93, 94, 95, 111, 120, 121, 127, 130, 139, 141, 147, 149, 165, 166, 171, 172, 182, 183, 184, 187, 190], "coluzzii": [23, 24, 25, 118, 119, 120], "com": [48, 49, 51, 63, 64, 67, 69, 144, 145, 147, 159, 160, 163, 165], "command": 194, "commun": 194, "comparison": 141, "compat": [49, 51, 68, 145, 147, 164], "complet": [48, 49, 63, 144, 145, 159], "complex": [1, 21, 22, 55, 56, 116, 117, 151, 152, 194], "compon": [44, 64, 69, 70, 71, 139, 160, 165, 166, 167], "comput": [3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 43, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 73, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 99, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 138, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 169, 175, 177, 180, 182, 183, 184, 185, 188, 194], "compute_min_maf": [37, 66, 132, 162], "concaten": [23, 24, 25, 118, 119, 120, 191, 193], "confid": [4, 6, 14, 19, 25, 35, 43, 88, 94, 99, 108, 114, 120, 130, 138, 184], "confidence_level": [14, 19, 108, 114], "configur": [36, 131], "connect": [64, 160], "consid": [73, 169], "constant": [48, 49, 53, 63, 67, 69, 70, 144, 145, 149, 159, 163, 165, 166], "construct": [42, 64, 137, 160], "contain": [4, 5, 9, 10, 20, 21, 22, 25, 28, 29, 30, 35, 37, 53, 88, 89, 92, 94, 95, 96, 98, 102, 103, 113, 115, 116, 117, 120, 123, 124, 125, 130, 132, 149, 184, 185, 188], "contig": [4, 6, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 42, 43, 44, 46, 47, 48, 49, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 72, 77, 79, 81, 84, 86, 88, 89, 90, 92, 94, 99, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 137, 138, 139, 142, 143, 144, 145, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 168, 173, 175, 177, 180, 182, 184, 185, 186, 188, 191, 193], "contig_color": [59, 62, 155, 158], "control": [48, 49, 50, 63, 64, 67, 69, 70, 73, 74, 144, 145, 146, 159, 160, 163, 165, 166, 169, 170, 194], "conveni": 194, "coordin": [23, 24, 25, 48, 49, 63, 67, 69, 70, 118, 119, 120, 144, 145, 159, 163, 165, 166, 191, 193], "copi": [23, 24, 49, 118, 119, 145], "corner": [68, 164], "correspond": [7, 8, 9, 10, 42, 44, 48, 49, 53, 63, 64, 67, 69, 70, 76, 82, 86, 89, 100, 101, 102, 103, 137, 139, 144, 145, 149, 159, 160, 163, 165, 166, 172, 178, 182, 185], "cose": [64, 160], "count": [3, 4, 7, 8, 9, 10, 17, 25, 35, 37, 42, 44, 66, 67, 76, 86, 87, 88, 93, 94, 100, 101, 102, 103, 111, 120, 130, 132, 137, 139, 162, 163, 172, 182, 183, 184], "count_bi": [76, 172], "count_sort": [48, 49, 63, 67, 144, 145, 159, 163], "countri": [15, 17, 23, 24, 25, 75, 109, 111, 118, 119, 120, 171], "cours": 194, "cover": [68, 164], "coverag": [12, 13, 18, 23, 24, 25, 47, 49, 105, 107, 112, 118, 119, 120, 143, 145], "coverage_calls_analysi": [18, 112], "coverage_calls_analysis_id": [12, 105], "crash": [51, 147], "creat": [17, 36, 52, 53, 111, 131, 141, 148, 149], "credenti": 194, "cross": 113, "css": [49, 51, 68, 145, 147, 164], "curat": [0, 1, 2], "current": [0, 36, 80, 131, 176, 194], "custom": [3, 14, 19, 34, 43, 46, 47, 54, 56, 57, 59, 60, 61, 62, 65, 66, 72, 77, 79, 87, 93, 108, 114, 129, 138, 142, 143, 150, 152, 153, 155, 156, 157, 158, 161, 162, 168, 173, 175, 183], "cytoscap": [64, 160], "d": [23, 25, 52, 53, 118, 120, 148, 149, 191, 193], "d62728": [60, 156], "dash": [64, 160], "dask": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 188, 191, 193], "data": [3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 43, 44, 45, 46, 47, 48, 49, 51, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 99, 100, 101, 102, 103, 105, 106, 107, 108, 109, 111, 112, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 138, 139, 140, 141, 142, 143, 144, 145, 147, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 170, 171, 172, 173, 175, 176, 177, 178, 180, 181, 182, 183, 184, 185, 186, 187, 188, 191, 193], "datafram": [3, 5, 15, 17, 19, 24, 26, 34, 43, 44, 50, 51, 68, 69, 70, 81, 82, 83, 87, 93, 95, 109, 111, 113, 114, 119, 121, 129, 138, 139, 146, 147, 164, 165, 166, 177, 178, 179, 183, 190, 192], "dataset": [4, 9, 12, 13, 23, 25, 33, 35, 48, 49, 51, 52, 53, 63, 67, 84, 88, 89, 94, 96, 98, 102, 105, 106, 107, 118, 120, 128, 130, 144, 145, 147, 148, 149, 159, 163, 180, 184, 185, 193], "decai": [37, 66, 79, 92, 132, 162, 175, 188], "decid": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 188, 191, 193], "default": [3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 17, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 84, 86, 87, 88, 89, 90, 92, 93, 94, 95, 99, 100, 101, 102, 103, 105, 106, 107, 108, 111, 114, 115, 116, 117, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 177, 180, 182, 183, 184, 185, 186, 188, 194], "defin": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 188, 191, 193], "degener": [6, 7, 8, 9, 14, 19, 42, 43, 44, 67, 86, 89, 99, 100, 101, 102, 108, 114, 137, 138, 139, 163, 182, 185], "del": [24, 119], "delet": [24, 119], "dendrogram_height": [49, 145], "denomin": [4, 88, 94, 184], "depend": [10, 44, 86, 103, 139, 182], "descend": [48, 49, 63, 67, 144, 145, 159, 163], "descript": [48, 49, 63, 144, 145, 159, 190], "desir": [7, 8, 9, 10, 42, 44, 67, 100, 101, 102, 103, 137, 139, 163], "detect": [30, 62, 125, 158], "determin": [48, 49, 53, 63, 67, 69, 70, 144, 145, 149, 159, 163, 165, 166], "df": [24, 51, 113, 119, 147, 190, 192], "df_pca": [44, 139], "df_sampl": [0, 1, 2], "df_stat": [50, 146], "diagnost": [37, 66, 132, 162], "dict": [3, 4, 7, 8, 9, 13, 17, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 33, 34, 35, 37, 42, 43, 44, 47, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 66, 67, 73, 74, 75, 76, 77, 79, 82, 86, 87, 88, 89, 92, 93, 94, 96, 100, 101, 102, 106, 107, 111, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 128, 129, 130, 132, 137, 138, 139, 141, 143, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 162, 163, 169, 170, 171, 172, 173, 175, 178, 182, 183, 184, 185, 188], "dictionari": [3, 4, 7, 8, 9, 13, 17, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 33, 34, 35, 37, 42, 43, 44, 47, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 66, 67, 73, 74, 75, 76, 77, 79, 82, 86, 87, 88, 89, 92, 93, 94, 96, 100, 101, 102, 106, 107, 111, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 128, 129, 130, 132, 137, 138, 139, 141, 143, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 162, 163, 169, 170, 171, 172, 173, 175, 178, 182, 183, 184, 185, 188], "differ": [7, 8, 9, 10, 18, 21, 28, 42, 44, 45, 55, 58, 60, 61, 64, 67, 77, 85, 100, 101, 102, 103, 112, 116, 123, 137, 139, 140, 151, 154, 156, 157, 160, 163, 173, 181], "differenti": [20, 54, 115, 150], "dimens": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 188], "dimension": [4, 25, 35, 88, 94, 120, 130, 184], "diplotyp": [48, 49, 144, 145], "direct": [51, 68, 147, 164], "directli": 194, "discord": [0, 106], "discoveri": [12, 105], "discrimin": 98, "discuss": 194, "displai": [51, 52, 64, 67, 68, 147, 148, 160, 163, 164], "dist": [31, 126], "distanc": [7, 31, 37, 42, 48, 49, 63, 64, 66, 67, 79, 92, 100, 126, 132, 137, 144, 145, 159, 160, 162, 163, 175, 188], "distance_metr": [48, 49, 144, 145], "distance_sort": [48, 49, 63, 67, 144, 145, 159, 163], "divers": [14, 19, 50, 108, 114, 146], "diversity_stat": [50, 146], "divid": [3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 43, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 99, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 138, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 188], "divis": [4, 25, 35, 88, 94, 120, 130, 184], "do": [0, 1, 2, 37, 46, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 92, 132, 141, 142, 143, 144, 145, 146, 147, 149, 150, 151, 152, 153, 155, 156, 157, 158, 159, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 173, 174, 175, 188, 194], "doc": [10, 46, 47, 48, 49, 54, 56, 57, 59, 60, 61, 62, 63, 65, 66, 72, 77, 78, 79, 103, 142, 143, 144, 145, 150, 152, 153, 155, 156, 157, 158, 159, 161, 162, 168, 173, 174, 175], "doe": [37, 66, 73, 79, 92, 132, 162, 169, 175, 188], "down": [6, 7, 8, 9, 10, 14, 19, 20, 21, 22, 28, 29, 30, 31, 33, 37, 42, 43, 44, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 66, 67, 69, 70, 77, 79, 86, 89, 92, 99, 100, 101, 102, 103, 108, 114, 115, 116, 117, 123, 124, 125, 126, 128, 132, 137, 138, 139, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 162, 163, 165, 166, 173, 175, 182, 185, 188], "download": [91, 187], "downsampl": [10, 103], "drop": [3, 24, 25, 87, 88, 93, 119, 120, 183, 184], "drop_invari": [3, 24, 25, 87, 88, 93, 119, 120, 183, 184], "dynam": [42, 67, 137, 163], "e": [0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 43, 44, 47, 48, 49, 51, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 72, 73, 74, 75, 76, 77, 79, 81, 82, 84, 86, 87, 88, 89, 92, 93, 94, 95, 96, 100, 101, 102, 103, 105, 106, 107, 108, 111, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 138, 139, 141, 143, 144, 145, 147, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 168, 169, 170, 171, 172, 173, 175, 177, 178, 180, 182, 183, 184, 185, 188, 191, 193], "e377c2": [60, 156], "e66101": [49, 145], "each": [8, 19, 20, 21, 22, 28, 29, 30, 37, 48, 49, 63, 64, 66, 67, 76, 79, 81, 86, 92, 101, 114, 115, 116, 117, 123, 124, 125, 132, 144, 145, 159, 160, 162, 163, 172, 175, 177, 182, 188], "edg": [67, 163], "edge_legend": [67, 163], "effect": [49, 87, 145, 183], "effici": 194, "ehh": [37, 66, 79, 92, 132, 162, 175, 188], "either": [3, 5, 7, 8, 9, 10, 14, 19, 32, 34, 42, 43, 44, 60, 61, 67, 82, 86, 87, 89, 93, 95, 100, 101, 102, 103, 108, 114, 127, 129, 137, 138, 139, 156, 157, 163, 178, 182, 183, 185], "email": 194, "embargo": 194, "en": [46, 47, 54, 56, 57, 59, 60, 61, 62, 65, 66, 72, 77, 78, 79, 142, 143, 150, 152, 153, 155, 156, 157, 158, 161, 162, 168, 173, 174, 175], "enabl": [10, 103], "end": [6, 7, 8, 9, 10, 12, 13, 14, 19, 23, 24, 25, 26, 27, 31, 32, 33, 34, 35, 36, 37, 38, 42, 43, 44, 46, 47, 48, 49, 57, 63, 64, 65, 66, 67, 68, 72, 77, 79, 81, 84, 86, 89, 90, 92, 99, 100, 101, 102, 103, 105, 107, 108, 114, 118, 119, 120, 121, 122, 126, 127, 128, 129, 130, 131, 132, 133, 137, 138, 139, 142, 143, 144, 145, 153, 159, 160, 161, 162, 163, 164, 168, 173, 175, 177, 180, 182, 185, 186, 188, 191, 193], "engin": [3, 4, 7, 8, 9, 13, 17, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 33, 34, 35, 37, 42, 43, 44, 47, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 66, 67, 73, 74, 75, 76, 77, 79, 82, 86, 87, 88, 89, 92, 93, 94, 96, 100, 101, 102, 106, 107, 111, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 128, 129, 130, 132, 137, 138, 139, 141, 143, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 162, 163, 169, 170, 171, 172, 173, 175, 178, 182, 183, 184, 185, 188], "entir": [21, 22, 55, 56, 116, 117, 151, 152], "entri": [67, 163], "environ": [10, 44, 86, 103, 139, 182], "epidemiologi": 194, "epilogu": [52, 148], "equal": [51, 67, 147, 163], "error": [3, 4, 6, 7, 8, 9, 14, 19, 20, 21, 22, 28, 29, 30, 31, 33, 34, 35, 37, 42, 43, 44, 48, 49, 51, 54, 55, 56, 58, 59, 60, 61, 62, 63, 66, 67, 68, 77, 79, 86, 87, 88, 89, 92, 93, 94, 99, 100, 101, 102, 108, 114, 115, 116, 117, 123, 124, 125, 126, 128, 129, 130, 132, 137, 138, 139, 144, 145, 147, 150, 151, 152, 154, 155, 156, 157, 158, 159, 162, 163, 164, 173, 175, 182, 183, 184, 185, 188], "estim": [6, 14, 19, 43, 99, 108, 114, 138], "etc": [44, 69, 70, 139, 165, 166], "euclidean": [7, 42, 48, 49, 67, 100, 137, 144, 145, 163], "europ": [73, 169], "eval": [3, 4, 7, 8, 9, 13, 17, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 33, 34, 35, 37, 42, 43, 44, 47, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 66, 67, 73, 74, 75, 76, 77, 79, 82, 86, 87, 88, 89, 92, 93, 94, 96, 100, 101, 102, 106, 107, 111, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 128, 129, 130, 132, 137, 138, 139, 141, 143, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 162, 163, 169, 170, 171, 172, 173, 175, 178, 182, 183, 184, 185, 188], "evalu": [3, 4, 6, 7, 8, 9, 10, 13, 17, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 33, 34, 35, 37, 42, 43, 44, 47, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 66, 67, 73, 74, 75, 76, 77, 79, 82, 86, 87, 88, 89, 92, 93, 94, 96, 99, 100, 101, 102, 103, 106, 107, 111, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 128, 129, 130, 132, 137, 138, 139, 141, 143, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 162, 163, 169, 170, 171, 172, 173, 175, 178, 182, 183, 184, 185, 188], "even": [37, 66, 79, 92, 132, 162, 175, 188], "evenli": [7, 8, 9, 10, 42, 44, 67, 100, 101, 102, 103, 137, 139, 163], "event": [4, 25, 35, 88, 94, 120, 130, 184], "evid": [24, 25, 119, 120], "evr": [44, 71, 139, 167], "exce": [13, 23, 24, 25, 47, 49, 107, 118, 119, 120, 143, 145], "exclud": [3, 7, 8, 9, 10, 34, 42, 44, 67, 87, 93, 100, 101, 102, 103, 129, 137, 139, 163, 183], "exclude_sampl": [44, 139], "explain": [44, 71, 139, 167], "explicit": [48, 49, 50, 63, 64, 67, 69, 70, 144, 145, 146, 159, 160, 163, 165, 166], "explor": 194, "express": [51, 147], "extern": [64, 160], "extra": [5, 11, 50, 95, 104, 146], "f7f7f7": [49, 145], "falciparum": 194, "fals": [3, 10, 37, 46, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 87, 93, 103, 132, 141, 142, 143, 144, 145, 146, 147, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 173, 174, 175, 183, 193], "fam": [10, 103], "faso": [23, 24, 25, 118, 119, 120], "fastest": [42, 67, 137, 163], "fdb863": [49, 145], "featur": [6, 7, 8, 9, 10, 12, 13, 14, 19, 23, 24, 25, 26, 27, 31, 32, 33, 34, 35, 36, 38, 42, 43, 44, 46, 47, 48, 49, 57, 63, 64, 65, 67, 72, 77, 81, 84, 86, 89, 90, 99, 100, 101, 102, 103, 105, 107, 108, 114, 118, 119, 120, 121, 122, 126, 127, 128, 129, 130, 131, 133, 137, 138, 139, 142, 143, 144, 145, 153, 159, 160, 161, 163, 168, 173, 177, 180, 182, 185, 186, 190], "fewer": [3, 34, 51, 87, 93, 129, 147, 183], "ff7f0e": [60, 156], "field": [32, 127], "figur": [46, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 141, 142, 143, 144, 145, 146, 147, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 173, 174, 175], "file": [10, 91, 103, 187], "filter": [3, 4, 6, 7, 8, 9, 10, 12, 14, 19, 20, 21, 22, 37, 38, 42, 43, 44, 48, 49, 51, 54, 55, 56, 65, 66, 67, 72, 77, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 99, 100, 101, 102, 103, 105, 108, 114, 115, 116, 117, 132, 133, 137, 138, 139, 144, 145, 147, 150, 151, 152, 161, 162, 163, 168, 173, 175, 177, 180, 182, 183, 184, 185, 188, 193], "filter_min_maf": [37, 66, 79, 92, 132, 162, 175, 188], "find": [21, 22, 39, 41, 55, 56, 116, 117, 134, 136, 151, 152], "first": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 188], "fit": [73, 169], "fit_exclude_sampl": [44, 139], "fitbound": [73, 169], "fix": [4, 46, 47, 54, 56, 57, 59, 60, 61, 62, 65, 66, 72, 77, 78, 79, 88, 94, 142, 143, 150, 152, 153, 155, 156, 157, 158, 161, 162, 168, 173, 174, 175, 184], "float": [6, 7, 8, 9, 10, 13, 14, 19, 20, 23, 24, 25, 37, 42, 44, 46, 47, 48, 49, 52, 54, 63, 65, 66, 67, 68, 69, 70, 72, 73, 74, 76, 79, 81, 92, 99, 100, 101, 102, 103, 107, 108, 114, 115, 118, 119, 120, 132, 137, 139, 141, 142, 143, 144, 145, 148, 150, 159, 161, 162, 163, 164, 165, 166, 168, 169, 170, 172, 175, 177, 188], "fold": [6, 7, 8, 9, 14, 19, 42, 43, 44, 67, 86, 89, 99, 100, 101, 102, 108, 114, 137, 138, 139, 163, 182, 185], "follow": [0, 1, 2, 6, 7, 8, 9, 14, 19, 42, 43, 44, 67, 86, 89, 99, 100, 101, 102, 108, 114, 137, 138, 139, 163, 182, 185, 194], "font": [48, 49, 63, 67, 144, 145, 159, 163], "format": [6, 7, 8, 9, 10, 12, 13, 14, 19, 23, 24, 25, 26, 27, 31, 32, 33, 34, 35, 36, 38, 42, 43, 44, 46, 47, 48, 49, 51, 57, 63, 64, 65, 67, 68, 72, 77, 81, 84, 86, 89, 90, 99, 100, 101, 102, 103, 105, 107, 108, 114, 118, 119, 120, 121, 122, 126, 127, 128, 129, 130, 131, 133, 137, 138, 139, 142, 143, 144, 145, 147, 153, 159, 160, 161, 163, 164, 168, 173, 177, 180, 182, 185, 186], "found": [7, 8, 9, 10, 42, 44, 67, 82, 86, 89, 100, 101, 102, 103, 137, 139, 163, 178, 182, 185], "fourth": [86, 182], "fraction": [7, 8, 9, 10, 42, 44, 67, 69, 70, 100, 101, 102, 103, 137, 139, 141, 163, 165, 166], "frame": [3, 5, 34, 87, 93, 95, 129, 183], "free": 194, "frequenc": [3, 4, 24, 25, 34, 35, 37, 49, 51, 52, 53, 66, 79, 87, 88, 92, 93, 94, 119, 120, 129, 130, 132, 145, 147, 148, 149, 162, 175, 183, 184, 188], "from": [0, 1, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 43, 44, 48, 49, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 76, 79, 81, 84, 86, 87, 88, 89, 90, 92, 93, 94, 99, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 138, 139, 144, 145, 146, 147, 148, 149, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 165, 166, 167, 168, 172, 175, 177, 180, 182, 183, 184, 185, 186, 188, 194], "from_arrai": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 188, 191, 193], "fst": [6, 20, 43, 54, 68, 99, 115, 138, 150, 164], "fst_df": [68, 164], "full": [48, 49, 63, 144, 145, 159], "function": [0, 1, 2, 10, 37, 44, 46, 65, 66, 72, 79, 92, 103, 132, 139, 142, 161, 162, 168, 175, 188, 194], "funestu": [0, 21, 22, 55, 56, 116, 117, 151, 152, 194], "g": [0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 43, 44, 47, 48, 49, 51, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 72, 73, 74, 75, 76, 77, 79, 81, 82, 84, 86, 87, 88, 89, 92, 93, 94, 95, 96, 100, 101, 102, 103, 105, 106, 107, 108, 111, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 138, 139, 141, 143, 144, 145, 147, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 168, 169, 170, 171, 172, 173, 175, 177, 178, 180, 182, 183, 184, 185, 188, 191, 193], "g123": [21, 22, 55, 56, 116, 117, 151, 152], "gambia": [1, 21, 22, 55, 56, 116, 117, 151, 152, 194], "gap": [37, 66, 79, 92, 132, 162, 175, 188], "gap_scal": [37, 66, 79, 92, 132, 162, 175, 188], "gc": 194, "gcloud": 194, "gene": [3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 19, 23, 24, 25, 26, 27, 31, 32, 33, 34, 35, 36, 38, 42, 43, 44, 46, 47, 48, 49, 54, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 72, 77, 78, 79, 81, 84, 86, 87, 88, 89, 90, 93, 94, 99, 100, 101, 102, 103, 105, 107, 108, 114, 118, 119, 120, 121, 122, 126, 127, 128, 129, 130, 131, 133, 137, 138, 139, 142, 143, 144, 145, 150, 152, 153, 155, 156, 157, 158, 159, 160, 161, 162, 163, 168, 173, 174, 175, 177, 180, 182, 183, 184, 185, 186, 191, 193], "gene_cnv_frequ": [51, 147], "gene_cnv_frequencies_advanc": [52, 53, 148, 149], "gene_label": [46, 47, 54, 56, 57, 59, 60, 61, 62, 65, 66, 72, 77, 79, 142, 143, 150, 152, 153, 155, 156, 157, 158, 161, 162, 168, 173, 175], "gene_labelset": [46, 47, 54, 56, 57, 59, 60, 61, 62, 65, 66, 72, 77, 79, 142, 143, 150, 152, 153, 155, 156, 157, 158, 161, 162, 168, 173, 175], "gener": [21, 28, 51, 54, 55, 56, 57, 59, 60, 62, 66, 78, 79, 116, 123, 147, 150, 151, 152, 153, 155, 156, 158, 162, 174, 175, 194], "genes_height": [46, 47, 54, 56, 59, 60, 61, 62, 65, 66, 72, 77, 79, 142, 143, 150, 152, 155, 156, 157, 158, 161, 162, 168, 173, 175], "genet": [14, 19, 20, 54, 64, 79, 92, 108, 114, 115, 150, 160, 175, 188, 194], "genom": [6, 7, 8, 9, 10, 12, 13, 14, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 42, 43, 44, 46, 47, 48, 49, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 72, 77, 79, 81, 84, 86, 89, 90, 92, 99, 100, 101, 102, 103, 105, 106, 107, 108, 110, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 137, 138, 139, 142, 143, 144, 145, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 168, 173, 175, 177, 180, 182, 185, 186, 188, 190, 191, 193, 194], "genotyp": [4, 7, 8, 9, 10, 12, 42, 48, 49, 67, 88, 89, 90, 94, 96, 100, 101, 102, 103, 105, 106, 137, 141, 144, 145, 163, 184, 185, 186, 193], "geoboundari": [15, 109], "geograph": [73, 169], "geojson": [73, 169], "get": [40, 135], "gff": [26, 121], "ggplot2": [50, 75, 146, 171], "give": [3, 14, 19, 24, 27, 34, 43, 60, 61, 87, 93, 108, 114, 119, 122, 129, 138, 156, 157, 183], "given": [21, 22, 27, 55, 56, 76, 77, 90, 91, 116, 117, 122, 151, 152, 172, 173, 186, 187], "global_dict": [3, 4, 7, 8, 9, 13, 17, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 33, 34, 35, 37, 42, 43, 44, 47, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 66, 67, 73, 74, 75, 76, 77, 79, 82, 86, 87, 88, 89, 92, 93, 94, 96, 100, 101, 102, 106, 107, 111, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 128, 129, 130, 132, 137, 138, 139, 141, 143, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 162, 163, 169, 170, 171, 172, 173, 175, 178, 182, 183, 184, 185, 188], "gn": [8, 101], "googl": 194, "graph": [48, 49, 53, 63, 67, 69, 70, 144, 145, 149, 159, 163, 165, 166], "gray_r": [68, 164], "greater": [6, 7, 8, 9, 14, 19, 20, 21, 22, 28, 29, 30, 31, 33, 37, 42, 43, 44, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 66, 67, 77, 79, 86, 89, 92, 99, 100, 101, 102, 108, 114, 115, 116, 117, 123, 124, 125, 126, 128, 132, 137, 138, 139, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 162, 163, 173, 175, 182, 185, 188], "grei": [49, 145], "gridon": [50, 75, 146, 171], "group": [4, 5, 25, 35, 52, 53, 75, 88, 94, 95, 120, 130, 148, 149, 171, 184], "gwss": [21, 28, 37, 55, 56, 58, 59, 60, 61, 66, 79, 92, 116, 123, 132, 151, 152, 154, 155, 156, 157, 162, 175, 188], "h12": [28, 29, 58, 59, 60, 61, 123, 124, 154, 155, 156, 157], "h1x": [30, 62, 125, 158], "ha": [4, 25, 35, 44, 86, 88, 94, 120, 130, 139, 182, 184], "haplotyp": [21, 22, 28, 29, 30, 31, 32, 34, 35, 37, 45, 55, 56, 58, 59, 60, 61, 62, 63, 64, 66, 79, 92, 116, 117, 123, 124, 125, 126, 127, 129, 130, 132, 140, 151, 152, 154, 155, 156, 157, 158, 159, 160, 162, 175, 188], "have": [44, 53, 139, 149, 194], "header": [51, 147], "heatmap": [47, 51, 68, 141, 143, 147, 164], "height": [46, 47, 48, 49, 50, 51, 53, 54, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 141, 142, 143, 144, 145, 146, 147, 149, 150, 152, 153, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175], "het": 141, "heterozygos": [49, 65, 72, 145, 161, 168], "heterozygosity_colorscal": [49, 145], "heterozygosity_height": [49, 72, 145, 168], "heterozygot": [72, 81, 168, 177], "hierarch": [48, 63, 144, 159], "hierarchi": [48, 49, 63, 144, 145, 159], "hmm": [12, 13, 23, 24, 46, 47, 105, 107, 118, 119, 142, 143], "hom": 141, "home": [0, 1, 2], "homozygos": [37, 66, 72, 79, 81, 92, 132, 162, 168, 175, 177, 188], "host": 194, "hover": [73, 74, 169, 170], "hover_nam": [73, 74, 169, 170], "how": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 68, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 164, 168, 175, 177, 180, 182, 183, 184, 185, 188, 194], "html": [46, 47, 54, 56, 57, 59, 60, 61, 62, 65, 66, 72, 77, 78, 79, 142, 143, 150, 152, 153, 155, 156, 157, 158, 161, 162, 168, 173, 174, 175], "http": [46, 47, 48, 49, 51, 54, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 72, 77, 78, 79, 142, 143, 144, 145, 147, 150, 152, 153, 155, 156, 157, 158, 159, 160, 161, 162, 163, 165, 168, 173, 174, 175], "hudson": [6, 43, 99, 138], "i": [3, 4, 6, 7, 8, 9, 10, 14, 19, 20, 21, 22, 24, 25, 28, 29, 30, 31, 33, 34, 35, 37, 42, 43, 44, 48, 49, 51, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 73, 77, 79, 86, 87, 88, 89, 92, 93, 94, 99, 100, 101, 102, 103, 108, 114, 115, 116, 117, 119, 120, 123, 124, 125, 126, 128, 129, 130, 132, 137, 138, 139, 144, 145, 147, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 162, 163, 164, 169, 173, 175, 182, 183, 184, 185, 188, 194], "id": [15, 109, 190], "idea": 194, "identifi": [3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 18, 19, 21, 22, 23, 24, 25, 26, 27, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 72, 77, 78, 79, 81, 83, 84, 85, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 105, 107, 108, 112, 114, 116, 117, 118, 119, 120, 121, 122, 126, 127, 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 150, 151, 152, 153, 155, 156, 157, 158, 159, 160, 161, 162, 163, 168, 173, 174, 175, 177, 179, 180, 181, 182, 183, 184, 185, 186, 187], "igv": [90, 186], "igv_notebook": [36, 90, 131, 186], "ih": [37, 66, 132, 162], "imag": [49, 51, 68, 145, 147, 164], "img": [51, 68, 147, 164], "import": [0, 1, 2], "imshow": [51, 68, 147, 164], "includ": [3, 4, 5, 6, 7, 8, 9, 10, 13, 15, 17, 19, 20, 21, 22, 28, 29, 30, 31, 33, 34, 35, 37, 39, 42, 43, 44, 47, 48, 49, 54, 55, 56, 58, 59, 60, 61, 63, 64, 66, 67, 73, 74, 75, 76, 77, 79, 82, 86, 87, 88, 89, 92, 93, 94, 95, 96, 99, 100, 101, 102, 103, 106, 107, 109, 111, 113, 114, 115, 116, 117, 123, 124, 125, 126, 128, 129, 130, 132, 134, 137, 138, 139, 141, 143, 144, 145, 150, 151, 152, 154, 155, 156, 157, 159, 160, 162, 163, 169, 170, 171, 172, 173, 175, 178, 182, 183, 184, 185, 188, 194], "include_count": [3, 87, 93, 183], "include_edg": [37, 66, 79, 92, 132, 162, 175, 188], "independ": [48, 49, 53, 63, 67, 69, 70, 144, 145, 149, 159, 163, 165, 166], "index": [7, 8, 9, 10, 17, 40, 42, 44, 46, 51, 65, 67, 72, 81, 100, 101, 102, 103, 111, 135, 137, 139, 142, 147, 161, 163, 168, 177, 194], "indic": [7, 8, 9, 10, 42, 44, 67, 82, 86, 89, 100, 101, 102, 103, 137, 139, 163, 178, 182, 185], "individu": [14, 108], "infect": 194, "infer": [72, 81, 168, 177], "inform": [0, 1, 2, 10, 64, 96, 97, 98, 103, 141, 160], "init": [36, 90, 131, 186], "initi": [52, 74, 76, 148, 170, 172, 194], "inject": [36, 131], "inlin": [64, 160], "inline_arrai": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 188, 191, 193], "input": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 51, 52, 53, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 147, 148, 149, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 188], "instanti": [44, 86, 139, 182], "int": [3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 92, 93, 94, 99, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 135, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 177, 178, 180, 182, 183, 184, 185, 186, 188], "integ": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 188], "integr": [37, 66, 79, 92, 132, 162, 175, 188], "interact": [48, 52, 63, 76, 144, 148, 159, 172], "interest": [51, 147], "intergen": [6, 7, 8, 9, 14, 19, 42, 43, 44, 67, 86, 89, 99, 100, 101, 102, 108, 114, 137, 138, 139, 163, 182, 185], "interpret": [7, 8, 9, 10, 42, 44, 51, 67, 68, 100, 101, 102, 103, 137, 139, 147, 163, 164], "interv": [4, 6, 14, 19, 25, 35, 43, 88, 94, 99, 108, 114, 120, 130, 138, 184], "intron": [6, 7, 8, 9, 14, 19, 42, 43, 44, 67, 86, 89, 99, 100, 101, 102, 108, 114, 137, 138, 139, 163, 182, 185], "intron_long": [6, 7, 8, 9, 14, 19, 42, 43, 44, 67, 86, 89, 99, 100, 101, 102, 108, 114, 137, 138, 139, 163, 182, 185], "intron_short": [6, 7, 8, 9, 14, 19, 42, 43, 44, 67, 86, 89, 99, 100, 101, 102, 108, 114, 137, 138, 139, 163, 182, 185], "intron_splice_3prim": [6, 7, 8, 9, 14, 19, 42, 43, 44, 67, 86, 89, 99, 100, 101, 102, 108, 114, 137, 138, 139, 163, 182, 185], "intron_splice_5prim": [6, 7, 8, 9, 14, 19, 42, 43, 44, 67, 86, 89, 99, 100, 101, 102, 108, 114, 137, 138, 139, 163, 182, 185], "investig": [20, 54, 115, 150], "io": [50, 75, 146, 171], "ipyleaflet": [76, 172], "ipython": [51, 147], "iso": [15, 109], "issu": 194, "item": [48, 49, 53, 63, 67, 69, 70, 144, 145, 149, 159, 163, 165, 166], "jackknif": [6, 14, 19, 43, 99, 108, 114, 138], "jitter": [69, 70, 165, 166], "jitter_frac": [69, 70, 165, 166], "join": [42, 64, 67, 137, 160, 163], "jupyt": [64, 160], "jupyterlab": [64, 160], "just": [44, 51, 139, 147], "kb663610": [191, 193], "kbp": [6, 7, 8, 9, 14, 19, 42, 43, 44, 67, 86, 89, 99, 100, 101, 102, 108, 114, 137, 138, 139, 163, 182, 185], "kei": [26, 50, 75, 121, 146, 171, 190], "known": [49, 51, 68, 145, 147, 164], "kwarg": [51, 53, 68, 69, 70, 71, 73, 74, 75, 147, 149, 164, 165, 166, 167, 169, 170, 171], "label": [3, 14, 19, 24, 34, 43, 46, 47, 51, 54, 56, 57, 59, 60, 61, 62, 65, 66, 72, 77, 79, 87, 93, 108, 114, 119, 129, 138, 142, 143, 147, 150, 152, 153, 155, 156, 157, 158, 161, 162, 168, 173, 175, 183], "labelset": [46, 47, 54, 56, 57, 59, 60, 61, 62, 65, 66, 72, 77, 79, 142, 143, 150, 152, 153, 155, 156, 157, 158, 161, 162, 168, 173, 175], "larg": [51, 147], "larger": [6, 14, 19, 37, 43, 51, 66, 72, 79, 81, 92, 99, 108, 114, 132, 138, 147, 162, 168, 175, 177, 188], "latest": [46, 47, 54, 56, 57, 59, 60, 61, 62, 65, 66, 72, 77, 78, 79, 142, 143, 150, 152, 153, 155, 156, 157, 158, 161, 162, 168, 173, 174, 175], "latitud": [15, 109], "launch": [64, 90, 160, 186], "layout": [46, 47, 54, 56, 57, 59, 60, 61, 62, 64, 65, 66, 67, 72, 77, 78, 79, 142, 143, 150, 152, 153, 155, 156, 157, 158, 160, 161, 162, 163, 168, 173, 174, 175], "layout_param": [64, 160], "leaf": [48, 49, 63, 67, 144, 145, 159, 163], "leaf_i": [48, 49, 63, 144, 145, 159], "leaf_legend": [67, 163], "learn": 194, "left": [57, 78, 153, 174], "legend": [48, 49, 50, 53, 63, 64, 67, 69, 70, 73, 74, 144, 145, 146, 149, 159, 160, 163, 165, 166, 169, 170], "legend_s": [48, 49, 53, 63, 67, 69, 70, 144, 145, 149, 159, 163, 165, 166], "length": [4, 25, 35, 88, 94, 120, 130, 184], "less": [3, 4, 6, 7, 8, 9, 14, 19, 20, 21, 22, 28, 29, 30, 31, 33, 34, 35, 37, 42, 43, 44, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 66, 67, 77, 79, 86, 87, 88, 89, 92, 93, 94, 99, 100, 101, 102, 108, 114, 115, 116, 117, 123, 124, 125, 126, 128, 129, 130, 132, 137, 138, 139, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 162, 163, 173, 175, 182, 183, 184, 185, 188], "let": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 188, 191, 193], "level": [4, 14, 19, 25, 35, 52, 74, 76, 77, 88, 90, 94, 108, 114, 120, 130, 148, 170, 172, 173, 184, 186], "librari": 194, "like": [5, 6, 7, 8, 9, 10, 12, 13, 14, 19, 23, 24, 25, 26, 27, 31, 32, 33, 34, 35, 36, 38, 42, 43, 44, 46, 47, 48, 49, 51, 57, 63, 64, 65, 67, 68, 72, 77, 81, 84, 86, 89, 90, 95, 99, 100, 101, 102, 103, 105, 107, 108, 114, 118, 119, 120, 121, 122, 126, 127, 128, 129, 130, 131, 133, 137, 138, 139, 142, 143, 144, 145, 147, 153, 159, 160, 161, 163, 164, 168, 173, 177, 180, 182, 185, 186, 194], "limit": [46, 65, 72, 142, 161, 168], "line": [46, 48, 49, 53, 63, 67, 141, 142, 144, 145, 149, 159, 163], "line_color": [48, 49, 63, 144, 145, 159], "line_kwarg": [46, 142], "line_width": [48, 49, 63, 67, 144, 145, 159, 163], "link": [57, 78, 153, 174, 194], "linkag": [48, 49, 63, 144, 145, 159], "linkage_method": [48, 49, 63, 144, 145, 159], "list": [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 17, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 42, 43, 44, 46, 47, 48, 49, 50, 51, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 73, 74, 75, 76, 77, 79, 82, 86, 87, 88, 89, 92, 93, 94, 96, 99, 100, 101, 102, 103, 105, 106, 107, 108, 111, 114, 115, 116, 117, 118, 119, 120, 121, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 169, 170, 171, 172, 173, 175, 178, 182, 183, 184, 185, 188, 190, 191, 193], "liter": [4, 7, 35, 42, 46, 47, 48, 49, 50, 51, 53, 54, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 75, 77, 78, 79, 88, 94, 100, 130, 137, 142, 143, 144, 145, 146, 147, 149, 150, 152, 153, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 171, 173, 174, 175, 184], "load": [8, 84, 91, 101, 113, 180, 187], "local": [64, 160], "local_dict": [3, 4, 7, 8, 9, 13, 17, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 33, 34, 35, 37, 42, 43, 44, 47, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 66, 67, 73, 74, 75, 76, 77, 79, 82, 86, 87, 88, 89, 92, 93, 94, 96, 100, 101, 102, 106, 107, 111, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 128, 129, 130, 132, 137, 138, 139, 141, 143, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 162, 163, 169, 170, 171, 172, 173, 175, 178, 182, 183, 184, 185, 188], "locat": [10, 23, 24, 25, 52, 57, 73, 74, 76, 78, 103, 118, 119, 120, 148, 153, 169, 170, 172, 174, 191, 193, 194], "login": 194, "longer": [6, 7, 8, 9, 14, 19, 42, 43, 44, 67, 86, 89, 99, 100, 101, 102, 108, 114, 137, 138, 139, 163, 182, 185], "longitud": [15, 109], "lower": [68, 164], "mai": [10, 44, 51, 54, 55, 56, 57, 59, 60, 62, 66, 72, 78, 79, 81, 86, 103, 139, 147, 150, 151, 152, 153, 155, 156, 158, 162, 168, 174, 175, 177, 182, 194], "main": [46, 47, 54, 56, 59, 60, 61, 62, 65, 66, 79, 142, 143, 150, 152, 155, 156, 157, 158, 161, 162, 175], "make": [18, 45, 85, 112, 140, 181], "malaria": 194, "malariagen": [0, 1, 2], "malariagen_data": [0, 1, 2, 194], "manual": [64, 160], "map": [3, 6, 7, 8, 9, 10, 12, 13, 14, 15, 19, 21, 23, 24, 25, 26, 27, 28, 31, 32, 33, 34, 35, 36, 38, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 54, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 76, 77, 79, 81, 84, 86, 87, 89, 90, 92, 93, 99, 100, 101, 102, 103, 105, 107, 108, 109, 114, 116, 118, 119, 120, 121, 122, 123, 126, 127, 128, 129, 130, 131, 133, 137, 138, 139, 142, 143, 144, 145, 146, 147, 148, 150, 152, 153, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 170, 172, 173, 175, 177, 180, 182, 183, 185, 186, 188], "map_po": [79, 92, 175, 188], "mapbox": [74, 170], "mapnik": [76, 172], "marker": [46, 48, 49, 50, 52, 53, 63, 64, 65, 67, 69, 70, 72, 73, 74, 76, 96, 97, 98, 141, 142, 144, 145, 146, 148, 149, 159, 160, 161, 163, 165, 166, 168, 169, 170, 172], "marker_s": [48, 49, 63, 67, 69, 70, 73, 74, 144, 145, 159, 163, 165, 166, 169, 170], "mask": [3, 4, 6, 7, 8, 9, 10, 14, 19, 20, 21, 22, 38, 42, 43, 44, 48, 49, 54, 55, 56, 65, 67, 72, 77, 81, 84, 85, 86, 87, 88, 89, 93, 94, 99, 100, 101, 102, 103, 108, 114, 115, 116, 117, 133, 137, 138, 139, 144, 145, 150, 151, 152, 161, 163, 168, 173, 177, 180, 181, 182, 183, 184, 185], "match": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 188], "max_cohort_s": [6, 7, 8, 9, 14, 20, 21, 22, 28, 29, 30, 33, 37, 42, 43, 44, 54, 55, 56, 58, 59, 60, 61, 62, 66, 67, 79, 86, 89, 92, 99, 100, 101, 102, 108, 115, 116, 117, 123, 124, 125, 128, 132, 137, 138, 139, 150, 151, 152, 154, 155, 156, 157, 158, 162, 163, 175, 182, 185, 188], "max_coverage_vari": [13, 23, 24, 25, 47, 107, 118, 119, 120, 143], "max_dist": [64, 160], "max_gap": [37, 66, 79, 92, 132, 162, 175, 188], "max_len": [51, 147], "max_missing_an": [7, 8, 9, 10, 42, 44, 67, 100, 101, 102, 103, 137, 139, 163], "max_snp": [77, 173], "maximum": [7, 8, 9, 10, 42, 44, 64, 67, 77, 100, 101, 102, 103, 137, 139, 160, 163, 173], "mean": [14, 19, 108, 114], "median": [29, 30, 48, 49, 63, 64, 124, 125, 144, 145, 159, 160], "memori": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 188], "merg": [5, 95], "metadata": [3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 17, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 33, 34, 35, 37, 40, 42, 43, 44, 47, 48, 49, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 66, 67, 69, 70, 73, 74, 75, 76, 77, 79, 82, 86, 87, 88, 89, 92, 93, 94, 95, 96, 99, 100, 101, 102, 103, 104, 106, 107, 111, 113, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 128, 129, 130, 132, 135, 137, 138, 139, 141, 143, 144, 145, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 162, 163, 165, 166, 169, 170, 171, 172, 173, 175, 178, 182, 183, 184, 185, 188, 192], "method": [0, 1, 2, 4, 18, 25, 35, 45, 48, 49, 63, 85, 88, 94, 112, 120, 130, 140, 144, 145, 159, 181, 184], "metric": [7, 42, 48, 49, 67, 100, 137, 144, 145, 163], "mib": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 188, 191, 193], "min_cohort_s": [3, 4, 6, 7, 8, 9, 14, 20, 21, 22, 24, 25, 28, 29, 30, 33, 34, 35, 37, 42, 43, 44, 54, 55, 56, 58, 59, 60, 61, 62, 66, 67, 79, 86, 87, 88, 89, 92, 93, 94, 99, 100, 101, 102, 108, 115, 116, 117, 119, 120, 123, 124, 125, 128, 129, 130, 132, 137, 138, 139, 150, 151, 152, 154, 155, 156, 157, 158, 162, 163, 175, 182, 183, 184, 185, 188], "min_ehh": [37, 66, 79, 92, 132, 162, 175, 188], "min_minor_ac": [7, 8, 9, 10, 42, 44, 67, 100, 101, 102, 103, 137, 139, 163], "min_sampl": [76, 172], "minimu": [2, 194], "minimum": [3, 4, 6, 7, 8, 9, 10, 14, 20, 21, 22, 24, 25, 28, 29, 30, 33, 34, 35, 37, 42, 43, 44, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 66, 67, 76, 79, 86, 87, 88, 89, 92, 93, 94, 99, 100, 101, 102, 103, 108, 115, 116, 117, 119, 120, 123, 124, 125, 128, 129, 130, 132, 137, 138, 139, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 162, 163, 172, 175, 182, 183, 184, 185, 188], "minor": [7, 8, 9, 10, 37, 42, 44, 66, 67, 79, 92, 100, 101, 102, 103, 132, 137, 139, 162, 163, 175, 188], "miss": [3, 4, 7, 8, 9, 10, 42, 44, 67, 87, 88, 93, 94, 100, 101, 102, 103, 137, 139, 141, 163, 183, 184], "modal": [23, 24, 118, 119], "mode": [46, 47, 54, 56, 57, 59, 60, 61, 62, 64, 65, 66, 72, 77, 78, 79, 142, 143, 150, 152, 153, 155, 156, 157, 158, 160, 161, 162, 168, 173, 174, 175], "model": [46, 47, 54, 55, 56, 57, 58, 59, 60, 61, 62, 65, 66, 72, 77, 78, 79, 142, 143, 150, 151, 152, 153, 154, 155, 156, 157, 158, 161, 162, 168, 173, 174, 175], "month": [4, 25, 35, 88, 94, 120, 130, 184], "more": [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 43, 44, 48, 49, 51, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 79, 81, 82, 84, 86, 87, 88, 89, 92, 93, 94, 99, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 138, 139, 144, 145, 147, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 175, 177, 178, 180, 182, 183, 184, 185, 188, 194], "mosquito": [0, 1, 2, 194], "move": [72, 81, 168, 177], "multipl": [19, 23, 24, 25, 37, 44, 46, 47, 50, 60, 61, 65, 66, 79, 92, 114, 118, 119, 120, 132, 139, 142, 143, 146, 156, 157, 161, 162, 175, 188, 191, 193], "multipli": [4, 88, 94, 184], "must": [5, 50, 51, 75, 95, 146, 147, 171], "n": [6, 14, 19, 23, 24, 25, 43, 48, 49, 63, 67, 97, 99, 108, 114, 118, 119, 120, 138, 144, 145, 159, 163], "n_compon": [44, 139], "n_jack": [6, 14, 19, 43, 99, 108, 114, 138], "n_snp": [7, 8, 9, 10, 31, 42, 44, 67, 100, 101, 102, 103, 126, 137, 139, 163], "n_variant": [86, 182], "name": [3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 42, 43, 44, 46, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 77, 79, 81, 84, 86, 87, 88, 89, 90, 92, 93, 94, 95, 99, 100, 101, 102, 103, 105, 106, 107, 108, 109, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 173, 175, 177, 180, 182, 183, 184, 185, 186, 188, 190, 191, 193], "natgeoworldmap": [76, 172], "nativ": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 188, 191, 193], "natur": 194, "ndarrai": [7, 8, 20, 21, 22, 28, 29, 30, 31, 37, 38, 42, 44, 71, 79, 86, 92, 100, 101, 115, 116, 117, 123, 124, 125, 126, 132, 133, 137, 139, 167, 175, 182, 188], "ndauto": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 188], "ndauto0": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 188], "ndauto01": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 188], "ndauto1": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 188], "necessarili": [6, 14, 19, 43, 99, 108, 114, 138], "need": [60, 61, 156, 157, 194], "neighbour": [42, 67, 137, 163], "net": 194, "network": [64, 160, 194], "nob": [3, 87, 93, 183], "nobs_mod": [4, 88, 94, 184], "node": [48, 49, 63, 64, 67, 144, 145, 159, 160, 163], "node_size_factor": [64, 160], "non": [3, 4, 6, 7, 8, 9, 14, 19, 42, 43, 44, 67, 77, 86, 87, 88, 89, 93, 94, 99, 100, 101, 102, 108, 114, 137, 138, 139, 163, 173, 182, 183, 184, 185], "non_synonymous_cod": [49, 145], "none": [3, 4, 6, 7, 8, 9, 10, 13, 14, 17, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 40, 42, 43, 44, 46, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 92, 93, 94, 96, 99, 100, 101, 102, 103, 106, 107, 108, 111, 114, 115, 116, 117, 118, 119, 120, 121, 123, 124, 125, 126, 128, 129, 130, 131, 132, 135, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 177, 178, 179, 180, 182, 183, 184, 185, 188], "normal": [4, 25, 35, 88, 94, 120, 130, 184], "north": [73, 169], "note": [0, 48, 49, 63, 67, 144, 145, 159, 163, 194], "notebook": [36, 51, 131, 147], "now": [44, 139], "nucleotid": [27, 122], "number": [3, 4, 6, 7, 8, 9, 10, 14, 17, 19, 20, 21, 22, 23, 24, 28, 29, 30, 31, 33, 34, 35, 37, 42, 43, 44, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 72, 75, 76, 77, 79, 81, 86, 87, 88, 89, 92, 93, 94, 99, 100, 101, 102, 103, 108, 111, 114, 115, 116, 117, 118, 119, 123, 124, 125, 126, 128, 129, 130, 132, 137, 138, 139, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 168, 171, 172, 173, 175, 177, 182, 183, 184, 185, 188], "numer": [51, 68, 147, 164], "numpi": [6, 86, 99, 182], "object": [0, 1, 2], "observ": [3, 44, 64, 72, 81, 86, 87, 88, 93, 139, 160, 168, 177, 182, 183, 184], "observatori": 2, "obtain": [10, 103], "omit": [25, 120], "one": [3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 43, 44, 48, 49, 53, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 71, 72, 79, 81, 82, 83, 84, 86, 87, 88, 89, 92, 93, 94, 95, 99, 100, 101, 102, 103, 105, 106, 107, 108, 109, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 138, 139, 144, 145, 149, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 167, 168, 175, 177, 178, 179, 180, 182, 183, 184, 185, 188], "onli": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 51, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 141, 144, 145, 147, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 165, 166, 167, 168, 169, 170, 171, 173, 174, 175, 177, 180, 182, 183, 184, 185, 188], "onlin": 194, "onto": [46, 54, 56, 57, 59, 60, 61, 62, 65, 66, 72, 79, 142, 150, 152, 153, 155, 156, 157, 158, 161, 162, 168, 175], "opac": [69, 165], "open": 194, "opentopomap": [76, 172], "option": [3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 99, 100, 101, 102, 103, 105, 106, 107, 108, 111, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 135, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 177, 178, 179, 180, 182, 183, 184, 185, 186, 188, 190, 191, 193, 194], "order": [7, 8, 9, 10, 42, 44, 48, 49, 50, 63, 64, 67, 69, 70, 73, 74, 75, 82, 86, 89, 100, 101, 102, 103, 137, 139, 141, 144, 145, 146, 159, 160, 163, 165, 166, 169, 170, 171, 178, 182, 185], "org": [46, 47, 54, 56, 57, 59, 60, 61, 62, 65, 66, 72, 77, 78, 79, 142, 143, 150, 152, 153, 155, 156, 157, 158, 161, 162, 168, 173, 174, 175], "other": [57, 68, 76, 78, 153, 164, 172, 174, 194], "otherwis": [48, 49, 51, 52, 53, 63, 64, 67, 144, 145, 147, 148, 149, 159, 160, 163], "ought": [10, 103], "output": [3, 10, 34, 46, 50, 51, 54, 56, 57, 59, 60, 61, 62, 65, 66, 72, 79, 87, 93, 103, 129, 142, 146, 147, 150, 152, 153, 155, 156, 157, 158, 161, 162, 168, 175, 183], "output_backend": [46, 54, 56, 57, 59, 60, 61, 62, 65, 66, 72, 79, 142, 150, 152, 153, 155, 156, 157, 158, 161, 162, 168, 175], "output_dir": [10, 103], "outsid": [72, 81, 168, 177], "over": [37, 65, 66, 72, 79, 81, 92, 132, 161, 162, 168, 175, 177, 188], "overlaid": [60, 156], "overlap": [29, 30, 124, 125], "overrid": [37, 64, 66, 132, 160, 162], "overwrit": [10, 103], "overwritten": [10, 103], "owner": 194, "packag": 194, "page": [0, 1, 2], "pair": [14, 37, 66, 79, 90, 92, 108, 132, 162, 175, 186, 188], "pairwis": [7, 31, 43, 67, 68, 100, 126, 138, 163, 164], "palett": [66, 79, 141, 162, 175], "panda": [3, 4, 6, 7, 8, 9, 10, 13, 14, 17, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 33, 34, 35, 37, 42, 43, 44, 47, 48, 49, 51, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 66, 67, 73, 74, 75, 76, 77, 79, 82, 86, 87, 88, 89, 92, 93, 94, 96, 99, 100, 101, 102, 103, 106, 107, 108, 111, 113, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 128, 129, 130, 132, 137, 138, 139, 141, 143, 144, 145, 147, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 162, 163, 169, 170, 171, 172, 173, 175, 178, 182, 183, 184, 185, 188, 190, 192], "panel": [53, 149], "paramet": [18, 45, 85, 112, 140, 181], "parasit": 194, "parent": [113, 190], "parser": [3, 4, 7, 8, 9, 13, 17, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 33, 34, 35, 37, 42, 43, 44, 47, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 66, 67, 73, 74, 75, 76, 77, 79, 82, 86, 87, 88, 89, 92, 93, 94, 96, 100, 101, 102, 106, 107, 111, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 128, 129, 130, 132, 137, 138, 139, 141, 143, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 162, 163, 169, 170, 171, 172, 173, 175, 178, 182, 183, 184, 185, 188], "partner_sample_id": [5, 95], "pass": [3, 4, 7, 8, 9, 10, 12, 13, 14, 17, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 43, 44, 46, 47, 48, 49, 51, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 81, 82, 84, 86, 87, 88, 89, 92, 93, 94, 96, 100, 101, 102, 103, 105, 106, 107, 108, 111, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 138, 139, 141, 142, 143, 144, 145, 147, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 177, 178, 180, 182, 183, 184, 185, 188, 191, 193], "path": [10, 103], "pc1": [44, 69, 70, 139, 165, 166], "pc2": [44, 69, 70, 139, 165, 166], "pc3": [44, 69, 70, 139, 165, 166], "pca": [69, 70, 71, 165, 166, 167], "per": [3, 5, 8, 15, 23, 24, 26, 34, 37, 44, 47, 50, 51, 53, 65, 66, 71, 72, 79, 81, 82, 83, 87, 91, 92, 93, 95, 101, 109, 118, 119, 121, 129, 132, 139, 141, 143, 146, 147, 149, 161, 162, 167, 168, 175, 177, 178, 179, 183, 187, 188], "percentil": [21, 28, 37, 66, 79, 92, 116, 123, 132, 162, 175, 188], "perform": [49, 145], "period": [4, 25, 35, 52, 88, 94, 120, 130, 148, 184], "period_bi": [4, 25, 35, 88, 94, 120, 130, 184], "permiss": 194, "pf7": 194, "phase": [21, 22, 28, 29, 30, 31, 32, 33, 37, 45, 55, 56, 58, 59, 60, 61, 62, 63, 64, 66, 79, 92, 116, 117, 123, 124, 125, 126, 127, 128, 132, 140, 151, 152, 154, 155, 156, 157, 158, 159, 160, 162, 175, 188], "phased_sampl": [31, 126], "phasing_analysis_id": [28, 29, 30, 31, 32, 33, 37, 58, 59, 60, 61, 62, 63, 64, 66, 79, 92, 123, 124, 125, 126, 127, 128, 132, 154, 155, 156, 157, 158, 159, 160, 162, 175, 188], "phet_nonroh": [72, 81, 168, 177], "phet_roh": [72, 81, 168, 177], "pip": 194, "pivot": [17, 111], "pixel": [46, 47, 48, 49, 50, 51, 53, 54, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 142, 143, 144, 145, 146, 147, 149, 150, 152, 153, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175], "plasmodium": 194, "pleas": [0, 1, 2, 194], "plink": [10, 103], "plot": [37, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 132, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175], "plot_kwarg": [50, 146], "plotli": [48, 49, 50, 51, 53, 63, 64, 67, 69, 70, 71, 73, 74, 75, 141, 144, 145, 146, 147, 149, 159, 160, 163, 165, 166, 167, 169, 170, 171], "plotly_dark": [50, 75, 146, 171], "plotly_whit": [50, 75, 146, 171], "po": [32, 127], "point": [15, 20, 22, 29, 30, 37, 69, 70, 92, 109, 115, 117, 124, 125, 132, 165, 166, 188], "popul": 194, "port": [64, 160], "posit": [4, 20, 22, 25, 29, 30, 32, 35, 37, 64, 77, 79, 88, 92, 94, 98, 115, 117, 120, 124, 125, 127, 130, 132, 160, 173, 175, 184, 188], "positron": [76, 172], "possibl": [96, 97, 98, 141], "predefin": [3, 14, 19, 24, 34, 43, 60, 61, 87, 93, 108, 114, 119, 129, 138, 156, 157, 183], "prefix": [4, 25, 35, 88, 94, 120, 130, 184], "present": [50, 51, 75, 146, 147, 171], "previou": [10, 103], "previous": [10, 11, 44, 103, 104, 139], "princip": [44, 69, 70, 71, 139, 165, 166, 167], "prior": [37, 66, 79, 92, 132, 162, 175, 188], "probabl": [72, 81, 168, 177], "produc": [48, 51, 63, 144, 147, 159], "progeni": 113, "programm": 194, "project": [0, 1], "properti": [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 14, 16, 18, 19, 20, 21, 22, 28, 29, 30, 31, 32, 33, 37, 38, 42, 43, 44, 45, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 72, 77, 79, 80, 81, 84, 85, 86, 87, 88, 89, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103, 105, 106, 108, 110, 112, 114, 115, 116, 117, 123, 124, 125, 126, 127, 128, 132, 133, 137, 138, 139, 140, 141, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 168, 173, 175, 176, 177, 180, 181, 182, 183, 184, 185, 188, 189], "proport": [4, 25, 35, 88, 94, 120, 130, 184], "proportion_confint": [4, 25, 35, 88, 94, 120, 130, 184], "provid": [0, 1, 2, 7, 8, 9, 10, 19, 21, 22, 23, 24, 25, 26, 37, 42, 44, 46, 48, 49, 50, 51, 55, 56, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 73, 74, 76, 81, 82, 86, 89, 91, 100, 101, 102, 103, 114, 116, 117, 118, 119, 120, 121, 132, 137, 139, 142, 144, 145, 146, 147, 151, 152, 156, 157, 159, 160, 161, 162, 163, 164, 165, 166, 169, 170, 172, 177, 178, 182, 185, 187, 190, 191, 193, 194], "public": 194, "pv4": 194, "px": [46, 47, 48, 49, 50, 51, 53, 54, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 141, 142, 143, 144, 145, 146, 147, 149, 150, 152, 153, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175], "pypi": 194, "python": [48, 49, 51, 63, 67, 69, 144, 145, 147, 159, 163, 165], "q": 194, "quarter": [4, 25, 35, 88, 94, 120, 130, 184], "queri": [3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 17, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 33, 34, 35, 37, 42, 43, 44, 47, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 66, 67, 73, 74, 75, 76, 77, 79, 82, 86, 87, 88, 89, 92, 93, 94, 95, 96, 99, 100, 101, 102, 103, 106, 107, 108, 111, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 128, 129, 130, 132, 137, 138, 139, 141, 143, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 162, 163, 169, 170, 171, 172, 173, 175, 178, 182, 183, 184, 185, 188], "question": 194, "rais": [3, 4, 6, 7, 8, 9, 14, 19, 20, 21, 22, 28, 29, 30, 31, 33, 34, 35, 37, 42, 43, 44, 48, 49, 51, 54, 55, 56, 58, 59, 60, 61, 62, 63, 66, 67, 77, 79, 86, 87, 88, 89, 92, 93, 94, 99, 100, 101, 102, 108, 114, 115, 116, 117, 123, 124, 125, 126, 128, 129, 130, 132, 137, 138, 139, 144, 145, 147, 150, 151, 152, 154, 155, 156, 157, 158, 159, 162, 163, 173, 175, 182, 183, 184, 185, 188], "random": [6, 7, 8, 9, 10, 14, 19, 20, 21, 22, 28, 29, 30, 31, 33, 37, 42, 43, 44, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 66, 67, 69, 70, 79, 86, 89, 92, 99, 100, 101, 102, 103, 108, 114, 115, 116, 117, 123, 124, 125, 126, 128, 132, 137, 138, 139, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 162, 163, 165, 166, 175, 182, 185, 188], "random_se": [6, 7, 8, 9, 10, 14, 19, 20, 21, 22, 28, 29, 30, 31, 33, 37, 42, 43, 44, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 66, 67, 69, 70, 79, 86, 89, 92, 99, 100, 101, 102, 103, 108, 114, 115, 116, 117, 123, 124, 125, 126, 128, 132, 137, 138, 139, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 162, 163, 165, 166, 175, 182, 185, 188], "randomli": [6, 7, 8, 9, 10, 14, 19, 20, 21, 22, 28, 29, 30, 31, 33, 37, 42, 43, 44, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 66, 67, 69, 70, 77, 79, 86, 89, 92, 99, 100, 101, 102, 103, 108, 114, 115, 116, 117, 123, 124, 125, 126, 128, 132, 137, 138, 139, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 162, 163, 165, 166, 173, 175, 182, 185, 188], "rang": [57, 68, 69, 70, 78, 153, 164, 165, 166, 174], "rapid": [42, 67, 137, 163], "ratio": [44, 51, 71, 139, 147, 167], "re": [44, 86, 139, 182], "read": [0, 3, 4, 7, 8, 9, 10, 12, 13, 14, 15, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 90, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 109, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 186, 188], "recommend": [51, 147], "rectangl": [77, 173], "red": [51, 147], "ref": [32, 127], "refer": [4, 6, 7, 8, 9, 10, 12, 13, 14, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 42, 43, 44, 46, 47, 48, 49, 51, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 72, 77, 79, 81, 84, 86, 88, 89, 90, 92, 94, 99, 100, 101, 102, 103, 105, 106, 107, 108, 110, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 137, 138, 139, 142, 143, 144, 145, 147, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 168, 173, 175, 177, 180, 182, 184, 185, 186, 188, 191], "region": [6, 7, 8, 9, 10, 12, 13, 14, 19, 23, 24, 25, 26, 27, 30, 31, 32, 33, 34, 35, 36, 38, 42, 43, 44, 46, 47, 48, 49, 57, 62, 63, 64, 65, 67, 72, 77, 81, 84, 86, 89, 90, 99, 100, 101, 102, 103, 105, 107, 108, 114, 118, 119, 120, 121, 122, 125, 126, 127, 128, 129, 130, 131, 133, 137, 138, 139, 142, 143, 144, 145, 153, 158, 159, 160, 161, 163, 168, 173, 177, 180, 182, 185, 186, 191, 193, 194], "releas": [3, 4, 6, 7, 8, 9, 10, 13, 14, 17, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 33, 34, 35, 37, 39, 42, 43, 44, 47, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 66, 67, 73, 74, 75, 76, 77, 79, 82, 83, 86, 87, 88, 89, 92, 93, 94, 96, 99, 100, 101, 102, 103, 106, 107, 108, 111, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 128, 129, 130, 132, 134, 137, 138, 139, 141, 143, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 162, 163, 169, 170, 171, 172, 173, 175, 178, 179, 182, 183, 184, 185, 188], "remain": [48, 49, 53, 63, 67, 69, 70, 144, 145, 149, 159, 163, 165, 166], "remov": [13, 23, 24, 25, 47, 49, 107, 118, 119, 120, 143, 145], "render": [46, 48, 49, 50, 51, 53, 54, 56, 57, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 79, 141, 142, 144, 145, 146, 147, 149, 150, 152, 153, 155, 156, 157, 158, 159, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 175], "render_mod": [48, 49, 63, 67, 69, 144, 145, 159, 163, 165], "repeat": [7, 8, 9, 10, 42, 44, 67, 100, 101, 102, 103, 137, 139, 163], "report": [37, 66, 76, 79, 92, 132, 162, 172, 175, 188], "repositori": 194, "repres": [15, 64, 109, 160], "reproduc": [6, 7, 8, 9, 10, 14, 19, 20, 21, 22, 28, 29, 30, 31, 33, 37, 42, 43, 44, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 66, 67, 69, 70, 79, 86, 89, 92, 99, 100, 101, 102, 103, 108, 114, 115, 116, 117, 123, 124, 125, 126, 128, 132, 137, 138, 139, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 162, 163, 165, 166, 175, 182, 185, 188], "request": 194, "requir": [7, 8, 9, 10, 42, 44, 67, 76, 100, 101, 102, 103, 137, 139, 163, 172], "rescal": [37, 66, 79, 92, 132, 162, 175, 188], "research": 194, "resiz": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 188], "resolv": [3, 4, 7, 8, 9, 13, 17, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 33, 34, 35, 37, 42, 43, 44, 47, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 66, 67, 73, 74, 75, 76, 77, 79, 82, 86, 87, 88, 89, 92, 93, 94, 96, 100, 101, 102, 106, 107, 111, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 128, 129, 130, 132, 137, 138, 139, 141, 143, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 162, 163, 169, 170, 171, 172, 173, 175, 178, 182, 183, 184, 185, 188], "respect": [10, 103], "restrict": [53, 149], "result": [4, 10, 25, 35, 44, 53, 86, 88, 94, 103, 120, 130, 139, 149, 182, 184, 194], "results_cach": [44, 86, 139, 182], "return": [49, 64, 68, 145, 160, 164], "rgb": [49, 51, 68, 73, 74, 145, 147, 164, 169, 170], "rgba": [49, 51, 68, 145, 147, 164], "right": [57, 68, 78, 153, 164, 174], "roh": [72, 81, 168, 177], "roh_height": [72, 168], "row": [3, 5, 15, 19, 24, 25, 26, 34, 47, 51, 53, 81, 82, 83, 87, 91, 93, 95, 109, 114, 119, 120, 121, 129, 141, 143, 147, 149, 177, 178, 179, 183, 187], "row_height": [47, 51, 68, 141, 143, 147, 164], "run": [7, 8, 9, 10, 20, 21, 22, 28, 29, 30, 37, 42, 44, 54, 62, 64, 66, 67, 72, 79, 81, 86, 92, 100, 101, 102, 103, 115, 116, 117, 123, 124, 125, 132, 137, 139, 150, 158, 160, 162, 163, 168, 175, 177, 182, 188, 194], "same": [10, 60, 61, 68, 103, 156, 157, 164, 194], "sampl": [3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 17, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 33, 34, 35, 37, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 72, 73, 74, 75, 76, 77, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 99, 100, 101, 102, 103, 105, 106, 107, 108, 111, 113, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 128, 129, 130, 132, 134, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 165, 166, 168, 169, 170, 171, 172, 173, 175, 177, 178, 179, 182, 183, 184, 185, 186, 187, 188, 192, 194], "sample_id": [5, 95], "sample_indic": [7, 8, 9, 10, 42, 44, 67, 82, 86, 89, 100, 101, 102, 103, 137, 139, 163, 178, 182, 185], "sample_metadata": [0, 1, 2], "sample_queri": [3, 4, 7, 8, 9, 10, 13, 17, 19, 21, 22, 23, 24, 25, 28, 29, 31, 33, 34, 35, 37, 42, 43, 44, 47, 48, 49, 55, 56, 58, 59, 60, 61, 63, 64, 66, 67, 73, 74, 75, 76, 77, 82, 86, 87, 88, 89, 93, 94, 96, 100, 101, 102, 103, 106, 107, 111, 114, 116, 117, 118, 119, 120, 123, 124, 126, 128, 129, 130, 132, 137, 138, 139, 141, 143, 144, 145, 151, 152, 154, 155, 156, 157, 159, 160, 162, 163, 169, 170, 171, 172, 173, 178, 182, 183, 184, 185], "sample_query_opt": [3, 4, 6, 7, 8, 9, 13, 17, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 33, 34, 35, 37, 42, 43, 44, 47, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 66, 67, 73, 74, 75, 76, 77, 79, 82, 86, 87, 88, 89, 92, 93, 94, 96, 99, 100, 101, 102, 106, 107, 111, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 128, 129, 130, 132, 137, 138, 139, 141, 143, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 162, 163, 169, 170, 171, 172, 173, 175, 178, 182, 183, 184, 185, 188], "sample_set": [3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 17, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 33, 34, 35, 37, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 72, 73, 74, 75, 76, 77, 79, 81, 82, 86, 87, 88, 89, 91, 92, 93, 94, 96, 99, 100, 101, 102, 103, 105, 106, 107, 108, 111, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 128, 129, 130, 132, 134, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 168, 169, 170, 171, 172, 173, 175, 177, 178, 182, 183, 184, 185, 187, 188], "satellit": [76, 172], "scalar": [49, 51, 68, 145, 147, 164], "scale": [48, 49, 51, 53, 63, 64, 67, 68, 69, 70, 144, 145, 147, 149, 159, 160, 163, 164, 165, 166], "scale_both": [46, 47, 54, 56, 57, 59, 60, 61, 62, 65, 66, 72, 77, 78, 79, 142, 143, 150, 152, 153, 155, 156, 157, 158, 161, 162, 168, 173, 174, 175], "scale_height": [46, 47, 54, 56, 57, 59, 60, 61, 62, 65, 66, 72, 77, 78, 79, 142, 143, 150, 152, 153, 155, 156, 157, 158, 161, 162, 168, 173, 174, 175], "scale_width": [46, 47, 54, 56, 57, 59, 60, 61, 62, 65, 66, 72, 77, 78, 79, 142, 143, 150, 152, 153, 155, 156, 157, 158, 161, 162, 168, 173, 174, 175], "scan": [20, 22, 29, 30, 54, 62, 115, 117, 124, 125, 150, 158], "scatter": [46, 50, 65, 67, 69, 70, 72, 73, 74, 142, 146, 161, 163, 165, 166, 168, 169, 170], "scatter_3d": [70, 166], "scatter_mapbox": [73, 74, 169, 170], "scatter_plot_height": [50, 146], "scatter_plot_width": [50, 146], "scipi": [48, 49, 63, 144, 145, 159], "scope": [73, 169], "score": [37, 66, 68, 79, 92, 132, 162, 164, 175, 188], "script": [64, 160], "se": [6, 99], "seaborn": [50, 75, 146, 171], "second": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 141, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 188], "section": [48, 49, 63, 144, 145, 159], "see": [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 14, 19, 20, 21, 22, 28, 29, 30, 31, 32, 33, 37, 38, 42, 43, 44, 46, 47, 48, 49, 51, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 72, 77, 78, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103, 105, 106, 108, 114, 115, 116, 117, 123, 124, 125, 126, 127, 128, 132, 133, 137, 138, 139, 141, 142, 143, 144, 145, 147, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 165, 168, 173, 174, 175, 177, 180, 182, 183, 184, 185, 188, 194], "seed": [6, 7, 8, 9, 10, 14, 19, 20, 21, 22, 28, 29, 30, 31, 33, 37, 42, 43, 44, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 66, 67, 69, 70, 79, 86, 89, 92, 99, 100, 101, 102, 103, 108, 114, 115, 116, 117, 123, 124, 125, 126, 128, 132, 137, 138, 139, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 162, 163, 165, 166, 175, 182, 185, 188], "segreg": [21, 22, 55, 56, 77, 116, 117, 151, 152, 173], "select": [3, 4, 6, 7, 8, 9, 10, 13, 14, 17, 19, 20, 21, 22, 28, 29, 30, 31, 33, 34, 35, 37, 42, 43, 44, 47, 48, 49, 52, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 66, 67, 73, 74, 75, 76, 77, 79, 82, 86, 87, 88, 89, 92, 93, 94, 96, 99, 100, 101, 102, 103, 106, 107, 108, 111, 114, 115, 116, 117, 123, 124, 125, 126, 128, 129, 130, 132, 137, 138, 139, 141, 143, 144, 145, 148, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 162, 163, 169, 170, 171, 172, 173, 175, 178, 182, 183, 184, 185, 188], "separ": 194, "sequenc": [3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 42, 43, 44, 47, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 66, 67, 73, 74, 75, 76, 77, 79, 82, 83, 86, 87, 88, 89, 90, 92, 93, 94, 96, 99, 100, 101, 102, 103, 105, 106, 107, 108, 111, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 137, 138, 139, 141, 143, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 162, 163, 169, 170, 171, 172, 173, 175, 178, 179, 182, 183, 184, 185, 186, 188, 191, 194], "seri": [14, 40, 53, 108, 135, 149], "serv": [64, 160], "serve_scripts_loc": [64, 160], "server_mod": [64, 160], "server_port": [64, 160], "servic": 194, "set": [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 17, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 33, 34, 35, 37, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 72, 73, 74, 75, 76, 77, 79, 81, 82, 83, 86, 87, 88, 89, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103, 105, 106, 107, 108, 109, 111, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 128, 129, 130, 132, 134, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 168, 169, 170, 171, 172, 173, 175, 177, 178, 179, 182, 183, 184, 185, 187, 188, 194], "shape": [8, 15, 86, 101, 109, 182], "share": [30, 62, 125, 158], "shorter": [6, 7, 8, 9, 14, 19, 42, 43, 44, 67, 86, 89, 99, 100, 101, 102, 108, 114, 137, 138, 139, 163, 182, 185], "should": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 51, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 68, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 147, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 164, 168, 175, 177, 180, 182, 183, 184, 185, 188], "show": [17, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 111, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175], "shown": [77, 173], "simpl": [6, 7, 8, 9, 14, 19, 42, 43, 44, 67, 86, 89, 99, 100, 101, 102, 108, 114, 137, 138, 139, 163, 182, 185], "simple_whit": [50, 75, 146, 171], "singl": [3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 17, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 43, 44, 46, 47, 48, 49, 51, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 72, 73, 74, 75, 76, 77, 79, 81, 82, 84, 86, 87, 88, 89, 92, 93, 94, 96, 99, 100, 101, 102, 103, 105, 106, 107, 108, 111, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 138, 139, 141, 142, 143, 144, 145, 147, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 168, 169, 170, 171, 172, 173, 175, 177, 178, 180, 182, 183, 184, 185, 188], "site": [3, 4, 6, 7, 8, 9, 10, 14, 19, 20, 21, 22, 32, 38, 42, 43, 44, 48, 49, 54, 55, 56, 65, 67, 72, 77, 81, 84, 85, 86, 87, 88, 89, 93, 94, 96, 99, 100, 101, 102, 103, 108, 114, 115, 116, 117, 127, 133, 137, 138, 139, 144, 145, 150, 151, 152, 161, 163, 168, 173, 177, 180, 181, 182, 183, 184, 185, 193, 194], "site_class": [6, 7, 8, 9, 14, 19, 42, 43, 44, 67, 86, 89, 99, 100, 101, 102, 108, 114, 137, 138, 139, 163, 182, 185], "site_mask": [3, 4, 6, 7, 8, 9, 10, 14, 19, 20, 21, 22, 38, 42, 43, 44, 48, 49, 54, 55, 56, 65, 67, 72, 77, 81, 84, 85, 86, 87, 88, 89, 93, 94, 99, 100, 101, 102, 103, 108, 114, 115, 116, 117, 133, 137, 138, 139, 144, 145, 150, 151, 152, 161, 163, 168, 173, 177, 180, 181, 182, 183, 184, 185, 193], "site_mask_id": [3, 4, 6, 7, 8, 9, 10, 14, 19, 20, 21, 22, 38, 42, 43, 44, 48, 49, 54, 55, 56, 65, 67, 72, 77, 81, 84, 86, 87, 88, 89, 93, 94, 99, 100, 101, 102, 103, 108, 114, 115, 116, 117, 133, 137, 138, 139, 144, 145, 150, 151, 152, 161, 163, 168, 173, 177, 180, 182, 183, 184, 185], "size": [3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 43, 44, 46, 47, 48, 49, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 99, 100, 101, 102, 103, 105, 106, 107, 108, 109, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 138, 139, 142, 143, 144, 145, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 165, 166, 168, 169, 170, 171, 173, 174, 175, 177, 180, 182, 183, 184, 185, 188, 191, 193], "sizing_mod": [46, 47, 54, 56, 57, 59, 60, 61, 62, 65, 66, 72, 77, 78, 79, 142, 143, 150, 152, 153, 155, 156, 157, 158, 161, 162, 168, 173, 174, 175], "slightli": [44, 139], "snp": [7, 8, 9, 10, 28, 29, 30, 31, 32, 37, 42, 44, 49, 58, 59, 60, 61, 62, 64, 66, 67, 77, 79, 85, 86, 87, 88, 89, 90, 92, 96, 100, 101, 102, 103, 123, 124, 125, 126, 127, 132, 137, 139, 145, 154, 155, 156, 157, 158, 160, 162, 163, 173, 175, 181, 182, 183, 184, 185, 186, 188, 193], "snp_allele_frequ": [51, 147], "snp_allele_frequencies_advanc": [52, 53, 148, 149], "snp_colorscal": [49, 145], "snp_filter_min_maf": [49, 145], "snp_queri": [49, 145], "snp_row_height": [49, 145], "snp_transcript": [49, 145], "so": 194, "softwar": 194, "sofwar": 194, "some": [10, 37, 44, 66, 75, 86, 103, 132, 139, 162, 171, 182, 194], "sort": [75, 141, 171], "sourc": 194, "south": [73, 169], "space": [4, 17, 25, 35, 52, 88, 94, 111, 120, 130, 148, 184], "span": [37, 66, 79, 92, 132, 162, 175, 188], "spatial": [4, 25, 35, 88, 94, 120, 130, 184], "speci": 141, "specif": [10, 15, 40, 103, 109, 135], "specifi": [3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 43, 44, 46, 48, 49, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 99, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 138, 139, 142, 144, 145, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 188], "splice": [6, 7, 8, 9, 14, 19, 42, 43, 44, 67, 86, 89, 99, 100, 101, 102, 108, 114, 137, 138, 139, 163, 182, 185], "sqeuclidean": [7, 42, 48, 49, 67, 100, 137, 144, 145, 163], "standard": [6, 37, 43, 66, 68, 99, 132, 138, 162, 164], "standardization_bin": [37, 66, 132, 162], "standardization_diagnost": [37, 66, 132, 162], "standardization_n_bin": [37, 66, 132, 162], "start": [6, 7, 8, 9, 10, 12, 13, 14, 19, 23, 24, 25, 26, 27, 31, 32, 33, 34, 35, 36, 38, 42, 43, 44, 46, 47, 48, 49, 57, 63, 64, 65, 67, 72, 77, 81, 84, 86, 89, 90, 99, 100, 101, 102, 103, 105, 107, 108, 114, 118, 119, 120, 121, 122, 126, 127, 128, 129, 130, 131, 133, 137, 138, 139, 142, 143, 144, 145, 153, 159, 160, 161, 163, 168, 173, 177, 180, 182, 185, 186, 191, 193], "start_lost": [49, 145], "stat": [4, 25, 35, 88, 94, 120, 130, 184], "state": [72, 81, 168, 177], "statist": [14, 19, 20, 21, 22, 28, 29, 30, 37, 50, 54, 55, 56, 58, 59, 60, 61, 62, 92, 108, 114, 115, 116, 117, 123, 124, 125, 132, 146, 150, 151, 152, 154, 155, 156, 157, 158, 188], "statsmodel": [4, 25, 35, 88, 94, 120, 130, 184], "stop_gain": [49, 145], "stop_lost": [49, 145], "storag": 194, "str": [3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 105, 106, 107, 108, 109, 110, 111, 112, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 190, 191, 193], "stretch_both": [46, 47, 54, 56, 57, 59, 60, 61, 62, 65, 66, 72, 77, 78, 79, 142, 143, 150, 152, 153, 155, 156, 157, 158, 161, 162, 168, 173, 174, 175], "stretch_height": [46, 47, 54, 56, 57, 59, 60, 61, 62, 65, 66, 72, 77, 78, 79, 142, 143, 150, 152, 153, 155, 156, 157, 158, 161, 162, 168, 173, 174, 175], "stretch_width": [46, 47, 54, 56, 57, 59, 60, 61, 62, 65, 66, 72, 77, 78, 79, 142, 143, 150, 152, 153, 155, 156, 157, 158, 161, 162, 168, 173, 174, 175], "string": [3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 42, 43, 44, 46, 47, 48, 49, 51, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 72, 73, 74, 75, 76, 77, 79, 81, 82, 84, 86, 87, 88, 89, 90, 92, 93, 94, 96, 99, 100, 101, 102, 103, 105, 106, 107, 108, 111, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 137, 138, 139, 141, 142, 143, 144, 145, 147, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 168, 169, 170, 171, 172, 173, 175, 177, 178, 180, 182, 183, 184, 185, 186, 188], "studi": [41, 136], "style": [51, 147], "subgroup": [0, 194], "subject": 194, "subset": [10, 103], "substitut": [3, 93], "summari": [14, 19, 50, 108, 114, 146], "summaris": [37, 66, 79, 92, 132, 162, 175, 188], "suppli": [48, 49, 51, 52, 53, 63, 67, 144, 145, 147, 148, 149, 159, 163], "support": [0, 194], "surveil": [0, 1, 194], "svg": [46, 48, 49, 54, 56, 57, 59, 60, 61, 62, 63, 65, 66, 67, 69, 72, 79, 142, 144, 145, 150, 152, 153, 155, 156, 157, 158, 159, 161, 162, 163, 165, 168, 175], "sweep": [30, 62, 125, 158], "symbol": [48, 49, 53, 63, 67, 69, 70, 144, 145, 149, 159, 163, 165, 166], "tab": [64, 160], "tabl": [10, 17, 103, 111], "take": [10, 44, 86, 103, 139, 182], "target": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 188, 191, 193], "taxa": [53, 149], "taxon": [4, 15, 17, 23, 24, 25, 35, 52, 53, 76, 88, 94, 109, 111, 118, 119, 120, 130, 141, 148, 149, 172, 184], "templat": [50, 75, 146, 171], "tempor": [4, 25, 35, 88, 94, 120, 130, 184], "term": [0, 1, 2, 194], "text": [51, 52, 68, 147, 148, 164], "text_auto": [51, 68, 147, 164], "texttempl": [51, 68, 147, 164], "than": [3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 43, 44, 45, 48, 49, 51, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 72, 77, 79, 81, 84, 85, 86, 87, 88, 89, 92, 93, 94, 99, 100, 101, 102, 103, 105, 106, 107, 108, 112, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 138, 139, 140, 144, 145, 147, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 168, 173, 175, 177, 180, 181, 182, 183, 184, 185, 188, 194], "therefor": [44, 139], "thi": [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 43, 44, 47, 48, 49, 51, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 77, 79, 81, 82, 84, 86, 87, 88, 89, 92, 93, 94, 99, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 138, 139, 143, 144, 145, 147, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 168, 173, 175, 177, 178, 180, 182, 183, 184, 185, 188, 194], "thin": [7, 8, 9, 10, 42, 44, 67, 100, 101, 102, 103, 137, 139, 163], "thin_offset": [7, 8, 9, 10, 42, 44, 67, 100, 101, 102, 103, 137, 139, 163], "third": [86, 182], "thread": [37, 66, 79, 92, 132, 162, 175, 188], "threshold": [37, 49, 66, 132, 145, 162], "through": [3, 4, 7, 8, 9, 10, 12, 13, 14, 17, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 43, 44, 46, 47, 48, 49, 51, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 81, 82, 84, 86, 87, 88, 89, 92, 93, 94, 96, 100, 101, 102, 103, 105, 106, 107, 108, 111, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 138, 139, 141, 142, 143, 144, 145, 147, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 177, 178, 180, 182, 183, 184, 185, 188, 191, 193], "tilelay": [76, 172], "tileprovid": [76, 172], "time": [4, 10, 17, 25, 35, 44, 52, 53, 64, 86, 88, 94, 103, 111, 120, 130, 139, 148, 149, 160, 182, 184], "titl": [48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62, 63, 66, 67, 78, 79, 144, 145, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 162, 163, 174, 175], "title_font_s": [48, 49, 63, 67, 144, 145, 159, 163], "togeth": [46, 142], "toolbar": [57, 78, 153, 174], "toolbar_loc": [57, 78, 153, 174], "tooltip": [73, 74, 169, 170], "total": 141, "trace": [48, 49, 53, 60, 63, 67, 69, 70, 73, 144, 145, 149, 156, 159, 163, 165, 166, 169], "track": [36, 46, 47, 49, 54, 56, 57, 59, 60, 61, 62, 65, 66, 72, 77, 78, 79, 131, 142, 143, 145, 150, 152, 153, 155, 156, 157, 158, 161, 162, 168, 173, 174, 175], "track_height": [46, 47, 54, 56, 59, 60, 61, 62, 65, 66, 77, 79, 142, 143, 150, 152, 155, 156, 157, 158, 161, 162, 173, 175], "transcript": [3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 19, 23, 24, 25, 26, 27, 31, 32, 33, 34, 35, 36, 38, 42, 43, 44, 46, 47, 48, 49, 57, 63, 64, 65, 67, 72, 77, 78, 81, 84, 86, 87, 88, 89, 90, 93, 94, 99, 100, 101, 102, 103, 105, 107, 108, 114, 118, 119, 120, 121, 122, 126, 127, 128, 129, 130, 131, 133, 137, 138, 139, 142, 143, 144, 145, 153, 159, 160, 161, 163, 168, 173, 174, 177, 180, 182, 183, 184, 185, 186], "transit": [72, 81, 168, 177], "transmiss": 194, "transmit": 194, "tree": [42, 67, 137, 163], "true": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 42, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 84, 86, 87, 88, 89, 90, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 137, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 173, 174, 175, 177, 180, 182, 183, 184, 185, 186, 188, 191, 193], "truncat": [37, 66, 79, 92, 132, 162, 175, 188], "tupl": [3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 45, 46, 48, 49, 50, 52, 53, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 76, 77, 79, 80, 81, 84, 85, 86, 87, 88, 89, 92, 93, 94, 97, 99, 100, 101, 102, 103, 105, 106, 107, 108, 110, 112, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 140, 141, 142, 144, 145, 146, 148, 149, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 172, 173, 175, 176, 177, 180, 181, 182, 183, 184, 185, 188, 191, 193], "two": [6, 7, 20, 30, 42, 48, 49, 54, 62, 64, 67, 68, 99, 100, 115, 125, 137, 144, 145, 150, 158, 160, 163, 164], "type": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 24, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 69, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 119, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 165, 168, 175, 177, 180, 182, 183, 184, 185, 188], "u": 194, "underli": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 188], "uniontyp": [67, 163], "uniqu": [5, 51, 64, 95, 147, 160], "unit": [15, 76, 109, 172], "unless": [10, 103], "unpack": [26, 121, 190], "unroot": [67, 163], "untransl": [6, 7, 8, 9, 14, 19, 42, 43, 44, 67, 86, 89, 99, 100, 101, 102, 108, 114, 137, 138, 139, 163, 182, 185], "up": [0, 1, 2, 64, 160, 194], "upper": [68, 164], "url": [91, 187], "us": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 84, 85, 86, 87, 88, 89, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 105, 106, 107, 108, 111, 112, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 177, 180, 181, 182, 183, 184, 185, 188, 191, 193, 194], "usa": [73, 169], "usag": [7, 8, 9, 10, 42, 44, 67, 82, 86, 89, 100, 101, 102, 103, 137, 139, 163, 178, 182, 185], "use_thread": [37, 66, 79, 92, 132, 162, 175, 188], "user_guid": [46, 47, 54, 56, 57, 59, 60, 61, 62, 65, 66, 72, 77, 78, 79, 142, 143, 150, 152, 153, 155, 156, 157, 158, 161, 162, 168, 173, 174, 175], "utr_3prim": [6, 7, 8, 9, 14, 19, 42, 43, 44, 67, 86, 89, 99, 100, 101, 102, 108, 114, 137, 138, 139, 163, 182, 185], "utr_5prim": [6, 7, 8, 9, 14, 19, 42, 43, 44, 67, 86, 89, 99, 100, 101, 102, 108, 114, 137, 138, 139, 163, 182, 185], "v": [48, 49, 63, 67, 69, 144, 145, 159, 163, 165], "valid": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 188], "valu": [3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 76, 77, 79, 81, 84, 85, 86, 87, 88, 89, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 105, 106, 107, 108, 109, 112, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 170, 172, 173, 175, 177, 180, 181, 182, 183, 184, 185, 188, 191, 193], "vari": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 188], "variabl": [4, 25, 35, 48, 49, 50, 63, 64, 67, 69, 70, 73, 74, 75, 88, 94, 120, 130, 144, 145, 146, 159, 160, 163, 165, 166, 169, 170, 171, 184], "varianc": [13, 23, 24, 25, 44, 47, 49, 71, 107, 118, 119, 120, 139, 143, 145, 167], "variant": [3, 4, 8, 10, 25, 35, 37, 49, 51, 52, 53, 66, 79, 87, 88, 92, 93, 94, 98, 101, 103, 120, 130, 132, 141, 145, 147, 148, 149, 162, 175, 183, 184, 188], "variant_queri": [4, 25, 88, 94, 120, 184], "variat": [24, 25, 119, 120, 194], "vcf": [91, 187], "vector": [2, 194], "version": [44, 83, 139, 179], "via": 194, "view": [73, 90, 169, 186], "visibility_window": [90, 186], "visibl": [73, 90, 169, 186], "visualis": [64, 160], "vivax": 194, "wa": [39, 44, 64, 86, 134, 139, 160, 182], "wai": 194, "ward": [48, 49, 63, 144, 145, 159], "webgl": [46, 48, 49, 54, 56, 57, 59, 60, 61, 62, 63, 65, 66, 67, 69, 72, 79, 142, 144, 145, 150, 152, 153, 155, 156, 157, 158, 159, 161, 162, 163, 165, 168, 175], "weight": [48, 49, 63, 144, 145, 159], "were": [44, 139], "wg": 194, "when": [4, 5, 7, 8, 9, 10, 42, 44, 67, 86, 88, 94, 95, 100, 101, 102, 103, 137, 139, 163, 182, 184, 194], "where": [8, 19, 24, 25, 67, 81, 86, 101, 114, 119, 120, 163, 177, 182], "whether": [10, 103], "which": [3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 72, 73, 74, 77, 79, 81, 82, 84, 86, 87, 88, 89, 90, 92, 93, 94, 95, 99, 100, 101, 102, 103, 105, 106, 107, 108, 113, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 134, 136, 137, 138, 139, 142, 143, 144, 145, 146, 148, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 165, 166, 168, 169, 170, 173, 175, 177, 178, 180, 182, 183, 184, 185, 186, 188, 191, 193, 194], "whole": 194, "wide": [12, 20, 22, 29, 30, 54, 62, 105, 115, 117, 124, 125, 150, 158], "widget": [52, 76, 148, 172], "width": [46, 47, 48, 49, 50, 51, 53, 54, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 142, 143, 144, 145, 146, 147, 149, 150, 152, 153, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175], "wilson": [4, 25, 35, 88, 94, 120, 130, 184], "window": [20, 21, 22, 28, 29, 30, 37, 54, 55, 56, 58, 59, 60, 61, 62, 65, 66, 72, 79, 81, 92, 115, 116, 117, 123, 124, 125, 132, 150, 151, 152, 154, 155, 156, 157, 158, 161, 162, 168, 175, 177, 188], "window_s": [20, 21, 22, 28, 29, 30, 37, 54, 55, 56, 58, 59, 60, 61, 62, 65, 66, 72, 79, 81, 92, 115, 116, 117, 123, 124, 125, 132, 150, 151, 152, 154, 155, 156, 157, 158, 161, 162, 168, 175, 177, 188], "within": [6, 7, 8, 9, 10, 14, 19, 20, 21, 22, 28, 29, 30, 40, 42, 43, 44, 46, 54, 55, 56, 58, 59, 60, 61, 62, 64, 65, 67, 72, 81, 82, 86, 89, 99, 100, 101, 102, 103, 108, 114, 115, 116, 117, 123, 124, 125, 135, 137, 138, 139, 142, 150, 151, 152, 154, 155, 156, 157, 158, 160, 161, 163, 168, 177, 178, 182, 185, 194], "without": 194, "world": [73, 169], "worldimageri": [76, 172], "worldstreetmap": [76, 172], "worldtopomap": [76, 172], "would": [5, 95, 194], "write": [10, 103], "written": [10, 103], "x": [20, 22, 29, 30, 37, 51, 57, 67, 69, 70, 75, 78, 92, 115, 117, 124, 125, 132, 147, 153, 163, 165, 166, 171, 174, 188], "x_label": [51, 147], "x_rang": [57, 78, 153, 174], "xarrai": [12, 13, 23, 25, 105, 106, 107, 118, 120, 193], "xgap": 141, "xgridoff": [50, 75, 146, 171], "xp": [79, 92, 175, 188], "xpehh": [79, 92, 175, 188], "y": [46, 48, 49, 51, 63, 65, 67, 69, 70, 72, 142, 144, 145, 147, 159, 161, 163, 165, 166, 168], "y_label": [51, 147], "y_max": [46, 65, 72, 142, 161, 168], "year": [4, 17, 24, 25, 35, 75, 88, 94, 111, 119, 120, 130, 171, 184], "ygap": 141, "ygridoff": [50, 75, 146, 171], "you": [5, 60, 61, 95, 156, 157, 194], "your": [10, 44, 86, 103, 139, 182, 194], "z": [68, 70, 164, 166], "zarr": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 91, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 187, 188, 191, 193], "zmax": [68, 164], "zmin": [68, 164], "zoom": [52, 74, 76, 90, 148, 170, 172, 186]}, "titles": ["Af1", "Ag3", "Amin1", "malariagen_data.af1.Af1.aa_allele_frequencies", "malariagen_data.af1.Af1.aa_allele_frequencies_advanced", "malariagen_data.af1.Af1.add_extra_metadata", "malariagen_data.af1.Af1.average_fst", "malariagen_data.af1.Af1.biallelic_diplotype_pairwise_distances", "malariagen_data.af1.Af1.biallelic_diplotypes", "malariagen_data.af1.Af1.biallelic_snp_calls", "malariagen_data.af1.Af1.biallelic_snps_to_plink", "malariagen_data.af1.Af1.clear_extra_metadata", "malariagen_data.af1.Af1.cnv_coverage_calls", "malariagen_data.af1.Af1.cnv_hmm", "malariagen_data.af1.Af1.cohort_diversity_stats", "malariagen_data.af1.Af1.cohorts", "malariagen_data.af1.Af1.contigs", "malariagen_data.af1.Af1.count_samples", "malariagen_data.af1.Af1.coverage_calls_analysis_ids", "malariagen_data.af1.Af1.diversity_stats", "malariagen_data.af1.Af1.fst_gwss", "malariagen_data.af1.Af1.g123_calibration", "malariagen_data.af1.Af1.g123_gwss", "malariagen_data.af1.Af1.gene_cnv", "malariagen_data.af1.Af1.gene_cnv_frequencies", "malariagen_data.af1.Af1.gene_cnv_frequencies_advanced", "malariagen_data.af1.Af1.genome_features", "malariagen_data.af1.Af1.genome_sequence", "malariagen_data.af1.Af1.h12_calibration", "malariagen_data.af1.Af1.h12_gwss", "malariagen_data.af1.Af1.h1x_gwss", "malariagen_data.af1.Af1.haplotype_pairwise_distances", "malariagen_data.af1.Af1.haplotype_sites", "malariagen_data.af1.Af1.haplotypes", "malariagen_data.af1.Af1.haplotypes_frequencies", "malariagen_data.af1.Af1.haplotypes_frequencies_advanced", "malariagen_data.af1.Af1.igv", "malariagen_data.af1.Af1.ihs_gwss", "malariagen_data.af1.Af1.is_accessible", "malariagen_data.af1.Af1.lookup_release", "malariagen_data.af1.Af1.lookup_sample", "malariagen_data.af1.Af1.lookup_study", "malariagen_data.af1.Af1.njt", "malariagen_data.af1.Af1.pairwise_average_fst", "malariagen_data.af1.Af1.pca", "malariagen_data.af1.Af1.phasing_analysis_ids", "malariagen_data.af1.Af1.plot_cnv_hmm_coverage", "malariagen_data.af1.Af1.plot_cnv_hmm_heatmap", "malariagen_data.af1.Af1.plot_diplotype_clustering", "malariagen_data.af1.Af1.plot_diplotype_clustering_advanced", "malariagen_data.af1.Af1.plot_diversity_stats", "malariagen_data.af1.Af1.plot_frequencies_heatmap", "malariagen_data.af1.Af1.plot_frequencies_interactive_map", "malariagen_data.af1.Af1.plot_frequencies_time_series", "malariagen_data.af1.Af1.plot_fst_gwss", "malariagen_data.af1.Af1.plot_g123_calibration", "malariagen_data.af1.Af1.plot_g123_gwss", "malariagen_data.af1.Af1.plot_genes", "malariagen_data.af1.Af1.plot_h12_calibration", "malariagen_data.af1.Af1.plot_h12_gwss", "malariagen_data.af1.Af1.plot_h12_gwss_multi_overlay", "malariagen_data.af1.Af1.plot_h12_gwss_multi_panel", "malariagen_data.af1.Af1.plot_h1x_gwss", "malariagen_data.af1.Af1.plot_haplotype_clustering", "malariagen_data.af1.Af1.plot_haplotype_network", "malariagen_data.af1.Af1.plot_heterozygosity", "malariagen_data.af1.Af1.plot_ihs_gwss", "malariagen_data.af1.Af1.plot_njt", "malariagen_data.af1.Af1.plot_pairwise_average_fst", "malariagen_data.af1.Af1.plot_pca_coords", "malariagen_data.af1.Af1.plot_pca_coords_3d", "malariagen_data.af1.Af1.plot_pca_variance", "malariagen_data.af1.Af1.plot_roh", "malariagen_data.af1.Af1.plot_sample_location_geo", "malariagen_data.af1.Af1.plot_sample_location_mapbox", "malariagen_data.af1.Af1.plot_samples_bar", "malariagen_data.af1.Af1.plot_samples_interactive_map", "malariagen_data.af1.Af1.plot_snps", "malariagen_data.af1.Af1.plot_transcript", "malariagen_data.af1.Af1.plot_xpehh_gwss", "malariagen_data.af1.Af1.releases", "malariagen_data.af1.Af1.roh_hmm", "malariagen_data.af1.Af1.sample_metadata", "malariagen_data.af1.Af1.sample_sets", "malariagen_data.af1.Af1.site_annotations", "malariagen_data.af1.Af1.site_mask_ids", "malariagen_data.af1.Af1.snp_allele_counts", "malariagen_data.af1.Af1.snp_allele_frequencies", "malariagen_data.af1.Af1.snp_allele_frequencies_advanced", "malariagen_data.af1.Af1.snp_calls", "malariagen_data.af1.Af1.view_alignments", "malariagen_data.af1.Af1.wgs_data_catalog", "malariagen_data.af1.Af1.xpehh_gwss", "malariagen_data.ag3.Ag3.aa_allele_frequencies", "malariagen_data.ag3.Ag3.aa_allele_frequencies_advanced", "malariagen_data.ag3.Ag3.add_extra_metadata", "malariagen_data.ag3.Ag3.aim_calls", "malariagen_data.ag3.Ag3.aim_ids", "malariagen_data.ag3.Ag3.aim_variants", "malariagen_data.ag3.Ag3.average_fst", "malariagen_data.ag3.Ag3.biallelic_diplotype_pairwise_distances", "malariagen_data.ag3.Ag3.biallelic_diplotypes", "malariagen_data.ag3.Ag3.biallelic_snp_calls", "malariagen_data.ag3.Ag3.biallelic_snps_to_plink", "malariagen_data.ag3.Ag3.clear_extra_metadata", "malariagen_data.ag3.Ag3.cnv_coverage_calls", "malariagen_data.ag3.Ag3.cnv_discordant_read_calls", "malariagen_data.ag3.Ag3.cnv_hmm", "malariagen_data.ag3.Ag3.cohort_diversity_stats", "malariagen_data.ag3.Ag3.cohorts", "malariagen_data.ag3.Ag3.contigs", "malariagen_data.ag3.Ag3.count_samples", "malariagen_data.ag3.Ag3.coverage_calls_analysis_ids", "malariagen_data.ag3.Ag3.cross_metadata", "malariagen_data.ag3.Ag3.diversity_stats", "malariagen_data.ag3.Ag3.fst_gwss", "malariagen_data.ag3.Ag3.g123_calibration", "malariagen_data.ag3.Ag3.g123_gwss", "malariagen_data.ag3.Ag3.gene_cnv", "malariagen_data.ag3.Ag3.gene_cnv_frequencies", "malariagen_data.ag3.Ag3.gene_cnv_frequencies_advanced", "malariagen_data.ag3.Ag3.genome_features", "malariagen_data.ag3.Ag3.genome_sequence", "malariagen_data.ag3.Ag3.h12_calibration", "malariagen_data.ag3.Ag3.h12_gwss", "malariagen_data.ag3.Ag3.h1x_gwss", "malariagen_data.ag3.Ag3.haplotype_pairwise_distances", "malariagen_data.ag3.Ag3.haplotype_sites", "malariagen_data.ag3.Ag3.haplotypes", "malariagen_data.ag3.Ag3.haplotypes_frequencies", "malariagen_data.ag3.Ag3.haplotypes_frequencies_advanced", "malariagen_data.ag3.Ag3.igv", "malariagen_data.ag3.Ag3.ihs_gwss", "malariagen_data.ag3.Ag3.is_accessible", "malariagen_data.ag3.Ag3.lookup_release", "malariagen_data.ag3.Ag3.lookup_sample", "malariagen_data.ag3.Ag3.lookup_study", "malariagen_data.ag3.Ag3.njt", "malariagen_data.ag3.Ag3.pairwise_average_fst", "malariagen_data.ag3.Ag3.pca", "malariagen_data.ag3.Ag3.phasing_analysis_ids", "malariagen_data.ag3.Ag3.plot_aim_heatmap", "malariagen_data.ag3.Ag3.plot_cnv_hmm_coverage", "malariagen_data.ag3.Ag3.plot_cnv_hmm_heatmap", "malariagen_data.ag3.Ag3.plot_diplotype_clustering", "malariagen_data.ag3.Ag3.plot_diplotype_clustering_advanced", "malariagen_data.ag3.Ag3.plot_diversity_stats", "malariagen_data.ag3.Ag3.plot_frequencies_heatmap", "malariagen_data.ag3.Ag3.plot_frequencies_interactive_map", "malariagen_data.ag3.Ag3.plot_frequencies_time_series", "malariagen_data.ag3.Ag3.plot_fst_gwss", "malariagen_data.ag3.Ag3.plot_g123_calibration", "malariagen_data.ag3.Ag3.plot_g123_gwss", "malariagen_data.ag3.Ag3.plot_genes", "malariagen_data.ag3.Ag3.plot_h12_calibration", "malariagen_data.ag3.Ag3.plot_h12_gwss", "malariagen_data.ag3.Ag3.plot_h12_gwss_multi_overlay", "malariagen_data.ag3.Ag3.plot_h12_gwss_multi_panel", "malariagen_data.ag3.Ag3.plot_h1x_gwss", "malariagen_data.ag3.Ag3.plot_haplotype_clustering", "malariagen_data.ag3.Ag3.plot_haplotype_network", "malariagen_data.ag3.Ag3.plot_heterozygosity", "malariagen_data.ag3.Ag3.plot_ihs_gwss", "malariagen_data.ag3.Ag3.plot_njt", "malariagen_data.ag3.Ag3.plot_pairwise_average_fst", "malariagen_data.ag3.Ag3.plot_pca_coords", "malariagen_data.ag3.Ag3.plot_pca_coords_3d", "malariagen_data.ag3.Ag3.plot_pca_variance", "malariagen_data.ag3.Ag3.plot_roh", "malariagen_data.ag3.Ag3.plot_sample_location_geo", "malariagen_data.ag3.Ag3.plot_sample_location_mapbox", "malariagen_data.ag3.Ag3.plot_samples_bar", "malariagen_data.ag3.Ag3.plot_samples_interactive_map", "malariagen_data.ag3.Ag3.plot_snps", "malariagen_data.ag3.Ag3.plot_transcript", "malariagen_data.ag3.Ag3.plot_xpehh_gwss", "malariagen_data.ag3.Ag3.releases", "malariagen_data.ag3.Ag3.roh_hmm", "malariagen_data.ag3.Ag3.sample_metadata", "malariagen_data.ag3.Ag3.sample_sets", "malariagen_data.ag3.Ag3.site_annotations", "malariagen_data.ag3.Ag3.site_mask_ids", "malariagen_data.ag3.Ag3.snp_allele_counts", "malariagen_data.ag3.Ag3.snp_allele_frequencies", "malariagen_data.ag3.Ag3.snp_allele_frequencies_advanced", "malariagen_data.ag3.Ag3.snp_calls", "malariagen_data.ag3.Ag3.view_alignments", "malariagen_data.ag3.Ag3.wgs_data_catalog", "malariagen_data.ag3.Ag3.xpehh_gwss", "malariagen_data.amin1.Amin1.contigs", "malariagen_data.amin1.Amin1.genome_features", "malariagen_data.amin1.Amin1.genome_sequence", "malariagen_data.amin1.Amin1.sample_metadata", "malariagen_data.amin1.Amin1.snp_calls", "MalariaGEN Python API documentation"], "titleterms": {"aa_allele_frequ": [3, 93], "aa_allele_frequencies_advanc": [4, 94], "about": 194, "access": [0, 1, 2], "add_extra_metadata": [5, 95], "af1": [0, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92], "ag3": [1, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188], "aim": 1, "aim_cal": 96, "aim_id": 97, "aim_vari": 98, "amin1": [2, 189, 190, 191, 192, 193], "analysi": [0, 1], "api": 194, "average_fst": [6, 99], "basic": [0, 1], "biallelic_diplotyp": [8, 101], "biallelic_diplotype_pairwise_dist": [7, 100], "biallelic_snp_cal": [9, 102], "biallelic_snps_to_plink": [10, 103], "clear_extra_metadata": [11, 104], "cluster": [0, 1], "cnv": [0, 1], "cnv_coverage_cal": [12, 105], "cnv_discordant_read_cal": 106, "cnv_hmm": [13, 107], "cohort": [15, 109], "cohort_diversity_stat": [14, 108], "compon": [0, 1], "contig": [16, 110, 189], "count_sampl": [17, 111], "coverage_calls_analysis_id": [18, 112], "cross_metadata": 113, "data": [0, 1, 2, 194], "diplotyp": [0, 1], "distanc": [0, 1], "divers": [0, 1], "diversity_stat": [19, 114], "document": 194, "frequenc": [0, 1], "fst": [0, 1], "fst_gwss": [20, 115], "g123_calibr": [21, 116], "g123_gwss": [22, 117], "gene_cnv": [23, 118], "gene_cnv_frequ": [24, 119], "gene_cnv_frequencies_advanc": [25, 120], "genet": [0, 1], "genom": [0, 1, 2], "genome_featur": [26, 121, 190], "genome_sequ": [27, 122, 191], "h12_calibr": [28, 123], "h12_gwss": [29, 124], "h1x_gwss": [30, 125], "haplotyp": [0, 1, 33, 128], "haplotype_pairwise_dist": [31, 126], "haplotype_sit": [32, 127], "haplotypes_frequ": [34, 129], "haplotypes_frequencies_advanc": [35, 130], "heterozygos": [0, 1], "igv": [0, 1, 36, 131], "ihs_gwss": [37, 132], "instal": 194, "integr": [0, 1], "is_access": [38, 133], "join": [0, 1], "lookup_releas": [39, 134], "lookup_sampl": [40, 135], "lookup_studi": [41, 136], "malariagen": 194, "malariagen_data": [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193], "metadata": [0, 1, 2], "neighbour": [0, 1], "network": [0, 1], "njt": [0, 1, 42, 137], "note": [3, 5, 10, 34, 44, 51, 86, 87, 93, 95, 103, 129, 139, 147, 182, 183], "pairwise_average_fst": [43, 138], "paramet": [3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 101, 102, 103, 105, 106, 107, 108, 109, 111, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 177, 178, 179, 180, 182, 183, 184, 185, 186, 187, 188, 190, 191, 193], "pca": [0, 1, 44, 139], "phasing_analysis_id": [45, 140], "plot_aim_heatmap": 141, "plot_cnv_hmm_coverag": [46, 142], "plot_cnv_hmm_heatmap": [47, 143], "plot_diplotype_clust": [48, 144], "plot_diplotype_clustering_advanc": [49, 145], "plot_diversity_stat": [50, 146], "plot_frequencies_heatmap": [51, 147], "plot_frequencies_interactive_map": [52, 148], "plot_frequencies_time_seri": [53, 149], "plot_fst_gwss": [54, 150], "plot_g123_calibr": [55, 151], "plot_g123_gwss": [56, 152], "plot_gen": [57, 153], "plot_h12_calibr": [58, 154], "plot_h12_gwss": [59, 155], "plot_h12_gwss_multi_overlai": [60, 156], "plot_h12_gwss_multi_panel": [61, 157], "plot_h1x_gwss": [62, 158], "plot_haplotype_clust": [63, 159], "plot_haplotype_network": [64, 160], "plot_heterozygos": [65, 161], "plot_ihs_gwss": [66, 162], "plot_njt": [67, 163], "plot_pairwise_average_fst": [68, 164], "plot_pca_coord": [69, 165], "plot_pca_coords_3d": [70, 166], "plot_pca_vari": [71, 167], "plot_roh": [72, 168], "plot_sample_location_geo": [73, 169], "plot_sample_location_mapbox": [74, 170], "plot_samples_bar": [75, 171], "plot_samples_interactive_map": [76, 172], "plot_snp": [77, 173], "plot_transcript": [78, 174], "plot_xpehh_gwss": [79, 175], "princip": [0, 1], "python": 194, "refer": [0, 1, 2], "releas": [80, 176], "return": [3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 96, 98, 99, 100, 101, 102, 103, 105, 106, 107, 108, 109, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 141, 142, 143, 144, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 161, 162, 163, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 177, 178, 179, 180, 182, 183, 184, 185, 187, 188, 190, 191, 192, 193], "roh_hmm": [81, 177], "sampl": [0, 1, 2], "sample_metadata": [82, 178, 192], "sample_set": [83, 179], "scan": [0, 1], "select": [0, 1], "site_annot": [84, 180], "site_mask_id": [85, 181], "snp": [0, 1, 2], "snp_allele_count": [86, 182], "snp_allele_frequ": [87, 183], "snp_allele_frequencies_advanc": [88, 184], "snp_call": [89, 185, 193], "train": 194, "tree": [0, 1], "view_align": [90, 186], "viewer": [0, 1], "wgs_data_catalog": [91, 187], "wide": [0, 1], "xpehh_gwss": [92, 188]}}) \ No newline at end of file +Search.setIndex({"alltitles": {"AIM data access": [[1, "aim-data-access"]], "API documentation": [[194, "api-documentation"]], "About the data": [[194, "about-the-data"]], "Af1": [[0, null]], "Ag3": [[1, null]], "Amin1": [[2, null]], "Basic data access": [[0, "basic-data-access"], [1, "basic-data-access"]], "CNV data access": [[0, "cnv-data-access"], [1, "cnv-data-access"]], "Diplotype clustering": [[0, "diplotype-clustering"], [1, "diplotype-clustering"]], "Diversity analysis": [[0, "diversity-analysis"], [1, "diversity-analysis"]], "Fst analysis": [[0, "fst-analysis"], [1, "fst-analysis"]], "Genetic distance and neighbour-joining trees (NJT)": [[0, "genetic-distance-and-neighbour-joining-trees-njt"], [1, "genetic-distance-and-neighbour-joining-trees-njt"]], "Genome-wide selection scans": [[0, "genome-wide-selection-scans"], [1, "genome-wide-selection-scans"]], "Haplotype clustering and network analysis": [[0, "haplotype-clustering-and-network-analysis"], [1, "haplotype-clustering-and-network-analysis"]], "Haplotype data access": [[0, "haplotype-data-access"], [1, "haplotype-data-access"]], "Heterozygosity analysis": [[0, "heterozygosity-analysis"], [1, "heterozygosity-analysis"]], "Installation": [[194, "installation"]], "Integrative genomics viewer (IGV)": [[0, "integrative-genomics-viewer-igv"], [1, "integrative-genomics-viewer-igv"]], "MalariaGEN Python API documentation": [[194, null]], "Notes": [[3, "notes"], [5, "notes"], [10, "notes"], [34, "notes"], [44, "notes"], [51, "notes"], [86, "notes"], [87, "notes"], [93, "notes"], [95, "notes"], [103, "notes"], [129, "notes"], [139, "notes"], [147, "notes"], [182, "notes"], [183, "notes"]], "Parameters": [[3, "parameters"], [4, "parameters"], [5, "parameters"], [6, "parameters"], [7, "parameters"], [8, "parameters"], [9, "parameters"], [10, "parameters"], [12, "parameters"], [13, "parameters"], [14, "parameters"], [15, "parameters"], [17, "parameters"], [19, "parameters"], [20, "parameters"], [21, "parameters"], [22, "parameters"], [23, "parameters"], [24, "parameters"], [25, "parameters"], [26, "parameters"], [27, "parameters"], [28, "parameters"], [29, "parameters"], [30, "parameters"], [31, "parameters"], [32, "parameters"], [33, "parameters"], [34, "parameters"], [35, "parameters"], [36, "parameters"], [37, "parameters"], [38, "parameters"], [39, "parameters"], [40, "parameters"], [41, "parameters"], [42, "parameters"], [43, "parameters"], [44, "parameters"], [46, "parameters"], [47, "parameters"], [48, "parameters"], [49, "parameters"], [50, "parameters"], [51, "parameters"], [52, "parameters"], [53, "parameters"], [54, "parameters"], [55, "parameters"], [56, "parameters"], [57, "parameters"], [58, "parameters"], [59, "parameters"], [60, "parameters"], [61, "parameters"], [62, "parameters"], [63, "parameters"], [64, "parameters"], [65, "parameters"], [66, "parameters"], [67, "parameters"], [68, "parameters"], [69, "parameters"], [70, "parameters"], [71, "parameters"], [72, "parameters"], [73, "parameters"], [74, "parameters"], [75, "parameters"], [76, "parameters"], [77, "parameters"], [78, "parameters"], [79, "parameters"], [81, "parameters"], [82, "parameters"], [83, "parameters"], [84, "parameters"], [86, "parameters"], [87, "parameters"], [88, "parameters"], [89, "parameters"], [90, "parameters"], [91, "parameters"], [92, "parameters"], [93, "parameters"], [94, "parameters"], [95, "parameters"], [96, "parameters"], [98, "parameters"], [99, "parameters"], [100, "parameters"], [101, "parameters"], [102, "parameters"], [103, "parameters"], [105, "parameters"], [106, "parameters"], [107, "parameters"], [108, "parameters"], [109, "parameters"], [111, "parameters"], [114, "parameters"], [115, "parameters"], [116, "parameters"], [117, "parameters"], [118, "parameters"], [119, "parameters"], [120, "parameters"], [121, "parameters"], [122, "parameters"], [123, "parameters"], [124, "parameters"], [125, "parameters"], [126, "parameters"], [127, "parameters"], [128, "parameters"], [129, "parameters"], [130, "parameters"], [131, "parameters"], [132, "parameters"], [133, "parameters"], [134, "parameters"], [135, "parameters"], [136, "parameters"], [137, "parameters"], [138, "parameters"], [139, "parameters"], [141, "parameters"], [142, "parameters"], [143, "parameters"], [144, "parameters"], [145, "parameters"], [146, "parameters"], [147, "parameters"], [148, "parameters"], [149, "parameters"], [150, "parameters"], [151, "parameters"], [152, "parameters"], [153, "parameters"], [154, "parameters"], [155, "parameters"], [156, "parameters"], [157, "parameters"], [158, "parameters"], [159, "parameters"], [160, "parameters"], [161, "parameters"], [162, "parameters"], [163, "parameters"], [164, "parameters"], [165, "parameters"], [166, "parameters"], [167, "parameters"], [168, "parameters"], [169, "parameters"], [170, "parameters"], [171, "parameters"], [172, "parameters"], [173, "parameters"], [174, "parameters"], [175, "parameters"], [177, "parameters"], [178, "parameters"], [179, "parameters"], [180, "parameters"], [182, "parameters"], [183, "parameters"], [184, "parameters"], [185, "parameters"], [186, "parameters"], [187, "parameters"], [188, "parameters"], [190, "parameters"], [191, "parameters"], [193, "parameters"]], "Principal components analysis (PCA)": [[0, "principal-components-analysis-pca"], [1, "principal-components-analysis-pca"]], "Reference genome data access": [[0, "reference-genome-data-access"], [1, "reference-genome-data-access"], [2, "reference-genome-data-access"]], "Returns": [[3, "returns"], [4, "returns"], [6, "returns"], [7, "returns"], [8, "returns"], [9, "returns"], [10, "returns"], [12, "returns"], [13, "returns"], [14, "returns"], [15, "returns"], [17, "returns"], [19, "returns"], [20, "returns"], [21, "returns"], [22, "returns"], [23, "returns"], [24, "returns"], [25, "returns"], [26, "returns"], [27, "returns"], [28, "returns"], [29, "returns"], [30, "returns"], [31, "returns"], [32, "returns"], [33, "returns"], [34, "returns"], [35, "returns"], [36, "returns"], [37, "returns"], [38, "returns"], [39, "returns"], [40, "returns"], [41, "returns"], [42, "returns"], [43, "returns"], [44, "returns"], [46, "returns"], [47, "returns"], [48, "returns"], [50, "returns"], [51, "returns"], [52, "returns"], [53, "returns"], [54, "returns"], [55, "returns"], [56, "returns"], [57, "returns"], [58, "returns"], [59, "returns"], [60, "returns"], [61, "returns"], [62, "returns"], [63, "returns"], [65, "returns"], [66, "returns"], [67, "returns"], [69, "returns"], [70, "returns"], [71, "returns"], [72, "returns"], [73, "returns"], [74, "returns"], [75, "returns"], [76, "returns"], [77, "returns"], [78, "returns"], [79, "returns"], [81, "returns"], [82, "returns"], [83, "returns"], [84, "returns"], [86, "returns"], [87, "returns"], [88, "returns"], [89, "returns"], [91, "returns"], [92, "returns"], [93, "returns"], [94, "returns"], [96, "returns"], [98, "returns"], [99, "returns"], [100, "returns"], [101, "returns"], [102, "returns"], [103, "returns"], [105, "returns"], [106, "returns"], [107, "returns"], [108, "returns"], [109, "returns"], [111, "returns"], [113, "returns"], [114, "returns"], [115, "returns"], [116, "returns"], [117, "returns"], [118, "returns"], [119, "returns"], [120, "returns"], [121, "returns"], [122, "returns"], [123, "returns"], [124, "returns"], [125, "returns"], [126, "returns"], [127, "returns"], [128, "returns"], [129, "returns"], [130, "returns"], [131, "returns"], [132, "returns"], [133, "returns"], [134, "returns"], [135, "returns"], [136, "returns"], [137, "returns"], [138, "returns"], [139, "returns"], [141, "returns"], [142, "returns"], [143, "returns"], [144, "returns"], [146, "returns"], [147, "returns"], [148, "returns"], [149, "returns"], [150, "returns"], [151, "returns"], [152, "returns"], [153, "returns"], [154, "returns"], [155, "returns"], [156, "returns"], [157, "returns"], [158, "returns"], [159, "returns"], [161, "returns"], [162, "returns"], [163, "returns"], [165, "returns"], [166, "returns"], [167, "returns"], [168, "returns"], [169, "returns"], [170, "returns"], [171, "returns"], [172, "returns"], [173, "returns"], [174, "returns"], [175, "returns"], [177, "returns"], [178, "returns"], [179, "returns"], [180, "returns"], [182, "returns"], [183, "returns"], [184, "returns"], [185, "returns"], [187, "returns"], [188, "returns"], [190, "returns"], [191, "returns"], [192, "returns"], [193, "returns"]], "SNP and CNV frequency analysis": [[0, "snp-and-cnv-frequency-analysis"], [1, "snp-and-cnv-frequency-analysis"]], "SNP data access": [[0, "snp-data-access"], [1, "snp-data-access"], [2, "snp-data-access"]], "Sample metadata access": [[0, "sample-metadata-access"], [1, "sample-metadata-access"], [2, "sample-metadata-access"]], "Training": [[194, "training"]], "malariagen_data.af1.Af1.aa_allele_frequencies": [[3, null]], "malariagen_data.af1.Af1.aa_allele_frequencies_advanced": [[4, null]], "malariagen_data.af1.Af1.add_extra_metadata": [[5, null]], "malariagen_data.af1.Af1.average_fst": [[6, null]], "malariagen_data.af1.Af1.biallelic_diplotype_pairwise_distances": [[7, null]], "malariagen_data.af1.Af1.biallelic_diplotypes": [[8, null]], "malariagen_data.af1.Af1.biallelic_snp_calls": [[9, null]], "malariagen_data.af1.Af1.biallelic_snps_to_plink": [[10, null]], "malariagen_data.af1.Af1.clear_extra_metadata": [[11, null]], "malariagen_data.af1.Af1.cnv_coverage_calls": [[12, null]], "malariagen_data.af1.Af1.cnv_hmm": [[13, null]], "malariagen_data.af1.Af1.cohort_diversity_stats": [[14, null]], "malariagen_data.af1.Af1.cohorts": [[15, null]], "malariagen_data.af1.Af1.contigs": [[16, null]], "malariagen_data.af1.Af1.count_samples": [[17, null]], "malariagen_data.af1.Af1.coverage_calls_analysis_ids": [[18, null]], "malariagen_data.af1.Af1.diversity_stats": [[19, null]], "malariagen_data.af1.Af1.fst_gwss": [[20, null]], "malariagen_data.af1.Af1.g123_calibration": [[21, null]], "malariagen_data.af1.Af1.g123_gwss": [[22, null]], "malariagen_data.af1.Af1.gene_cnv": [[23, null]], "malariagen_data.af1.Af1.gene_cnv_frequencies": [[24, null]], "malariagen_data.af1.Af1.gene_cnv_frequencies_advanced": [[25, null]], "malariagen_data.af1.Af1.genome_features": [[26, null]], "malariagen_data.af1.Af1.genome_sequence": [[27, null]], "malariagen_data.af1.Af1.h12_calibration": [[28, null]], "malariagen_data.af1.Af1.h12_gwss": [[29, null]], "malariagen_data.af1.Af1.h1x_gwss": [[30, null]], "malariagen_data.af1.Af1.haplotype_pairwise_distances": [[31, null]], "malariagen_data.af1.Af1.haplotype_sites": [[32, null]], "malariagen_data.af1.Af1.haplotypes": [[33, null]], "malariagen_data.af1.Af1.haplotypes_frequencies": [[34, null]], "malariagen_data.af1.Af1.haplotypes_frequencies_advanced": [[35, null]], "malariagen_data.af1.Af1.igv": [[36, null]], "malariagen_data.af1.Af1.ihs_gwss": [[37, null]], "malariagen_data.af1.Af1.is_accessible": [[38, null]], "malariagen_data.af1.Af1.lookup_release": [[39, null]], "malariagen_data.af1.Af1.lookup_sample": [[40, null]], "malariagen_data.af1.Af1.lookup_study": [[41, null]], "malariagen_data.af1.Af1.njt": [[42, null]], "malariagen_data.af1.Af1.pairwise_average_fst": [[43, null]], "malariagen_data.af1.Af1.pca": [[44, null]], "malariagen_data.af1.Af1.phasing_analysis_ids": [[45, null]], "malariagen_data.af1.Af1.plot_cnv_hmm_coverage": [[46, null]], "malariagen_data.af1.Af1.plot_cnv_hmm_heatmap": [[47, null]], "malariagen_data.af1.Af1.plot_diplotype_clustering": [[48, null]], "malariagen_data.af1.Af1.plot_diplotype_clustering_advanced": [[49, null]], "malariagen_data.af1.Af1.plot_diversity_stats": [[50, null]], "malariagen_data.af1.Af1.plot_frequencies_heatmap": [[51, null]], "malariagen_data.af1.Af1.plot_frequencies_interactive_map": [[52, null]], "malariagen_data.af1.Af1.plot_frequencies_time_series": [[53, null]], "malariagen_data.af1.Af1.plot_fst_gwss": [[54, null]], "malariagen_data.af1.Af1.plot_g123_calibration": [[55, null]], "malariagen_data.af1.Af1.plot_g123_gwss": [[56, null]], "malariagen_data.af1.Af1.plot_genes": [[57, null]], "malariagen_data.af1.Af1.plot_h12_calibration": [[58, null]], "malariagen_data.af1.Af1.plot_h12_gwss": [[59, null]], "malariagen_data.af1.Af1.plot_h12_gwss_multi_overlay": [[60, null]], "malariagen_data.af1.Af1.plot_h12_gwss_multi_panel": [[61, null]], "malariagen_data.af1.Af1.plot_h1x_gwss": [[62, null]], "malariagen_data.af1.Af1.plot_haplotype_clustering": [[63, null]], "malariagen_data.af1.Af1.plot_haplotype_network": [[64, null]], "malariagen_data.af1.Af1.plot_heterozygosity": [[65, null]], "malariagen_data.af1.Af1.plot_ihs_gwss": [[66, null]], "malariagen_data.af1.Af1.plot_njt": [[67, null]], "malariagen_data.af1.Af1.plot_pairwise_average_fst": [[68, null]], "malariagen_data.af1.Af1.plot_pca_coords": [[69, null]], "malariagen_data.af1.Af1.plot_pca_coords_3d": [[70, null]], "malariagen_data.af1.Af1.plot_pca_variance": [[71, null]], "malariagen_data.af1.Af1.plot_roh": [[72, null]], "malariagen_data.af1.Af1.plot_sample_location_geo": [[73, null]], "malariagen_data.af1.Af1.plot_sample_location_mapbox": [[74, null]], "malariagen_data.af1.Af1.plot_samples_bar": [[75, null]], "malariagen_data.af1.Af1.plot_samples_interactive_map": [[76, null]], "malariagen_data.af1.Af1.plot_snps": [[77, null]], "malariagen_data.af1.Af1.plot_transcript": [[78, null]], "malariagen_data.af1.Af1.plot_xpehh_gwss": [[79, null]], "malariagen_data.af1.Af1.releases": [[80, null]], "malariagen_data.af1.Af1.roh_hmm": [[81, null]], "malariagen_data.af1.Af1.sample_metadata": [[82, null]], "malariagen_data.af1.Af1.sample_sets": [[83, null]], "malariagen_data.af1.Af1.site_annotations": [[84, null]], "malariagen_data.af1.Af1.site_mask_ids": [[85, null]], "malariagen_data.af1.Af1.snp_allele_counts": [[86, null]], "malariagen_data.af1.Af1.snp_allele_frequencies": [[87, null]], "malariagen_data.af1.Af1.snp_allele_frequencies_advanced": [[88, null]], "malariagen_data.af1.Af1.snp_calls": [[89, null]], "malariagen_data.af1.Af1.view_alignments": [[90, null]], "malariagen_data.af1.Af1.wgs_data_catalog": [[91, null]], "malariagen_data.af1.Af1.xpehh_gwss": [[92, null]], "malariagen_data.ag3.Ag3.aa_allele_frequencies": [[93, null]], "malariagen_data.ag3.Ag3.aa_allele_frequencies_advanced": [[94, null]], "malariagen_data.ag3.Ag3.add_extra_metadata": [[95, null]], "malariagen_data.ag3.Ag3.aim_calls": [[96, null]], "malariagen_data.ag3.Ag3.aim_ids": [[97, null]], "malariagen_data.ag3.Ag3.aim_variants": [[98, null]], "malariagen_data.ag3.Ag3.average_fst": [[99, null]], "malariagen_data.ag3.Ag3.biallelic_diplotype_pairwise_distances": [[100, null]], "malariagen_data.ag3.Ag3.biallelic_diplotypes": [[101, null]], "malariagen_data.ag3.Ag3.biallelic_snp_calls": [[102, null]], "malariagen_data.ag3.Ag3.biallelic_snps_to_plink": [[103, null]], "malariagen_data.ag3.Ag3.clear_extra_metadata": [[104, null]], "malariagen_data.ag3.Ag3.cnv_coverage_calls": [[105, null]], "malariagen_data.ag3.Ag3.cnv_discordant_read_calls": [[106, null]], "malariagen_data.ag3.Ag3.cnv_hmm": [[107, null]], "malariagen_data.ag3.Ag3.cohort_diversity_stats": [[108, null]], "malariagen_data.ag3.Ag3.cohorts": [[109, null]], "malariagen_data.ag3.Ag3.contigs": [[110, null]], "malariagen_data.ag3.Ag3.count_samples": [[111, null]], "malariagen_data.ag3.Ag3.coverage_calls_analysis_ids": [[112, null]], "malariagen_data.ag3.Ag3.cross_metadata": [[113, null]], "malariagen_data.ag3.Ag3.diversity_stats": [[114, null]], "malariagen_data.ag3.Ag3.fst_gwss": [[115, null]], "malariagen_data.ag3.Ag3.g123_calibration": [[116, null]], "malariagen_data.ag3.Ag3.g123_gwss": [[117, null]], "malariagen_data.ag3.Ag3.gene_cnv": [[118, null]], "malariagen_data.ag3.Ag3.gene_cnv_frequencies": [[119, null]], "malariagen_data.ag3.Ag3.gene_cnv_frequencies_advanced": [[120, null]], "malariagen_data.ag3.Ag3.genome_features": [[121, null]], "malariagen_data.ag3.Ag3.genome_sequence": [[122, null]], "malariagen_data.ag3.Ag3.h12_calibration": [[123, null]], "malariagen_data.ag3.Ag3.h12_gwss": [[124, null]], "malariagen_data.ag3.Ag3.h1x_gwss": [[125, null]], "malariagen_data.ag3.Ag3.haplotype_pairwise_distances": [[126, null]], "malariagen_data.ag3.Ag3.haplotype_sites": [[127, null]], "malariagen_data.ag3.Ag3.haplotypes": [[128, null]], "malariagen_data.ag3.Ag3.haplotypes_frequencies": [[129, null]], "malariagen_data.ag3.Ag3.haplotypes_frequencies_advanced": [[130, null]], "malariagen_data.ag3.Ag3.igv": [[131, null]], "malariagen_data.ag3.Ag3.ihs_gwss": [[132, null]], "malariagen_data.ag3.Ag3.is_accessible": [[133, null]], "malariagen_data.ag3.Ag3.lookup_release": [[134, null]], "malariagen_data.ag3.Ag3.lookup_sample": [[135, null]], "malariagen_data.ag3.Ag3.lookup_study": [[136, null]], "malariagen_data.ag3.Ag3.njt": [[137, null]], "malariagen_data.ag3.Ag3.pairwise_average_fst": [[138, null]], "malariagen_data.ag3.Ag3.pca": [[139, null]], "malariagen_data.ag3.Ag3.phasing_analysis_ids": [[140, null]], "malariagen_data.ag3.Ag3.plot_aim_heatmap": [[141, null]], "malariagen_data.ag3.Ag3.plot_cnv_hmm_coverage": [[142, null]], "malariagen_data.ag3.Ag3.plot_cnv_hmm_heatmap": [[143, null]], "malariagen_data.ag3.Ag3.plot_diplotype_clustering": [[144, null]], "malariagen_data.ag3.Ag3.plot_diplotype_clustering_advanced": [[145, null]], "malariagen_data.ag3.Ag3.plot_diversity_stats": [[146, null]], "malariagen_data.ag3.Ag3.plot_frequencies_heatmap": [[147, null]], "malariagen_data.ag3.Ag3.plot_frequencies_interactive_map": [[148, null]], "malariagen_data.ag3.Ag3.plot_frequencies_time_series": [[149, null]], "malariagen_data.ag3.Ag3.plot_fst_gwss": [[150, null]], "malariagen_data.ag3.Ag3.plot_g123_calibration": [[151, null]], "malariagen_data.ag3.Ag3.plot_g123_gwss": [[152, null]], "malariagen_data.ag3.Ag3.plot_genes": [[153, null]], "malariagen_data.ag3.Ag3.plot_h12_calibration": [[154, null]], "malariagen_data.ag3.Ag3.plot_h12_gwss": [[155, null]], "malariagen_data.ag3.Ag3.plot_h12_gwss_multi_overlay": [[156, null]], "malariagen_data.ag3.Ag3.plot_h12_gwss_multi_panel": [[157, null]], "malariagen_data.ag3.Ag3.plot_h1x_gwss": [[158, null]], "malariagen_data.ag3.Ag3.plot_haplotype_clustering": [[159, null]], "malariagen_data.ag3.Ag3.plot_haplotype_network": [[160, null]], "malariagen_data.ag3.Ag3.plot_heterozygosity": [[161, null]], "malariagen_data.ag3.Ag3.plot_ihs_gwss": [[162, null]], "malariagen_data.ag3.Ag3.plot_njt": [[163, null]], "malariagen_data.ag3.Ag3.plot_pairwise_average_fst": [[164, null]], "malariagen_data.ag3.Ag3.plot_pca_coords": [[165, null]], "malariagen_data.ag3.Ag3.plot_pca_coords_3d": [[166, null]], "malariagen_data.ag3.Ag3.plot_pca_variance": [[167, null]], "malariagen_data.ag3.Ag3.plot_roh": [[168, null]], "malariagen_data.ag3.Ag3.plot_sample_location_geo": [[169, null]], "malariagen_data.ag3.Ag3.plot_sample_location_mapbox": [[170, null]], "malariagen_data.ag3.Ag3.plot_samples_bar": [[171, null]], "malariagen_data.ag3.Ag3.plot_samples_interactive_map": [[172, null]], "malariagen_data.ag3.Ag3.plot_snps": [[173, null]], "malariagen_data.ag3.Ag3.plot_transcript": [[174, null]], "malariagen_data.ag3.Ag3.plot_xpehh_gwss": [[175, null]], "malariagen_data.ag3.Ag3.releases": [[176, null]], "malariagen_data.ag3.Ag3.roh_hmm": [[177, null]], "malariagen_data.ag3.Ag3.sample_metadata": [[178, null]], "malariagen_data.ag3.Ag3.sample_sets": [[179, null]], "malariagen_data.ag3.Ag3.site_annotations": [[180, null]], "malariagen_data.ag3.Ag3.site_mask_ids": [[181, null]], "malariagen_data.ag3.Ag3.snp_allele_counts": [[182, null]], "malariagen_data.ag3.Ag3.snp_allele_frequencies": [[183, null]], "malariagen_data.ag3.Ag3.snp_allele_frequencies_advanced": [[184, null]], "malariagen_data.ag3.Ag3.snp_calls": [[185, null]], "malariagen_data.ag3.Ag3.view_alignments": [[186, null]], "malariagen_data.ag3.Ag3.wgs_data_catalog": [[187, null]], "malariagen_data.ag3.Ag3.xpehh_gwss": [[188, null]], "malariagen_data.amin1.Amin1.contigs": [[189, null]], "malariagen_data.amin1.Amin1.genome_features": [[190, null]], "malariagen_data.amin1.Amin1.genome_sequence": [[191, null]], "malariagen_data.amin1.Amin1.sample_metadata": [[192, null]], "malariagen_data.amin1.Amin1.snp_calls": [[193, null]]}, "docnames": ["Af1", "Ag3", "Amin1", "generated/malariagen_data.af1.Af1.aa_allele_frequencies", "generated/malariagen_data.af1.Af1.aa_allele_frequencies_advanced", "generated/malariagen_data.af1.Af1.add_extra_metadata", "generated/malariagen_data.af1.Af1.average_fst", "generated/malariagen_data.af1.Af1.biallelic_diplotype_pairwise_distances", "generated/malariagen_data.af1.Af1.biallelic_diplotypes", "generated/malariagen_data.af1.Af1.biallelic_snp_calls", "generated/malariagen_data.af1.Af1.biallelic_snps_to_plink", "generated/malariagen_data.af1.Af1.clear_extra_metadata", "generated/malariagen_data.af1.Af1.cnv_coverage_calls", "generated/malariagen_data.af1.Af1.cnv_hmm", "generated/malariagen_data.af1.Af1.cohort_diversity_stats", "generated/malariagen_data.af1.Af1.cohorts", "generated/malariagen_data.af1.Af1.contigs", "generated/malariagen_data.af1.Af1.count_samples", "generated/malariagen_data.af1.Af1.coverage_calls_analysis_ids", "generated/malariagen_data.af1.Af1.diversity_stats", "generated/malariagen_data.af1.Af1.fst_gwss", "generated/malariagen_data.af1.Af1.g123_calibration", "generated/malariagen_data.af1.Af1.g123_gwss", "generated/malariagen_data.af1.Af1.gene_cnv", "generated/malariagen_data.af1.Af1.gene_cnv_frequencies", "generated/malariagen_data.af1.Af1.gene_cnv_frequencies_advanced", "generated/malariagen_data.af1.Af1.genome_features", "generated/malariagen_data.af1.Af1.genome_sequence", "generated/malariagen_data.af1.Af1.h12_calibration", "generated/malariagen_data.af1.Af1.h12_gwss", "generated/malariagen_data.af1.Af1.h1x_gwss", "generated/malariagen_data.af1.Af1.haplotype_pairwise_distances", "generated/malariagen_data.af1.Af1.haplotype_sites", "generated/malariagen_data.af1.Af1.haplotypes", "generated/malariagen_data.af1.Af1.haplotypes_frequencies", "generated/malariagen_data.af1.Af1.haplotypes_frequencies_advanced", "generated/malariagen_data.af1.Af1.igv", "generated/malariagen_data.af1.Af1.ihs_gwss", "generated/malariagen_data.af1.Af1.is_accessible", "generated/malariagen_data.af1.Af1.lookup_release", "generated/malariagen_data.af1.Af1.lookup_sample", "generated/malariagen_data.af1.Af1.lookup_study", "generated/malariagen_data.af1.Af1.njt", "generated/malariagen_data.af1.Af1.pairwise_average_fst", "generated/malariagen_data.af1.Af1.pca", "generated/malariagen_data.af1.Af1.phasing_analysis_ids", "generated/malariagen_data.af1.Af1.plot_cnv_hmm_coverage", "generated/malariagen_data.af1.Af1.plot_cnv_hmm_heatmap", "generated/malariagen_data.af1.Af1.plot_diplotype_clustering", "generated/malariagen_data.af1.Af1.plot_diplotype_clustering_advanced", "generated/malariagen_data.af1.Af1.plot_diversity_stats", "generated/malariagen_data.af1.Af1.plot_frequencies_heatmap", "generated/malariagen_data.af1.Af1.plot_frequencies_interactive_map", "generated/malariagen_data.af1.Af1.plot_frequencies_time_series", "generated/malariagen_data.af1.Af1.plot_fst_gwss", "generated/malariagen_data.af1.Af1.plot_g123_calibration", "generated/malariagen_data.af1.Af1.plot_g123_gwss", "generated/malariagen_data.af1.Af1.plot_genes", "generated/malariagen_data.af1.Af1.plot_h12_calibration", "generated/malariagen_data.af1.Af1.plot_h12_gwss", "generated/malariagen_data.af1.Af1.plot_h12_gwss_multi_overlay", "generated/malariagen_data.af1.Af1.plot_h12_gwss_multi_panel", "generated/malariagen_data.af1.Af1.plot_h1x_gwss", "generated/malariagen_data.af1.Af1.plot_haplotype_clustering", "generated/malariagen_data.af1.Af1.plot_haplotype_network", "generated/malariagen_data.af1.Af1.plot_heterozygosity", "generated/malariagen_data.af1.Af1.plot_ihs_gwss", "generated/malariagen_data.af1.Af1.plot_njt", "generated/malariagen_data.af1.Af1.plot_pairwise_average_fst", "generated/malariagen_data.af1.Af1.plot_pca_coords", "generated/malariagen_data.af1.Af1.plot_pca_coords_3d", "generated/malariagen_data.af1.Af1.plot_pca_variance", "generated/malariagen_data.af1.Af1.plot_roh", "generated/malariagen_data.af1.Af1.plot_sample_location_geo", "generated/malariagen_data.af1.Af1.plot_sample_location_mapbox", "generated/malariagen_data.af1.Af1.plot_samples_bar", "generated/malariagen_data.af1.Af1.plot_samples_interactive_map", "generated/malariagen_data.af1.Af1.plot_snps", "generated/malariagen_data.af1.Af1.plot_transcript", "generated/malariagen_data.af1.Af1.plot_xpehh_gwss", "generated/malariagen_data.af1.Af1.releases", "generated/malariagen_data.af1.Af1.roh_hmm", "generated/malariagen_data.af1.Af1.sample_metadata", "generated/malariagen_data.af1.Af1.sample_sets", "generated/malariagen_data.af1.Af1.site_annotations", "generated/malariagen_data.af1.Af1.site_mask_ids", "generated/malariagen_data.af1.Af1.snp_allele_counts", "generated/malariagen_data.af1.Af1.snp_allele_frequencies", "generated/malariagen_data.af1.Af1.snp_allele_frequencies_advanced", "generated/malariagen_data.af1.Af1.snp_calls", "generated/malariagen_data.af1.Af1.view_alignments", "generated/malariagen_data.af1.Af1.wgs_data_catalog", "generated/malariagen_data.af1.Af1.xpehh_gwss", "generated/malariagen_data.ag3.Ag3.aa_allele_frequencies", "generated/malariagen_data.ag3.Ag3.aa_allele_frequencies_advanced", "generated/malariagen_data.ag3.Ag3.add_extra_metadata", "generated/malariagen_data.ag3.Ag3.aim_calls", "generated/malariagen_data.ag3.Ag3.aim_ids", "generated/malariagen_data.ag3.Ag3.aim_variants", "generated/malariagen_data.ag3.Ag3.average_fst", "generated/malariagen_data.ag3.Ag3.biallelic_diplotype_pairwise_distances", "generated/malariagen_data.ag3.Ag3.biallelic_diplotypes", "generated/malariagen_data.ag3.Ag3.biallelic_snp_calls", "generated/malariagen_data.ag3.Ag3.biallelic_snps_to_plink", "generated/malariagen_data.ag3.Ag3.clear_extra_metadata", "generated/malariagen_data.ag3.Ag3.cnv_coverage_calls", "generated/malariagen_data.ag3.Ag3.cnv_discordant_read_calls", "generated/malariagen_data.ag3.Ag3.cnv_hmm", "generated/malariagen_data.ag3.Ag3.cohort_diversity_stats", "generated/malariagen_data.ag3.Ag3.cohorts", "generated/malariagen_data.ag3.Ag3.contigs", "generated/malariagen_data.ag3.Ag3.count_samples", "generated/malariagen_data.ag3.Ag3.coverage_calls_analysis_ids", "generated/malariagen_data.ag3.Ag3.cross_metadata", "generated/malariagen_data.ag3.Ag3.diversity_stats", "generated/malariagen_data.ag3.Ag3.fst_gwss", "generated/malariagen_data.ag3.Ag3.g123_calibration", "generated/malariagen_data.ag3.Ag3.g123_gwss", "generated/malariagen_data.ag3.Ag3.gene_cnv", "generated/malariagen_data.ag3.Ag3.gene_cnv_frequencies", "generated/malariagen_data.ag3.Ag3.gene_cnv_frequencies_advanced", "generated/malariagen_data.ag3.Ag3.genome_features", "generated/malariagen_data.ag3.Ag3.genome_sequence", "generated/malariagen_data.ag3.Ag3.h12_calibration", "generated/malariagen_data.ag3.Ag3.h12_gwss", "generated/malariagen_data.ag3.Ag3.h1x_gwss", "generated/malariagen_data.ag3.Ag3.haplotype_pairwise_distances", "generated/malariagen_data.ag3.Ag3.haplotype_sites", "generated/malariagen_data.ag3.Ag3.haplotypes", "generated/malariagen_data.ag3.Ag3.haplotypes_frequencies", "generated/malariagen_data.ag3.Ag3.haplotypes_frequencies_advanced", "generated/malariagen_data.ag3.Ag3.igv", "generated/malariagen_data.ag3.Ag3.ihs_gwss", "generated/malariagen_data.ag3.Ag3.is_accessible", "generated/malariagen_data.ag3.Ag3.lookup_release", "generated/malariagen_data.ag3.Ag3.lookup_sample", "generated/malariagen_data.ag3.Ag3.lookup_study", "generated/malariagen_data.ag3.Ag3.njt", "generated/malariagen_data.ag3.Ag3.pairwise_average_fst", "generated/malariagen_data.ag3.Ag3.pca", "generated/malariagen_data.ag3.Ag3.phasing_analysis_ids", "generated/malariagen_data.ag3.Ag3.plot_aim_heatmap", "generated/malariagen_data.ag3.Ag3.plot_cnv_hmm_coverage", "generated/malariagen_data.ag3.Ag3.plot_cnv_hmm_heatmap", "generated/malariagen_data.ag3.Ag3.plot_diplotype_clustering", "generated/malariagen_data.ag3.Ag3.plot_diplotype_clustering_advanced", "generated/malariagen_data.ag3.Ag3.plot_diversity_stats", "generated/malariagen_data.ag3.Ag3.plot_frequencies_heatmap", "generated/malariagen_data.ag3.Ag3.plot_frequencies_interactive_map", "generated/malariagen_data.ag3.Ag3.plot_frequencies_time_series", "generated/malariagen_data.ag3.Ag3.plot_fst_gwss", "generated/malariagen_data.ag3.Ag3.plot_g123_calibration", "generated/malariagen_data.ag3.Ag3.plot_g123_gwss", "generated/malariagen_data.ag3.Ag3.plot_genes", "generated/malariagen_data.ag3.Ag3.plot_h12_calibration", "generated/malariagen_data.ag3.Ag3.plot_h12_gwss", "generated/malariagen_data.ag3.Ag3.plot_h12_gwss_multi_overlay", "generated/malariagen_data.ag3.Ag3.plot_h12_gwss_multi_panel", "generated/malariagen_data.ag3.Ag3.plot_h1x_gwss", "generated/malariagen_data.ag3.Ag3.plot_haplotype_clustering", "generated/malariagen_data.ag3.Ag3.plot_haplotype_network", "generated/malariagen_data.ag3.Ag3.plot_heterozygosity", "generated/malariagen_data.ag3.Ag3.plot_ihs_gwss", "generated/malariagen_data.ag3.Ag3.plot_njt", "generated/malariagen_data.ag3.Ag3.plot_pairwise_average_fst", "generated/malariagen_data.ag3.Ag3.plot_pca_coords", "generated/malariagen_data.ag3.Ag3.plot_pca_coords_3d", "generated/malariagen_data.ag3.Ag3.plot_pca_variance", "generated/malariagen_data.ag3.Ag3.plot_roh", "generated/malariagen_data.ag3.Ag3.plot_sample_location_geo", "generated/malariagen_data.ag3.Ag3.plot_sample_location_mapbox", "generated/malariagen_data.ag3.Ag3.plot_samples_bar", "generated/malariagen_data.ag3.Ag3.plot_samples_interactive_map", "generated/malariagen_data.ag3.Ag3.plot_snps", "generated/malariagen_data.ag3.Ag3.plot_transcript", "generated/malariagen_data.ag3.Ag3.plot_xpehh_gwss", "generated/malariagen_data.ag3.Ag3.releases", "generated/malariagen_data.ag3.Ag3.roh_hmm", "generated/malariagen_data.ag3.Ag3.sample_metadata", "generated/malariagen_data.ag3.Ag3.sample_sets", "generated/malariagen_data.ag3.Ag3.site_annotations", "generated/malariagen_data.ag3.Ag3.site_mask_ids", "generated/malariagen_data.ag3.Ag3.snp_allele_counts", "generated/malariagen_data.ag3.Ag3.snp_allele_frequencies", "generated/malariagen_data.ag3.Ag3.snp_allele_frequencies_advanced", "generated/malariagen_data.ag3.Ag3.snp_calls", "generated/malariagen_data.ag3.Ag3.view_alignments", "generated/malariagen_data.ag3.Ag3.wgs_data_catalog", "generated/malariagen_data.ag3.Ag3.xpehh_gwss", "generated/malariagen_data.amin1.Amin1.contigs", "generated/malariagen_data.amin1.Amin1.genome_features", "generated/malariagen_data.amin1.Amin1.genome_sequence", "generated/malariagen_data.amin1.Amin1.sample_metadata", "generated/malariagen_data.amin1.Amin1.snp_calls", "index"], "envversion": {"sphinx": 64, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2}, "filenames": ["Af1.rst", "Ag3.rst", "Amin1.rst", "generated/malariagen_data.af1.Af1.aa_allele_frequencies.rst", "generated/malariagen_data.af1.Af1.aa_allele_frequencies_advanced.rst", "generated/malariagen_data.af1.Af1.add_extra_metadata.rst", "generated/malariagen_data.af1.Af1.average_fst.rst", "generated/malariagen_data.af1.Af1.biallelic_diplotype_pairwise_distances.rst", "generated/malariagen_data.af1.Af1.biallelic_diplotypes.rst", "generated/malariagen_data.af1.Af1.biallelic_snp_calls.rst", "generated/malariagen_data.af1.Af1.biallelic_snps_to_plink.rst", "generated/malariagen_data.af1.Af1.clear_extra_metadata.rst", "generated/malariagen_data.af1.Af1.cnv_coverage_calls.rst", "generated/malariagen_data.af1.Af1.cnv_hmm.rst", "generated/malariagen_data.af1.Af1.cohort_diversity_stats.rst", "generated/malariagen_data.af1.Af1.cohorts.rst", "generated/malariagen_data.af1.Af1.contigs.rst", "generated/malariagen_data.af1.Af1.count_samples.rst", "generated/malariagen_data.af1.Af1.coverage_calls_analysis_ids.rst", "generated/malariagen_data.af1.Af1.diversity_stats.rst", "generated/malariagen_data.af1.Af1.fst_gwss.rst", "generated/malariagen_data.af1.Af1.g123_calibration.rst", "generated/malariagen_data.af1.Af1.g123_gwss.rst", "generated/malariagen_data.af1.Af1.gene_cnv.rst", "generated/malariagen_data.af1.Af1.gene_cnv_frequencies.rst", "generated/malariagen_data.af1.Af1.gene_cnv_frequencies_advanced.rst", "generated/malariagen_data.af1.Af1.genome_features.rst", "generated/malariagen_data.af1.Af1.genome_sequence.rst", "generated/malariagen_data.af1.Af1.h12_calibration.rst", "generated/malariagen_data.af1.Af1.h12_gwss.rst", "generated/malariagen_data.af1.Af1.h1x_gwss.rst", "generated/malariagen_data.af1.Af1.haplotype_pairwise_distances.rst", "generated/malariagen_data.af1.Af1.haplotype_sites.rst", "generated/malariagen_data.af1.Af1.haplotypes.rst", "generated/malariagen_data.af1.Af1.haplotypes_frequencies.rst", "generated/malariagen_data.af1.Af1.haplotypes_frequencies_advanced.rst", "generated/malariagen_data.af1.Af1.igv.rst", "generated/malariagen_data.af1.Af1.ihs_gwss.rst", "generated/malariagen_data.af1.Af1.is_accessible.rst", "generated/malariagen_data.af1.Af1.lookup_release.rst", "generated/malariagen_data.af1.Af1.lookup_sample.rst", "generated/malariagen_data.af1.Af1.lookup_study.rst", "generated/malariagen_data.af1.Af1.njt.rst", "generated/malariagen_data.af1.Af1.pairwise_average_fst.rst", "generated/malariagen_data.af1.Af1.pca.rst", "generated/malariagen_data.af1.Af1.phasing_analysis_ids.rst", "generated/malariagen_data.af1.Af1.plot_cnv_hmm_coverage.rst", "generated/malariagen_data.af1.Af1.plot_cnv_hmm_heatmap.rst", "generated/malariagen_data.af1.Af1.plot_diplotype_clustering.rst", "generated/malariagen_data.af1.Af1.plot_diplotype_clustering_advanced.rst", "generated/malariagen_data.af1.Af1.plot_diversity_stats.rst", "generated/malariagen_data.af1.Af1.plot_frequencies_heatmap.rst", "generated/malariagen_data.af1.Af1.plot_frequencies_interactive_map.rst", "generated/malariagen_data.af1.Af1.plot_frequencies_time_series.rst", "generated/malariagen_data.af1.Af1.plot_fst_gwss.rst", "generated/malariagen_data.af1.Af1.plot_g123_calibration.rst", "generated/malariagen_data.af1.Af1.plot_g123_gwss.rst", "generated/malariagen_data.af1.Af1.plot_genes.rst", "generated/malariagen_data.af1.Af1.plot_h12_calibration.rst", "generated/malariagen_data.af1.Af1.plot_h12_gwss.rst", "generated/malariagen_data.af1.Af1.plot_h12_gwss_multi_overlay.rst", "generated/malariagen_data.af1.Af1.plot_h12_gwss_multi_panel.rst", "generated/malariagen_data.af1.Af1.plot_h1x_gwss.rst", "generated/malariagen_data.af1.Af1.plot_haplotype_clustering.rst", "generated/malariagen_data.af1.Af1.plot_haplotype_network.rst", "generated/malariagen_data.af1.Af1.plot_heterozygosity.rst", "generated/malariagen_data.af1.Af1.plot_ihs_gwss.rst", "generated/malariagen_data.af1.Af1.plot_njt.rst", "generated/malariagen_data.af1.Af1.plot_pairwise_average_fst.rst", "generated/malariagen_data.af1.Af1.plot_pca_coords.rst", "generated/malariagen_data.af1.Af1.plot_pca_coords_3d.rst", "generated/malariagen_data.af1.Af1.plot_pca_variance.rst", "generated/malariagen_data.af1.Af1.plot_roh.rst", "generated/malariagen_data.af1.Af1.plot_sample_location_geo.rst", "generated/malariagen_data.af1.Af1.plot_sample_location_mapbox.rst", "generated/malariagen_data.af1.Af1.plot_samples_bar.rst", "generated/malariagen_data.af1.Af1.plot_samples_interactive_map.rst", "generated/malariagen_data.af1.Af1.plot_snps.rst", "generated/malariagen_data.af1.Af1.plot_transcript.rst", "generated/malariagen_data.af1.Af1.plot_xpehh_gwss.rst", "generated/malariagen_data.af1.Af1.releases.rst", "generated/malariagen_data.af1.Af1.roh_hmm.rst", "generated/malariagen_data.af1.Af1.sample_metadata.rst", "generated/malariagen_data.af1.Af1.sample_sets.rst", "generated/malariagen_data.af1.Af1.site_annotations.rst", "generated/malariagen_data.af1.Af1.site_mask_ids.rst", "generated/malariagen_data.af1.Af1.snp_allele_counts.rst", "generated/malariagen_data.af1.Af1.snp_allele_frequencies.rst", "generated/malariagen_data.af1.Af1.snp_allele_frequencies_advanced.rst", "generated/malariagen_data.af1.Af1.snp_calls.rst", "generated/malariagen_data.af1.Af1.view_alignments.rst", "generated/malariagen_data.af1.Af1.wgs_data_catalog.rst", "generated/malariagen_data.af1.Af1.xpehh_gwss.rst", "generated/malariagen_data.ag3.Ag3.aa_allele_frequencies.rst", "generated/malariagen_data.ag3.Ag3.aa_allele_frequencies_advanced.rst", "generated/malariagen_data.ag3.Ag3.add_extra_metadata.rst", "generated/malariagen_data.ag3.Ag3.aim_calls.rst", "generated/malariagen_data.ag3.Ag3.aim_ids.rst", "generated/malariagen_data.ag3.Ag3.aim_variants.rst", "generated/malariagen_data.ag3.Ag3.average_fst.rst", "generated/malariagen_data.ag3.Ag3.biallelic_diplotype_pairwise_distances.rst", "generated/malariagen_data.ag3.Ag3.biallelic_diplotypes.rst", "generated/malariagen_data.ag3.Ag3.biallelic_snp_calls.rst", "generated/malariagen_data.ag3.Ag3.biallelic_snps_to_plink.rst", "generated/malariagen_data.ag3.Ag3.clear_extra_metadata.rst", "generated/malariagen_data.ag3.Ag3.cnv_coverage_calls.rst", "generated/malariagen_data.ag3.Ag3.cnv_discordant_read_calls.rst", "generated/malariagen_data.ag3.Ag3.cnv_hmm.rst", "generated/malariagen_data.ag3.Ag3.cohort_diversity_stats.rst", "generated/malariagen_data.ag3.Ag3.cohorts.rst", "generated/malariagen_data.ag3.Ag3.contigs.rst", "generated/malariagen_data.ag3.Ag3.count_samples.rst", "generated/malariagen_data.ag3.Ag3.coverage_calls_analysis_ids.rst", "generated/malariagen_data.ag3.Ag3.cross_metadata.rst", "generated/malariagen_data.ag3.Ag3.diversity_stats.rst", "generated/malariagen_data.ag3.Ag3.fst_gwss.rst", "generated/malariagen_data.ag3.Ag3.g123_calibration.rst", "generated/malariagen_data.ag3.Ag3.g123_gwss.rst", "generated/malariagen_data.ag3.Ag3.gene_cnv.rst", "generated/malariagen_data.ag3.Ag3.gene_cnv_frequencies.rst", "generated/malariagen_data.ag3.Ag3.gene_cnv_frequencies_advanced.rst", "generated/malariagen_data.ag3.Ag3.genome_features.rst", "generated/malariagen_data.ag3.Ag3.genome_sequence.rst", "generated/malariagen_data.ag3.Ag3.h12_calibration.rst", "generated/malariagen_data.ag3.Ag3.h12_gwss.rst", "generated/malariagen_data.ag3.Ag3.h1x_gwss.rst", "generated/malariagen_data.ag3.Ag3.haplotype_pairwise_distances.rst", "generated/malariagen_data.ag3.Ag3.haplotype_sites.rst", "generated/malariagen_data.ag3.Ag3.haplotypes.rst", "generated/malariagen_data.ag3.Ag3.haplotypes_frequencies.rst", "generated/malariagen_data.ag3.Ag3.haplotypes_frequencies_advanced.rst", "generated/malariagen_data.ag3.Ag3.igv.rst", "generated/malariagen_data.ag3.Ag3.ihs_gwss.rst", "generated/malariagen_data.ag3.Ag3.is_accessible.rst", "generated/malariagen_data.ag3.Ag3.lookup_release.rst", "generated/malariagen_data.ag3.Ag3.lookup_sample.rst", "generated/malariagen_data.ag3.Ag3.lookup_study.rst", "generated/malariagen_data.ag3.Ag3.njt.rst", "generated/malariagen_data.ag3.Ag3.pairwise_average_fst.rst", "generated/malariagen_data.ag3.Ag3.pca.rst", "generated/malariagen_data.ag3.Ag3.phasing_analysis_ids.rst", "generated/malariagen_data.ag3.Ag3.plot_aim_heatmap.rst", "generated/malariagen_data.ag3.Ag3.plot_cnv_hmm_coverage.rst", "generated/malariagen_data.ag3.Ag3.plot_cnv_hmm_heatmap.rst", "generated/malariagen_data.ag3.Ag3.plot_diplotype_clustering.rst", "generated/malariagen_data.ag3.Ag3.plot_diplotype_clustering_advanced.rst", "generated/malariagen_data.ag3.Ag3.plot_diversity_stats.rst", "generated/malariagen_data.ag3.Ag3.plot_frequencies_heatmap.rst", "generated/malariagen_data.ag3.Ag3.plot_frequencies_interactive_map.rst", "generated/malariagen_data.ag3.Ag3.plot_frequencies_time_series.rst", "generated/malariagen_data.ag3.Ag3.plot_fst_gwss.rst", "generated/malariagen_data.ag3.Ag3.plot_g123_calibration.rst", "generated/malariagen_data.ag3.Ag3.plot_g123_gwss.rst", "generated/malariagen_data.ag3.Ag3.plot_genes.rst", "generated/malariagen_data.ag3.Ag3.plot_h12_calibration.rst", "generated/malariagen_data.ag3.Ag3.plot_h12_gwss.rst", "generated/malariagen_data.ag3.Ag3.plot_h12_gwss_multi_overlay.rst", "generated/malariagen_data.ag3.Ag3.plot_h12_gwss_multi_panel.rst", "generated/malariagen_data.ag3.Ag3.plot_h1x_gwss.rst", "generated/malariagen_data.ag3.Ag3.plot_haplotype_clustering.rst", "generated/malariagen_data.ag3.Ag3.plot_haplotype_network.rst", "generated/malariagen_data.ag3.Ag3.plot_heterozygosity.rst", "generated/malariagen_data.ag3.Ag3.plot_ihs_gwss.rst", "generated/malariagen_data.ag3.Ag3.plot_njt.rst", "generated/malariagen_data.ag3.Ag3.plot_pairwise_average_fst.rst", "generated/malariagen_data.ag3.Ag3.plot_pca_coords.rst", "generated/malariagen_data.ag3.Ag3.plot_pca_coords_3d.rst", "generated/malariagen_data.ag3.Ag3.plot_pca_variance.rst", "generated/malariagen_data.ag3.Ag3.plot_roh.rst", "generated/malariagen_data.ag3.Ag3.plot_sample_location_geo.rst", "generated/malariagen_data.ag3.Ag3.plot_sample_location_mapbox.rst", "generated/malariagen_data.ag3.Ag3.plot_samples_bar.rst", "generated/malariagen_data.ag3.Ag3.plot_samples_interactive_map.rst", "generated/malariagen_data.ag3.Ag3.plot_snps.rst", "generated/malariagen_data.ag3.Ag3.plot_transcript.rst", "generated/malariagen_data.ag3.Ag3.plot_xpehh_gwss.rst", "generated/malariagen_data.ag3.Ag3.releases.rst", "generated/malariagen_data.ag3.Ag3.roh_hmm.rst", "generated/malariagen_data.ag3.Ag3.sample_metadata.rst", "generated/malariagen_data.ag3.Ag3.sample_sets.rst", "generated/malariagen_data.ag3.Ag3.site_annotations.rst", "generated/malariagen_data.ag3.Ag3.site_mask_ids.rst", "generated/malariagen_data.ag3.Ag3.snp_allele_counts.rst", "generated/malariagen_data.ag3.Ag3.snp_allele_frequencies.rst", "generated/malariagen_data.ag3.Ag3.snp_allele_frequencies_advanced.rst", "generated/malariagen_data.ag3.Ag3.snp_calls.rst", "generated/malariagen_data.ag3.Ag3.view_alignments.rst", "generated/malariagen_data.ag3.Ag3.wgs_data_catalog.rst", "generated/malariagen_data.ag3.Ag3.xpehh_gwss.rst", "generated/malariagen_data.amin1.Amin1.contigs.rst", "generated/malariagen_data.amin1.Amin1.genome_features.rst", "generated/malariagen_data.amin1.Amin1.genome_sequence.rst", "generated/malariagen_data.amin1.Amin1.sample_metadata.rst", "generated/malariagen_data.amin1.Amin1.snp_calls.rst", "index.rst"], "indexentries": {"aa_allele_frequencies() (malariagen_data.af1.af1 method)": [[3, "malariagen_data.af1.Af1.aa_allele_frequencies", false]], "aa_allele_frequencies() (malariagen_data.ag3.ag3 method)": [[93, "malariagen_data.ag3.Ag3.aa_allele_frequencies", false]], "aa_allele_frequencies_advanced() (malariagen_data.af1.af1 method)": [[4, "malariagen_data.af1.Af1.aa_allele_frequencies_advanced", false]], "aa_allele_frequencies_advanced() (malariagen_data.ag3.ag3 method)": [[94, "malariagen_data.ag3.Ag3.aa_allele_frequencies_advanced", false]], "add_extra_metadata() (malariagen_data.af1.af1 method)": [[5, "malariagen_data.af1.Af1.add_extra_metadata", false]], "add_extra_metadata() (malariagen_data.ag3.ag3 method)": [[95, "malariagen_data.ag3.Ag3.add_extra_metadata", false]], "aim_calls() (malariagen_data.ag3.ag3 method)": [[96, "malariagen_data.ag3.Ag3.aim_calls", false]], "aim_ids (malariagen_data.ag3.ag3 property)": [[97, "malariagen_data.ag3.Ag3.aim_ids", false]], "aim_variants() (malariagen_data.ag3.ag3 method)": [[98, "malariagen_data.ag3.Ag3.aim_variants", false]], "average_fst() (malariagen_data.af1.af1 method)": [[6, "malariagen_data.af1.Af1.average_fst", false]], "average_fst() (malariagen_data.ag3.ag3 method)": [[99, "malariagen_data.ag3.Ag3.average_fst", false]], "biallelic_diplotype_pairwise_distances() (malariagen_data.af1.af1 method)": [[7, "malariagen_data.af1.Af1.biallelic_diplotype_pairwise_distances", false]], "biallelic_diplotype_pairwise_distances() (malariagen_data.ag3.ag3 method)": [[100, "malariagen_data.ag3.Ag3.biallelic_diplotype_pairwise_distances", false]], "biallelic_diplotypes() (malariagen_data.af1.af1 method)": [[8, "malariagen_data.af1.Af1.biallelic_diplotypes", false]], "biallelic_diplotypes() (malariagen_data.ag3.ag3 method)": [[101, "malariagen_data.ag3.Ag3.biallelic_diplotypes", false]], "biallelic_snp_calls() (malariagen_data.af1.af1 method)": [[9, "malariagen_data.af1.Af1.biallelic_snp_calls", false]], "biallelic_snp_calls() (malariagen_data.ag3.ag3 method)": [[102, "malariagen_data.ag3.Ag3.biallelic_snp_calls", false]], "biallelic_snps_to_plink() (malariagen_data.af1.af1 method)": [[10, "malariagen_data.af1.Af1.biallelic_snps_to_plink", false]], "biallelic_snps_to_plink() (malariagen_data.ag3.ag3 method)": [[103, "malariagen_data.ag3.Ag3.biallelic_snps_to_plink", false]], "clear_extra_metadata() (malariagen_data.af1.af1 method)": [[11, "malariagen_data.af1.Af1.clear_extra_metadata", false]], "clear_extra_metadata() (malariagen_data.ag3.ag3 method)": [[104, "malariagen_data.ag3.Ag3.clear_extra_metadata", false]], "cnv_coverage_calls() (malariagen_data.af1.af1 method)": [[12, "malariagen_data.af1.Af1.cnv_coverage_calls", false]], "cnv_coverage_calls() (malariagen_data.ag3.ag3 method)": [[105, "malariagen_data.ag3.Ag3.cnv_coverage_calls", false]], "cnv_discordant_read_calls() (malariagen_data.ag3.ag3 method)": [[106, "malariagen_data.ag3.Ag3.cnv_discordant_read_calls", false]], "cnv_hmm() (malariagen_data.af1.af1 method)": [[13, "malariagen_data.af1.Af1.cnv_hmm", false]], "cnv_hmm() (malariagen_data.ag3.ag3 method)": [[107, "malariagen_data.ag3.Ag3.cnv_hmm", false]], "cohort_diversity_stats() (malariagen_data.af1.af1 method)": [[14, "malariagen_data.af1.Af1.cohort_diversity_stats", false]], "cohort_diversity_stats() (malariagen_data.ag3.ag3 method)": [[108, "malariagen_data.ag3.Ag3.cohort_diversity_stats", false]], "cohorts() (malariagen_data.af1.af1 method)": [[15, "malariagen_data.af1.Af1.cohorts", false]], "cohorts() (malariagen_data.ag3.ag3 method)": [[109, "malariagen_data.ag3.Ag3.cohorts", false]], "contigs (malariagen_data.af1.af1 property)": [[16, "malariagen_data.af1.Af1.contigs", false]], "contigs (malariagen_data.ag3.ag3 property)": [[110, "malariagen_data.ag3.Ag3.contigs", false]], "contigs (malariagen_data.amin1.amin1 property)": [[189, "malariagen_data.amin1.Amin1.contigs", false]], "count_samples() (malariagen_data.af1.af1 method)": [[17, "malariagen_data.af1.Af1.count_samples", false]], "count_samples() (malariagen_data.ag3.ag3 method)": [[111, "malariagen_data.ag3.Ag3.count_samples", false]], "coverage_calls_analysis_ids (malariagen_data.af1.af1 property)": [[18, "malariagen_data.af1.Af1.coverage_calls_analysis_ids", false]], "coverage_calls_analysis_ids (malariagen_data.ag3.ag3 property)": [[112, "malariagen_data.ag3.Ag3.coverage_calls_analysis_ids", false]], "cross_metadata() (malariagen_data.ag3.ag3 method)": [[113, "malariagen_data.ag3.Ag3.cross_metadata", false]], "diversity_stats() (malariagen_data.af1.af1 method)": [[19, "malariagen_data.af1.Af1.diversity_stats", false]], "diversity_stats() (malariagen_data.ag3.ag3 method)": [[114, "malariagen_data.ag3.Ag3.diversity_stats", false]], "fst_gwss() (malariagen_data.af1.af1 method)": [[20, "malariagen_data.af1.Af1.fst_gwss", false]], "fst_gwss() (malariagen_data.ag3.ag3 method)": [[115, "malariagen_data.ag3.Ag3.fst_gwss", false]], "g123_calibration() (malariagen_data.af1.af1 method)": [[21, "malariagen_data.af1.Af1.g123_calibration", false]], "g123_calibration() (malariagen_data.ag3.ag3 method)": [[116, "malariagen_data.ag3.Ag3.g123_calibration", false]], "g123_gwss() (malariagen_data.af1.af1 method)": [[22, "malariagen_data.af1.Af1.g123_gwss", false]], "g123_gwss() (malariagen_data.ag3.ag3 method)": [[117, "malariagen_data.ag3.Ag3.g123_gwss", false]], "gene_cnv() (malariagen_data.af1.af1 method)": [[23, "malariagen_data.af1.Af1.gene_cnv", false]], "gene_cnv() (malariagen_data.ag3.ag3 method)": [[118, "malariagen_data.ag3.Ag3.gene_cnv", false]], "gene_cnv_frequencies() (malariagen_data.af1.af1 method)": [[24, "malariagen_data.af1.Af1.gene_cnv_frequencies", false]], "gene_cnv_frequencies() (malariagen_data.ag3.ag3 method)": [[119, "malariagen_data.ag3.Ag3.gene_cnv_frequencies", false]], "gene_cnv_frequencies_advanced() (malariagen_data.af1.af1 method)": [[25, "malariagen_data.af1.Af1.gene_cnv_frequencies_advanced", false]], "gene_cnv_frequencies_advanced() (malariagen_data.ag3.ag3 method)": [[120, "malariagen_data.ag3.Ag3.gene_cnv_frequencies_advanced", false]], "genome_features() (malariagen_data.af1.af1 method)": [[26, "malariagen_data.af1.Af1.genome_features", false]], "genome_features() (malariagen_data.ag3.ag3 method)": [[121, "malariagen_data.ag3.Ag3.genome_features", false]], "genome_features() (malariagen_data.amin1.amin1 method)": [[190, "malariagen_data.amin1.Amin1.genome_features", false]], "genome_sequence() (malariagen_data.af1.af1 method)": [[27, "malariagen_data.af1.Af1.genome_sequence", false]], "genome_sequence() (malariagen_data.ag3.ag3 method)": [[122, "malariagen_data.ag3.Ag3.genome_sequence", false]], "genome_sequence() (malariagen_data.amin1.amin1 method)": [[191, "malariagen_data.amin1.Amin1.genome_sequence", false]], "h12_calibration() (malariagen_data.af1.af1 method)": [[28, "malariagen_data.af1.Af1.h12_calibration", false]], "h12_calibration() (malariagen_data.ag3.ag3 method)": [[123, "malariagen_data.ag3.Ag3.h12_calibration", false]], "h12_gwss() (malariagen_data.af1.af1 method)": [[29, "malariagen_data.af1.Af1.h12_gwss", false]], "h12_gwss() (malariagen_data.ag3.ag3 method)": [[124, "malariagen_data.ag3.Ag3.h12_gwss", false]], "h1x_gwss() (malariagen_data.af1.af1 method)": [[30, "malariagen_data.af1.Af1.h1x_gwss", false]], "h1x_gwss() (malariagen_data.ag3.ag3 method)": [[125, "malariagen_data.ag3.Ag3.h1x_gwss", false]], "haplotype_pairwise_distances() (malariagen_data.af1.af1 method)": [[31, "malariagen_data.af1.Af1.haplotype_pairwise_distances", false]], "haplotype_pairwise_distances() (malariagen_data.ag3.ag3 method)": [[126, "malariagen_data.ag3.Ag3.haplotype_pairwise_distances", false]], "haplotype_sites() (malariagen_data.af1.af1 method)": [[32, "malariagen_data.af1.Af1.haplotype_sites", false]], "haplotype_sites() (malariagen_data.ag3.ag3 method)": [[127, "malariagen_data.ag3.Ag3.haplotype_sites", false]], "haplotypes() (malariagen_data.af1.af1 method)": [[33, "malariagen_data.af1.Af1.haplotypes", false]], "haplotypes() (malariagen_data.ag3.ag3 method)": [[128, "malariagen_data.ag3.Ag3.haplotypes", false]], "haplotypes_frequencies() (malariagen_data.af1.af1 method)": [[34, "malariagen_data.af1.Af1.haplotypes_frequencies", false]], "haplotypes_frequencies() (malariagen_data.ag3.ag3 method)": [[129, "malariagen_data.ag3.Ag3.haplotypes_frequencies", false]], "haplotypes_frequencies_advanced() (malariagen_data.af1.af1 method)": [[35, "malariagen_data.af1.Af1.haplotypes_frequencies_advanced", false]], "haplotypes_frequencies_advanced() (malariagen_data.ag3.ag3 method)": [[130, "malariagen_data.ag3.Ag3.haplotypes_frequencies_advanced", false]], "igv() (malariagen_data.af1.af1 method)": [[36, "malariagen_data.af1.Af1.igv", false]], "igv() (malariagen_data.ag3.ag3 method)": [[131, "malariagen_data.ag3.Ag3.igv", false]], "ihs_gwss() (malariagen_data.af1.af1 method)": [[37, "malariagen_data.af1.Af1.ihs_gwss", false]], "ihs_gwss() (malariagen_data.ag3.ag3 method)": [[132, "malariagen_data.ag3.Ag3.ihs_gwss", false]], "is_accessible() (malariagen_data.af1.af1 method)": [[38, "malariagen_data.af1.Af1.is_accessible", false]], "is_accessible() (malariagen_data.ag3.ag3 method)": [[133, "malariagen_data.ag3.Ag3.is_accessible", false]], "lookup_release() (malariagen_data.af1.af1 method)": [[39, "malariagen_data.af1.Af1.lookup_release", false]], "lookup_release() (malariagen_data.ag3.ag3 method)": [[134, "malariagen_data.ag3.Ag3.lookup_release", false]], "lookup_sample() (malariagen_data.af1.af1 method)": [[40, "malariagen_data.af1.Af1.lookup_sample", false]], "lookup_sample() (malariagen_data.ag3.ag3 method)": [[135, "malariagen_data.ag3.Ag3.lookup_sample", false]], "lookup_study() (malariagen_data.af1.af1 method)": [[41, "malariagen_data.af1.Af1.lookup_study", false]], "lookup_study() (malariagen_data.ag3.ag3 method)": [[136, "malariagen_data.ag3.Ag3.lookup_study", false]], "njt() (malariagen_data.af1.af1 method)": [[42, "malariagen_data.af1.Af1.njt", false]], "njt() (malariagen_data.ag3.ag3 method)": [[137, "malariagen_data.ag3.Ag3.njt", false]], "pairwise_average_fst() (malariagen_data.af1.af1 method)": [[43, "malariagen_data.af1.Af1.pairwise_average_fst", false]], "pairwise_average_fst() (malariagen_data.ag3.ag3 method)": [[138, "malariagen_data.ag3.Ag3.pairwise_average_fst", false]], "pca() (malariagen_data.af1.af1 method)": [[44, "malariagen_data.af1.Af1.pca", false]], "pca() (malariagen_data.ag3.ag3 method)": [[139, "malariagen_data.ag3.Ag3.pca", false]], "phasing_analysis_ids (malariagen_data.af1.af1 property)": [[45, "malariagen_data.af1.Af1.phasing_analysis_ids", false]], "phasing_analysis_ids (malariagen_data.ag3.ag3 property)": [[140, "malariagen_data.ag3.Ag3.phasing_analysis_ids", false]], "plot_aim_heatmap() (malariagen_data.ag3.ag3 method)": [[141, "malariagen_data.ag3.Ag3.plot_aim_heatmap", false]], "plot_cnv_hmm_coverage() (malariagen_data.af1.af1 method)": [[46, "malariagen_data.af1.Af1.plot_cnv_hmm_coverage", false]], "plot_cnv_hmm_coverage() (malariagen_data.ag3.ag3 method)": [[142, "malariagen_data.ag3.Ag3.plot_cnv_hmm_coverage", false]], "plot_cnv_hmm_heatmap() (malariagen_data.af1.af1 method)": [[47, "malariagen_data.af1.Af1.plot_cnv_hmm_heatmap", false]], "plot_cnv_hmm_heatmap() (malariagen_data.ag3.ag3 method)": [[143, "malariagen_data.ag3.Ag3.plot_cnv_hmm_heatmap", false]], "plot_diplotype_clustering() (malariagen_data.af1.af1 method)": [[48, "malariagen_data.af1.Af1.plot_diplotype_clustering", false]], "plot_diplotype_clustering() (malariagen_data.ag3.ag3 method)": [[144, "malariagen_data.ag3.Ag3.plot_diplotype_clustering", false]], "plot_diplotype_clustering_advanced() (malariagen_data.af1.af1 method)": [[49, "malariagen_data.af1.Af1.plot_diplotype_clustering_advanced", false]], "plot_diplotype_clustering_advanced() (malariagen_data.ag3.ag3 method)": [[145, "malariagen_data.ag3.Ag3.plot_diplotype_clustering_advanced", false]], "plot_diversity_stats() (malariagen_data.af1.af1 method)": [[50, "malariagen_data.af1.Af1.plot_diversity_stats", false]], "plot_diversity_stats() (malariagen_data.ag3.ag3 method)": [[146, "malariagen_data.ag3.Ag3.plot_diversity_stats", false]], "plot_frequencies_heatmap() (malariagen_data.af1.af1 method)": [[51, "malariagen_data.af1.Af1.plot_frequencies_heatmap", false]], "plot_frequencies_heatmap() (malariagen_data.ag3.ag3 method)": [[147, "malariagen_data.ag3.Ag3.plot_frequencies_heatmap", false]], "plot_frequencies_interactive_map() (malariagen_data.af1.af1 method)": [[52, "malariagen_data.af1.Af1.plot_frequencies_interactive_map", false]], "plot_frequencies_interactive_map() (malariagen_data.ag3.ag3 method)": [[148, "malariagen_data.ag3.Ag3.plot_frequencies_interactive_map", false]], "plot_frequencies_time_series() (malariagen_data.af1.af1 method)": [[53, "malariagen_data.af1.Af1.plot_frequencies_time_series", false]], "plot_frequencies_time_series() (malariagen_data.ag3.ag3 method)": [[149, "malariagen_data.ag3.Ag3.plot_frequencies_time_series", false]], "plot_fst_gwss() (malariagen_data.af1.af1 method)": [[54, "malariagen_data.af1.Af1.plot_fst_gwss", false]], "plot_fst_gwss() (malariagen_data.ag3.ag3 method)": [[150, "malariagen_data.ag3.Ag3.plot_fst_gwss", false]], "plot_g123_calibration() (malariagen_data.af1.af1 method)": [[55, "malariagen_data.af1.Af1.plot_g123_calibration", false]], "plot_g123_calibration() (malariagen_data.ag3.ag3 method)": [[151, "malariagen_data.ag3.Ag3.plot_g123_calibration", false]], "plot_g123_gwss() (malariagen_data.af1.af1 method)": [[56, "malariagen_data.af1.Af1.plot_g123_gwss", false]], "plot_g123_gwss() (malariagen_data.ag3.ag3 method)": [[152, "malariagen_data.ag3.Ag3.plot_g123_gwss", false]], "plot_genes() (malariagen_data.af1.af1 method)": [[57, "malariagen_data.af1.Af1.plot_genes", false]], "plot_genes() (malariagen_data.ag3.ag3 method)": [[153, "malariagen_data.ag3.Ag3.plot_genes", false]], "plot_h12_calibration() (malariagen_data.af1.af1 method)": [[58, "malariagen_data.af1.Af1.plot_h12_calibration", false]], "plot_h12_calibration() (malariagen_data.ag3.ag3 method)": [[154, "malariagen_data.ag3.Ag3.plot_h12_calibration", false]], "plot_h12_gwss() (malariagen_data.af1.af1 method)": [[59, "malariagen_data.af1.Af1.plot_h12_gwss", false]], "plot_h12_gwss() (malariagen_data.ag3.ag3 method)": [[155, "malariagen_data.ag3.Ag3.plot_h12_gwss", false]], "plot_h12_gwss_multi_overlay() (malariagen_data.af1.af1 method)": [[60, "malariagen_data.af1.Af1.plot_h12_gwss_multi_overlay", false]], "plot_h12_gwss_multi_overlay() (malariagen_data.ag3.ag3 method)": [[156, "malariagen_data.ag3.Ag3.plot_h12_gwss_multi_overlay", false]], "plot_h12_gwss_multi_panel() (malariagen_data.af1.af1 method)": [[61, "malariagen_data.af1.Af1.plot_h12_gwss_multi_panel", false]], "plot_h12_gwss_multi_panel() (malariagen_data.ag3.ag3 method)": [[157, "malariagen_data.ag3.Ag3.plot_h12_gwss_multi_panel", false]], "plot_h1x_gwss() (malariagen_data.af1.af1 method)": [[62, "malariagen_data.af1.Af1.plot_h1x_gwss", false]], "plot_h1x_gwss() (malariagen_data.ag3.ag3 method)": [[158, "malariagen_data.ag3.Ag3.plot_h1x_gwss", false]], "plot_haplotype_clustering() (malariagen_data.af1.af1 method)": [[63, "malariagen_data.af1.Af1.plot_haplotype_clustering", false]], "plot_haplotype_clustering() (malariagen_data.ag3.ag3 method)": [[159, "malariagen_data.ag3.Ag3.plot_haplotype_clustering", false]], "plot_haplotype_network() (malariagen_data.af1.af1 method)": [[64, "malariagen_data.af1.Af1.plot_haplotype_network", false]], "plot_haplotype_network() (malariagen_data.ag3.ag3 method)": [[160, "malariagen_data.ag3.Ag3.plot_haplotype_network", false]], "plot_heterozygosity() (malariagen_data.af1.af1 method)": [[65, "malariagen_data.af1.Af1.plot_heterozygosity", false]], "plot_heterozygosity() (malariagen_data.ag3.ag3 method)": [[161, "malariagen_data.ag3.Ag3.plot_heterozygosity", false]], "plot_ihs_gwss() (malariagen_data.af1.af1 method)": [[66, "malariagen_data.af1.Af1.plot_ihs_gwss", false]], "plot_ihs_gwss() (malariagen_data.ag3.ag3 method)": [[162, "malariagen_data.ag3.Ag3.plot_ihs_gwss", false]], "plot_njt() (malariagen_data.af1.af1 method)": [[67, "malariagen_data.af1.Af1.plot_njt", false]], "plot_njt() (malariagen_data.ag3.ag3 method)": [[163, "malariagen_data.ag3.Ag3.plot_njt", false]], "plot_pairwise_average_fst() (malariagen_data.af1.af1 method)": [[68, "malariagen_data.af1.Af1.plot_pairwise_average_fst", false]], "plot_pairwise_average_fst() (malariagen_data.ag3.ag3 method)": [[164, "malariagen_data.ag3.Ag3.plot_pairwise_average_fst", false]], "plot_pca_coords() (malariagen_data.af1.af1 method)": [[69, "malariagen_data.af1.Af1.plot_pca_coords", false]], "plot_pca_coords() (malariagen_data.ag3.ag3 method)": [[165, "malariagen_data.ag3.Ag3.plot_pca_coords", false]], "plot_pca_coords_3d() (malariagen_data.af1.af1 method)": [[70, "malariagen_data.af1.Af1.plot_pca_coords_3d", false]], "plot_pca_coords_3d() (malariagen_data.ag3.ag3 method)": [[166, "malariagen_data.ag3.Ag3.plot_pca_coords_3d", false]], "plot_pca_variance() (malariagen_data.af1.af1 method)": [[71, "malariagen_data.af1.Af1.plot_pca_variance", false]], "plot_pca_variance() (malariagen_data.ag3.ag3 method)": [[167, "malariagen_data.ag3.Ag3.plot_pca_variance", false]], "plot_roh() (malariagen_data.af1.af1 method)": [[72, "malariagen_data.af1.Af1.plot_roh", false]], "plot_roh() (malariagen_data.ag3.ag3 method)": [[168, "malariagen_data.ag3.Ag3.plot_roh", false]], "plot_sample_location_geo() (malariagen_data.af1.af1 method)": [[73, "malariagen_data.af1.Af1.plot_sample_location_geo", false]], "plot_sample_location_geo() (malariagen_data.ag3.ag3 method)": [[169, "malariagen_data.ag3.Ag3.plot_sample_location_geo", false]], "plot_sample_location_mapbox() (malariagen_data.af1.af1 method)": [[74, "malariagen_data.af1.Af1.plot_sample_location_mapbox", false]], "plot_sample_location_mapbox() (malariagen_data.ag3.ag3 method)": [[170, "malariagen_data.ag3.Ag3.plot_sample_location_mapbox", false]], "plot_samples_bar() (malariagen_data.af1.af1 method)": [[75, "malariagen_data.af1.Af1.plot_samples_bar", false]], "plot_samples_bar() (malariagen_data.ag3.ag3 method)": [[171, "malariagen_data.ag3.Ag3.plot_samples_bar", false]], "plot_samples_interactive_map() (malariagen_data.af1.af1 method)": [[76, "malariagen_data.af1.Af1.plot_samples_interactive_map", false]], "plot_samples_interactive_map() (malariagen_data.ag3.ag3 method)": [[172, "malariagen_data.ag3.Ag3.plot_samples_interactive_map", false]], "plot_snps() (malariagen_data.af1.af1 method)": [[77, "malariagen_data.af1.Af1.plot_snps", false]], "plot_snps() (malariagen_data.ag3.ag3 method)": [[173, "malariagen_data.ag3.Ag3.plot_snps", false]], "plot_transcript() (malariagen_data.af1.af1 method)": [[78, "malariagen_data.af1.Af1.plot_transcript", false]], "plot_transcript() (malariagen_data.ag3.ag3 method)": [[174, "malariagen_data.ag3.Ag3.plot_transcript", false]], "plot_xpehh_gwss() (malariagen_data.af1.af1 method)": [[79, "malariagen_data.af1.Af1.plot_xpehh_gwss", false]], "plot_xpehh_gwss() (malariagen_data.ag3.ag3 method)": [[175, "malariagen_data.ag3.Ag3.plot_xpehh_gwss", false]], "releases (malariagen_data.af1.af1 property)": [[80, "malariagen_data.af1.Af1.releases", false]], "releases (malariagen_data.ag3.ag3 property)": [[176, "malariagen_data.ag3.Ag3.releases", false]], "roh_hmm() (malariagen_data.af1.af1 method)": [[81, "malariagen_data.af1.Af1.roh_hmm", false]], "roh_hmm() (malariagen_data.ag3.ag3 method)": [[177, "malariagen_data.ag3.Ag3.roh_hmm", false]], "sample_metadata() (malariagen_data.af1.af1 method)": [[82, "malariagen_data.af1.Af1.sample_metadata", false]], "sample_metadata() (malariagen_data.ag3.ag3 method)": [[178, "malariagen_data.ag3.Ag3.sample_metadata", false]], "sample_metadata() (malariagen_data.amin1.amin1 method)": [[192, "malariagen_data.amin1.Amin1.sample_metadata", false]], "sample_sets() (malariagen_data.af1.af1 method)": [[83, "malariagen_data.af1.Af1.sample_sets", false]], "sample_sets() (malariagen_data.ag3.ag3 method)": [[179, "malariagen_data.ag3.Ag3.sample_sets", false]], "site_annotations() (malariagen_data.af1.af1 method)": [[84, "malariagen_data.af1.Af1.site_annotations", false]], "site_annotations() (malariagen_data.ag3.ag3 method)": [[180, "malariagen_data.ag3.Ag3.site_annotations", false]], "site_mask_ids (malariagen_data.af1.af1 property)": [[85, "malariagen_data.af1.Af1.site_mask_ids", false]], "site_mask_ids (malariagen_data.ag3.ag3 property)": [[181, "malariagen_data.ag3.Ag3.site_mask_ids", false]], "snp_allele_counts() (malariagen_data.af1.af1 method)": [[86, "malariagen_data.af1.Af1.snp_allele_counts", false]], "snp_allele_counts() (malariagen_data.ag3.ag3 method)": [[182, "malariagen_data.ag3.Ag3.snp_allele_counts", false]], "snp_allele_frequencies() (malariagen_data.af1.af1 method)": [[87, "malariagen_data.af1.Af1.snp_allele_frequencies", false]], "snp_allele_frequencies() (malariagen_data.ag3.ag3 method)": [[183, "malariagen_data.ag3.Ag3.snp_allele_frequencies", false]], "snp_allele_frequencies_advanced() (malariagen_data.af1.af1 method)": [[88, "malariagen_data.af1.Af1.snp_allele_frequencies_advanced", false]], "snp_allele_frequencies_advanced() (malariagen_data.ag3.ag3 method)": [[184, "malariagen_data.ag3.Ag3.snp_allele_frequencies_advanced", false]], "snp_calls() (malariagen_data.af1.af1 method)": [[89, "malariagen_data.af1.Af1.snp_calls", false]], "snp_calls() (malariagen_data.ag3.ag3 method)": [[185, "malariagen_data.ag3.Ag3.snp_calls", false]], "snp_calls() (malariagen_data.amin1.amin1 method)": [[193, "malariagen_data.amin1.Amin1.snp_calls", false]], "view_alignments() (malariagen_data.af1.af1 method)": [[90, "malariagen_data.af1.Af1.view_alignments", false]], "view_alignments() (malariagen_data.ag3.ag3 method)": [[186, "malariagen_data.ag3.Ag3.view_alignments", false]], "wgs_data_catalog() (malariagen_data.af1.af1 method)": [[91, "malariagen_data.af1.Af1.wgs_data_catalog", false]], "wgs_data_catalog() (malariagen_data.ag3.ag3 method)": [[187, "malariagen_data.ag3.Ag3.wgs_data_catalog", false]], "xpehh_gwss() (malariagen_data.af1.af1 method)": [[92, "malariagen_data.af1.Af1.xpehh_gwss", false]], "xpehh_gwss() (malariagen_data.ag3.ag3 method)": [[188, "malariagen_data.ag3.Ag3.xpehh_gwss", false]]}, "objects": {"malariagen_data.af1.Af1": [[3, 0, 1, "", "aa_allele_frequencies"], [4, 0, 1, "", "aa_allele_frequencies_advanced"], [5, 0, 1, "", "add_extra_metadata"], [6, 0, 1, "", "average_fst"], [7, 0, 1, "", "biallelic_diplotype_pairwise_distances"], [8, 0, 1, "", "biallelic_diplotypes"], [9, 0, 1, "", "biallelic_snp_calls"], [10, 0, 1, "", "biallelic_snps_to_plink"], [11, 0, 1, "", "clear_extra_metadata"], [12, 0, 1, "", "cnv_coverage_calls"], [13, 0, 1, "", "cnv_hmm"], [14, 0, 1, "", "cohort_diversity_stats"], [15, 0, 1, "", "cohorts"], [16, 1, 1, "", "contigs"], [17, 0, 1, "", "count_samples"], [18, 1, 1, "", "coverage_calls_analysis_ids"], [19, 0, 1, "", "diversity_stats"], [20, 0, 1, "", "fst_gwss"], [21, 0, 1, "", "g123_calibration"], [22, 0, 1, "", "g123_gwss"], [23, 0, 1, "", "gene_cnv"], [24, 0, 1, "", "gene_cnv_frequencies"], [25, 0, 1, "", "gene_cnv_frequencies_advanced"], [26, 0, 1, "", "genome_features"], [27, 0, 1, "", "genome_sequence"], [28, 0, 1, "", "h12_calibration"], [29, 0, 1, "", "h12_gwss"], [30, 0, 1, "", "h1x_gwss"], [31, 0, 1, "", "haplotype_pairwise_distances"], [32, 0, 1, "", "haplotype_sites"], [33, 0, 1, "", "haplotypes"], [34, 0, 1, "", "haplotypes_frequencies"], [35, 0, 1, "", "haplotypes_frequencies_advanced"], [36, 0, 1, "", "igv"], [37, 0, 1, "", "ihs_gwss"], [38, 0, 1, "", "is_accessible"], [39, 0, 1, "", "lookup_release"], [40, 0, 1, "", "lookup_sample"], [41, 0, 1, "", "lookup_study"], [42, 0, 1, "", "njt"], [43, 0, 1, "", "pairwise_average_fst"], [44, 0, 1, "", "pca"], [45, 1, 1, "", "phasing_analysis_ids"], [46, 0, 1, "", "plot_cnv_hmm_coverage"], [47, 0, 1, "", "plot_cnv_hmm_heatmap"], [48, 0, 1, "", "plot_diplotype_clustering"], [49, 0, 1, "", "plot_diplotype_clustering_advanced"], [50, 0, 1, "", "plot_diversity_stats"], [51, 0, 1, "", "plot_frequencies_heatmap"], [52, 0, 1, "", "plot_frequencies_interactive_map"], [53, 0, 1, "", "plot_frequencies_time_series"], [54, 0, 1, "", "plot_fst_gwss"], [55, 0, 1, "", "plot_g123_calibration"], [56, 0, 1, "", "plot_g123_gwss"], [57, 0, 1, "", "plot_genes"], [58, 0, 1, "", "plot_h12_calibration"], [59, 0, 1, "", "plot_h12_gwss"], [60, 0, 1, "", "plot_h12_gwss_multi_overlay"], [61, 0, 1, "", "plot_h12_gwss_multi_panel"], [62, 0, 1, "", "plot_h1x_gwss"], [63, 0, 1, "", "plot_haplotype_clustering"], [64, 0, 1, "", "plot_haplotype_network"], [65, 0, 1, "", "plot_heterozygosity"], [66, 0, 1, "", "plot_ihs_gwss"], [67, 0, 1, "", "plot_njt"], [68, 0, 1, "", "plot_pairwise_average_fst"], [69, 0, 1, "", "plot_pca_coords"], [70, 0, 1, "", "plot_pca_coords_3d"], [71, 0, 1, "", "plot_pca_variance"], [72, 0, 1, "", "plot_roh"], [73, 0, 1, "", "plot_sample_location_geo"], [74, 0, 1, "", "plot_sample_location_mapbox"], [75, 0, 1, "", "plot_samples_bar"], [76, 0, 1, "", "plot_samples_interactive_map"], [77, 0, 1, "", "plot_snps"], [78, 0, 1, "", "plot_transcript"], [79, 0, 1, "", "plot_xpehh_gwss"], [80, 1, 1, "", "releases"], [81, 0, 1, "", "roh_hmm"], [82, 0, 1, "", "sample_metadata"], [83, 0, 1, "", "sample_sets"], [84, 0, 1, "", "site_annotations"], [85, 1, 1, "", "site_mask_ids"], [86, 0, 1, "", "snp_allele_counts"], [87, 0, 1, "", "snp_allele_frequencies"], [88, 0, 1, "", "snp_allele_frequencies_advanced"], [89, 0, 1, "", "snp_calls"], [90, 0, 1, "", "view_alignments"], [91, 0, 1, "", "wgs_data_catalog"], [92, 0, 1, "", "xpehh_gwss"]], "malariagen_data.ag3.Ag3": [[93, 0, 1, "", "aa_allele_frequencies"], [94, 0, 1, "", "aa_allele_frequencies_advanced"], [95, 0, 1, "", "add_extra_metadata"], [96, 0, 1, "", "aim_calls"], [97, 1, 1, "", "aim_ids"], [98, 0, 1, "", "aim_variants"], [99, 0, 1, "", "average_fst"], [100, 0, 1, "", "biallelic_diplotype_pairwise_distances"], [101, 0, 1, "", "biallelic_diplotypes"], [102, 0, 1, "", "biallelic_snp_calls"], [103, 0, 1, "", "biallelic_snps_to_plink"], [104, 0, 1, "", "clear_extra_metadata"], [105, 0, 1, "", "cnv_coverage_calls"], [106, 0, 1, "", "cnv_discordant_read_calls"], [107, 0, 1, "", "cnv_hmm"], [108, 0, 1, "", "cohort_diversity_stats"], [109, 0, 1, "", "cohorts"], [110, 1, 1, "", "contigs"], [111, 0, 1, "", "count_samples"], [112, 1, 1, "", "coverage_calls_analysis_ids"], [113, 0, 1, "", "cross_metadata"], [114, 0, 1, "", "diversity_stats"], [115, 0, 1, "", "fst_gwss"], [116, 0, 1, "", "g123_calibration"], [117, 0, 1, "", "g123_gwss"], [118, 0, 1, "", "gene_cnv"], [119, 0, 1, "", "gene_cnv_frequencies"], [120, 0, 1, "", "gene_cnv_frequencies_advanced"], [121, 0, 1, "", "genome_features"], [122, 0, 1, "", "genome_sequence"], [123, 0, 1, "", "h12_calibration"], [124, 0, 1, "", "h12_gwss"], [125, 0, 1, "", "h1x_gwss"], [126, 0, 1, "", "haplotype_pairwise_distances"], [127, 0, 1, "", "haplotype_sites"], [128, 0, 1, "", "haplotypes"], [129, 0, 1, "", "haplotypes_frequencies"], [130, 0, 1, "", "haplotypes_frequencies_advanced"], [131, 0, 1, "", "igv"], [132, 0, 1, "", "ihs_gwss"], [133, 0, 1, "", "is_accessible"], [134, 0, 1, "", "lookup_release"], [135, 0, 1, "", "lookup_sample"], [136, 0, 1, "", "lookup_study"], [137, 0, 1, "", "njt"], [138, 0, 1, "", "pairwise_average_fst"], [139, 0, 1, "", "pca"], [140, 1, 1, "", "phasing_analysis_ids"], [141, 0, 1, "", "plot_aim_heatmap"], [142, 0, 1, "", "plot_cnv_hmm_coverage"], [143, 0, 1, "", "plot_cnv_hmm_heatmap"], [144, 0, 1, "", "plot_diplotype_clustering"], [145, 0, 1, "", "plot_diplotype_clustering_advanced"], [146, 0, 1, "", "plot_diversity_stats"], [147, 0, 1, "", "plot_frequencies_heatmap"], [148, 0, 1, "", "plot_frequencies_interactive_map"], [149, 0, 1, "", "plot_frequencies_time_series"], [150, 0, 1, "", "plot_fst_gwss"], [151, 0, 1, "", "plot_g123_calibration"], [152, 0, 1, "", "plot_g123_gwss"], [153, 0, 1, "", "plot_genes"], [154, 0, 1, "", "plot_h12_calibration"], [155, 0, 1, "", "plot_h12_gwss"], [156, 0, 1, "", "plot_h12_gwss_multi_overlay"], [157, 0, 1, "", "plot_h12_gwss_multi_panel"], [158, 0, 1, "", "plot_h1x_gwss"], [159, 0, 1, "", "plot_haplotype_clustering"], [160, 0, 1, "", "plot_haplotype_network"], [161, 0, 1, "", "plot_heterozygosity"], [162, 0, 1, "", "plot_ihs_gwss"], [163, 0, 1, "", "plot_njt"], [164, 0, 1, "", "plot_pairwise_average_fst"], [165, 0, 1, "", "plot_pca_coords"], [166, 0, 1, "", "plot_pca_coords_3d"], [167, 0, 1, "", "plot_pca_variance"], [168, 0, 1, "", "plot_roh"], [169, 0, 1, "", "plot_sample_location_geo"], [170, 0, 1, "", "plot_sample_location_mapbox"], [171, 0, 1, "", "plot_samples_bar"], [172, 0, 1, "", "plot_samples_interactive_map"], [173, 0, 1, "", "plot_snps"], [174, 0, 1, "", "plot_transcript"], [175, 0, 1, "", "plot_xpehh_gwss"], [176, 1, 1, "", "releases"], [177, 0, 1, "", "roh_hmm"], [178, 0, 1, "", "sample_metadata"], [179, 0, 1, "", "sample_sets"], [180, 0, 1, "", "site_annotations"], [181, 1, 1, "", "site_mask_ids"], [182, 0, 1, "", "snp_allele_counts"], [183, 0, 1, "", "snp_allele_frequencies"], [184, 0, 1, "", "snp_allele_frequencies_advanced"], [185, 0, 1, "", "snp_calls"], [186, 0, 1, "", "view_alignments"], [187, 0, 1, "", "wgs_data_catalog"], [188, 0, 1, "", "xpehh_gwss"]], "malariagen_data.amin1.Amin1": [[189, 1, 1, "", "contigs"], [190, 0, 1, "", "genome_features"], [191, 0, 1, "", "genome_sequence"], [192, 0, 1, "", "sample_metadata"], [193, 0, 1, "", "snp_calls"]]}, "objnames": {"0": ["py", "method", "Python method"], "1": ["py", "property", "Python property"]}, "objtypes": {"0": "py:method", "1": "py:property"}, "terms": {"": [6, 43, 51, 99, 138, 147], "0": [7, 8, 9, 10, 13, 14, 19, 20, 21, 22, 23, 24, 25, 37, 42, 44, 47, 48, 49, 51, 54, 55, 56, 63, 65, 66, 67, 68, 69, 70, 72, 79, 81, 86, 92, 100, 101, 102, 103, 107, 108, 114, 115, 116, 117, 118, 119, 120, 132, 137, 139, 141, 143, 144, 145, 147, 150, 151, 152, 159, 161, 162, 163, 164, 165, 166, 168, 175, 177, 182, 188], "001": [72, 81, 168, 177], "003": [72, 81, 168, 177], "01": [72, 81, 168, 177], "02": [69, 70, 165, 166], "03": [65, 72, 161, 168], "05": [37, 49, 66, 79, 92, 132, 145, 162, 175, 188], "1": [4, 25, 35, 76, 86, 88, 94, 120, 130, 141, 172, 182, 184, 191, 193], "10": [3, 4, 6, 7, 8, 9, 14, 19, 24, 25, 34, 35, 42, 43, 44, 67, 69, 73, 74, 86, 87, 88, 89, 93, 94, 99, 100, 101, 102, 108, 114, 119, 120, 129, 130, 137, 138, 139, 163, 165, 169, 170, 182, 183, 184, 185], "100": [6, 7, 8, 9, 14, 19, 21, 28, 37, 42, 43, 44, 51, 55, 58, 64, 66, 67, 76, 78, 79, 86, 89, 92, 99, 100, 101, 102, 108, 114, 116, 123, 132, 137, 138, 139, 147, 151, 154, 160, 162, 163, 172, 174, 175, 182, 185, 188], "1000": [21, 28, 55, 58, 116, 123, 151, 154], "10000": [28, 58, 123, 154], "100000": [191, 193], "102": [73, 74, 169, 170], "105": [73, 74, 169, 170], "110": [73, 74, 169, 170], "111": [73, 74, 169, 170], "112": [73, 74, 169, 170], "115": [73, 74, 169, 170], "120": [57, 153], "124": [73, 74, 169, 170], "133": [73, 74, 169, 170], "14": [48, 49, 63, 67, 144, 145, 159, 163], "144": [73, 74, 169, 170], "148": [73, 74, 169, 170], "15": [6, 20, 28, 29, 30, 37, 43, 54, 58, 59, 60, 61, 62, 66, 73, 74, 79, 92, 99, 115, 123, 124, 125, 132, 138, 150, 154, 155, 156, 157, 158, 162, 169, 170, 175, 188], "150": [73, 74, 169, 170], "165": [73, 74, 169, 170], "166": [73, 74, 169, 170], "170": [46, 56, 59, 60, 61, 65, 66, 72, 79, 142, 152, 155, 156, 157, 161, 162, 168, 175], "173": [73, 74, 169, 170], "175": [73, 74, 169, 170], "17becf": [60, 156], "190": [54, 62, 150, 158], "1f77b4": [60, 156], "2": [4, 6, 7, 8, 9, 10, 13, 14, 19, 23, 24, 25, 35, 42, 43, 44, 47, 49, 52, 64, 67, 76, 86, 88, 89, 94, 99, 100, 101, 102, 103, 107, 108, 114, 118, 119, 120, 130, 137, 138, 139, 141, 143, 145, 148, 160, 163, 172, 182, 184, 185], "20": [21, 22, 37, 44, 51, 52, 55, 56, 66, 76, 116, 117, 132, 139, 147, 148, 151, 152, 162, 172], "200": [6, 7, 8, 9, 14, 19, 21, 28, 37, 42, 43, 44, 55, 58, 66, 67, 79, 86, 89, 92, 99, 100, 101, 102, 108, 114, 116, 123, 132, 137, 138, 139, 151, 154, 162, 163, 175, 182, 185, 188, 191, 193], "2000": [21, 28, 55, 58, 116, 123, 151, 154], "20000": [28, 37, 58, 65, 66, 72, 79, 81, 90, 92, 123, 132, 154, 161, 162, 168, 175, 177, 186, 188], "200000": [37, 66, 77, 79, 92, 132, 162, 173, 175, 188], "204": [73, 74, 169, 170], "225": [73, 74, 169, 170], "237": [73, 74, 169, 170], "25": [49, 145], "283185307179586": [67, 163], "29": [73, 74, 169, 170], "2ca02c": [60, 156], "2d": [49, 51, 68, 145, 147, 164], "2f": [51, 68, 147, 164], "3": [6, 7, 8, 9, 14, 19, 42, 43, 44, 52, 67, 76, 86, 89, 99, 100, 101, 102, 108, 114, 137, 138, 139, 148, 163, 172, 182, 185], "30": [50, 146], "300": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 188], "393b79": [59, 62, 155, 158], "3d": [70, 166], "3f": [68, 164], "4": [6, 7, 8, 9, 14, 19, 42, 43, 44, 67, 86, 89, 99, 100, 101, 102, 108, 114, 137, 138, 139, 141, 163, 182, 185], "40": [51, 68, 72, 147, 164, 168], "400": [71, 167], "42": [6, 7, 8, 9, 10, 14, 19, 20, 21, 22, 28, 29, 30, 31, 33, 37, 42, 43, 44, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 66, 67, 69, 70, 79, 86, 89, 92, 99, 100, 101, 102, 103, 108, 114, 115, 116, 117, 123, 124, 125, 126, 128, 132, 137, 138, 139, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 162, 163, 165, 166, 175, 182, 185, 188], "450": [50, 146], "5": [6, 7, 8, 9, 14, 19, 42, 43, 44, 48, 49, 63, 67, 70, 73, 74, 86, 89, 99, 100, 101, 102, 108, 114, 137, 138, 139, 141, 144, 145, 159, 163, 166, 169, 170, 182, 185], "50": [6, 20, 21, 22, 28, 29, 30, 37, 43, 54, 55, 56, 58, 59, 60, 61, 62, 64, 66, 68, 79, 92, 99, 115, 116, 117, 123, 124, 125, 132, 138, 150, 151, 152, 154, 155, 156, 157, 158, 160, 162, 164, 175, 188], "500": [21, 28, 48, 50, 55, 58, 63, 76, 116, 123, 144, 146, 151, 154, 159, 172], "5000": [21, 28, 55, 58, 116, 123, 151, 154], "52": [73, 74, 169, 170], "5254a3": [59, 62, 155, 158], "56": [73, 74, 169, 170], "5e3c99": [49, 145], "6": [67, 163], "600": [64, 67, 69, 70, 73, 74, 75, 160, 163, 165, 166, 169, 170, 171], "62": [73, 74, 169, 170], "637939": [59, 62, 155, 158], "64": [73, 74, 169, 170], "6b6ecf": [59, 62, 155, 158], "7": [47, 143], "70": [73, 74, 169, 170], "72": [73, 74, 169, 170], "75": [37, 66, 79, 92, 132, 162, 175, 188], "7f7f7f": [60, 156], "8": [44, 73, 74, 139, 169, 170], "80": [73, 74, 77, 169, 170, 173], "800": [67, 73, 74, 75, 163, 169, 170, 171], "84": [73, 74, 169, 170], "8c564b": [60, 156], "9": [69, 165], "90": [46, 47, 54, 56, 59, 60, 61, 62, 65, 66, 72, 77, 79, 142, 143, 150, 152, 155, 156, 157, 158, 161, 162, 168, 173, 175], "900": [69, 70, 71, 165, 166, 167], "9467bd": [60, 156], "95": [14, 19, 73, 74, 108, 114, 169, 170], "9c9ede": [59, 62, 155, 158], "A": [3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 35, 37, 42, 43, 44, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 92, 93, 94, 95, 96, 98, 99, 100, 101, 102, 103, 106, 107, 108, 109, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 123, 124, 125, 126, 128, 129, 130, 132, 137, 138, 139, 141, 142, 143, 144, 145, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 177, 178, 179, 180, 182, 183, 184, 185, 188, 194], "By": 194, "For": [0, 1, 2, 96, 97, 98, 141, 194], "If": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 42, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 84, 86, 87, 88, 89, 90, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 137, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 173, 174, 175, 177, 180, 182, 183, 184, 185, 186, 188, 191, 193, 194], "It": [10, 51, 103, 147], "One": [51, 72, 81, 91, 147, 168, 177, 187], "The": [4, 5, 7, 8, 9, 10, 20, 21, 22, 25, 28, 29, 30, 35, 37, 42, 44, 48, 49, 50, 51, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 73, 74, 75, 79, 88, 92, 94, 95, 100, 101, 102, 103, 115, 116, 117, 120, 123, 124, 125, 130, 132, 137, 139, 141, 144, 145, 146, 147, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 162, 163, 164, 165, 166, 167, 169, 170, 171, 175, 184, 188, 194], "These": [18, 45, 85, 112, 140, 181], "To": [0, 1, 2], "aa_allele_frequencies_advanc": [52, 53, 148, 149], "abbrevi": [76, 172], "about": [0, 1, 2, 4, 25, 35, 37, 66, 81, 88, 94, 113, 120, 130, 132, 162, 177, 184], "abov": [57, 78, 153, 174], "accept": [3, 4, 7, 8, 9, 10, 12, 13, 14, 15, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 109, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 188], "access": [9, 12, 13, 26, 27, 32, 33, 38, 82, 83, 89, 96, 98, 102, 105, 106, 107, 121, 122, 127, 128, 133, 178, 179, 185, 190, 191, 192, 193, 194], "acid": [3, 4, 49, 93, 94, 145], "ad": [11, 44, 69, 70, 104, 139, 165, 166], "add": [5, 87, 95, 183], "addit": [5, 36, 44, 52, 64, 95, 131, 139, 148, 160], "admin1_iso": [4, 17, 25, 35, 88, 94, 111, 120, 130, 184], "admin1_month": [3, 15, 19, 24, 34, 43, 60, 61, 87, 93, 109, 114, 119, 129, 138, 156, 157, 183], "admin1_nam": [4, 17, 25, 35, 73, 74, 88, 94, 111, 120, 130, 169, 170, 184], "admin1_quart": [15, 109], "admin1_year": [15, 109], "admin2_month": [15, 109], "admin2_nam": [4, 17, 25, 35, 88, 94, 111, 120, 130, 184], "admin2_quart": [15, 109], "admin2_year": [15, 109], "administr": [4, 15, 25, 35, 88, 94, 109, 120, 130, 184], "advanc": [7, 8, 9, 10, 42, 44, 67, 82, 86, 89, 100, 101, 102, 103, 137, 139, 163, 178, 182, 185], "af1": [116, 117, 151, 152, 194], "africa": [73, 169, 194], "ag3": [21, 22, 55, 56, 194], "against": [3, 4, 6, 7, 8, 9, 10, 13, 17, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 33, 34, 35, 37, 42, 43, 44, 47, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 66, 67, 73, 74, 75, 76, 77, 79, 82, 86, 87, 88, 89, 92, 93, 94, 96, 99, 100, 101, 102, 103, 106, 107, 111, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 128, 129, 130, 132, 137, 138, 139, 141, 143, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 162, 163, 169, 170, 171, 172, 173, 175, 178, 182, 183, 184, 185, 188], "agresti_coul": [4, 25, 35, 88, 94, 120, 130, 184], "aim": [96, 97, 98, 141], "aim_id": [96, 98, 141], "algorithm": [42, 48, 49, 63, 64, 67, 137, 144, 145, 159, 160, 163], "align": [90, 186], "all": [0, 1, 2, 21, 22, 26, 55, 56, 60, 61, 116, 117, 121, 151, 152, 156, 157, 190], "allel": [3, 4, 7, 8, 9, 10, 12, 24, 25, 32, 35, 37, 42, 44, 49, 66, 67, 79, 86, 87, 88, 92, 93, 94, 96, 98, 100, 101, 102, 103, 105, 106, 119, 120, 127, 130, 132, 137, 139, 141, 145, 162, 163, 175, 182, 183, 184, 188], "allow": 194, "also": [3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 43, 44, 46, 47, 48, 49, 51, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82, 84, 86, 87, 88, 89, 92, 93, 94, 96, 99, 100, 101, 102, 103, 105, 106, 107, 108, 111, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 138, 139, 141, 142, 143, 144, 145, 147, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 165, 168, 169, 170, 171, 172, 173, 174, 175, 177, 178, 180, 182, 183, 184, 185, 188, 191, 193, 194], "alt": [32, 127], "altern": [4, 8, 25, 32, 35, 37, 49, 66, 86, 88, 94, 101, 120, 127, 130, 132, 145, 162, 182, 184], "america": [73, 169], "amin002150": [191, 193], "amin1": 194, "amino": [3, 4, 49, 93, 94, 145], "amp": [24, 119], "amplif": [24, 119], "an": [3, 4, 6, 7, 8, 9, 12, 13, 14, 19, 20, 21, 22, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 42, 43, 44, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 76, 77, 79, 86, 87, 88, 89, 92, 93, 94, 99, 100, 101, 102, 105, 106, 107, 108, 114, 115, 116, 117, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 137, 138, 139, 142, 144, 145, 146, 147, 148, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 165, 166, 167, 168, 172, 173, 175, 182, 183, 184, 185, 188, 194], "analys": [18, 45, 112, 140, 194], "analysi": [7, 8, 9, 10, 12, 21, 22, 28, 29, 30, 31, 32, 33, 37, 42, 44, 45, 55, 56, 58, 59, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 79, 92, 100, 101, 102, 103, 105, 116, 117, 123, 124, 125, 126, 127, 128, 132, 137, 139, 140, 151, 152, 154, 155, 156, 157, 158, 159, 160, 162, 163, 165, 166, 167, 175, 188, 194], "ancestri": [96, 97, 98, 141], "angl": [67, 163], "ani": [11, 18, 36, 45, 85, 104, 112, 131, 140, 181, 194], "annot": [26, 49, 68, 84, 87, 97, 121, 145, 164, 180, 183, 190], "anophel": [0, 1, 2, 10, 103, 194], "api": [0, 1, 2, 44, 51, 139, 147], "app": [64, 160], "appear": [46, 47, 48, 49, 50, 54, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 72, 73, 74, 77, 79, 142, 143, 144, 145, 146, 150, 152, 153, 155, 156, 157, 158, 159, 160, 161, 162, 163, 165, 166, 168, 169, 170, 173, 175], "append": [10, 103], "appli": [3, 4, 6, 7, 8, 9, 10, 14, 19, 20, 21, 22, 38, 42, 43, 44, 48, 49, 54, 55, 56, 65, 67, 72, 77, 81, 84, 86, 87, 88, 89, 93, 94, 99, 100, 101, 102, 103, 108, 114, 115, 116, 117, 133, 137, 138, 139, 144, 145, 150, 151, 152, 161, 163, 168, 173, 177, 180, 182, 183, 184, 185, 193], "applic": 194, "approxim": [7, 8, 9, 10, 21, 22, 42, 44, 55, 56, 67, 100, 101, 102, 103, 116, 117, 137, 139, 151, 152, 163], "ar": [0, 4, 7, 8, 9, 10, 15, 18, 20, 25, 35, 37, 42, 44, 45, 51, 54, 66, 67, 68, 73, 76, 77, 79, 82, 85, 86, 88, 89, 92, 94, 100, 101, 102, 103, 109, 112, 113, 115, 120, 130, 132, 137, 139, 140, 147, 150, 162, 163, 164, 169, 172, 173, 175, 178, 181, 182, 184, 185, 188, 194], "arc_start": [67, 163], "arc_stop": [67, 163], "area": [4, 25, 35, 46, 52, 53, 54, 56, 57, 59, 60, 61, 62, 64, 65, 66, 72, 79, 88, 94, 120, 130, 142, 148, 149, 150, 152, 153, 155, 156, 157, 158, 160, 161, 162, 168, 175, 184], "area_bi": [4, 25, 35, 88, 94, 120, 130, 184], "argument": [3, 4, 7, 8, 9, 10, 12, 13, 14, 17, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 43, 44, 47, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 72, 73, 74, 75, 76, 77, 79, 81, 82, 84, 86, 87, 88, 89, 92, 93, 94, 96, 100, 101, 102, 103, 105, 106, 107, 108, 111, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 138, 139, 141, 143, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 168, 169, 170, 171, 172, 173, 175, 177, 178, 180, 182, 183, 184, 185, 188], "arrai": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 71, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 167, 168, 175, 177, 180, 182, 183, 184, 185, 188, 191, 193], "ascertain": [44, 139], "asia": [2, 73, 169, 194], "aspect": [51, 147], "associ": [13, 23, 33, 107, 118, 128, 194], "attempt": [48, 49, 51, 52, 53, 63, 67, 144, 145, 147, 148, 149, 159, 163], "attribut": [26, 48, 49, 53, 63, 67, 69, 70, 121, 144, 145, 149, 159, 163, 165, 166, 190], "auth": 194, "authent": 194, "auto": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 46, 48, 49, 51, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 69, 72, 73, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 142, 144, 145, 147, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 165, 168, 169, 175, 177, 180, 182, 183, 184, 185, 188, 191, 193], "automat": [54, 55, 56, 57, 59, 60, 62, 66, 78, 79, 150, 151, 152, 153, 155, 156, 158, 162, 174, 175, 194], "avail": [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 14, 17, 18, 19, 20, 21, 22, 28, 29, 30, 31, 32, 33, 37, 38, 42, 43, 44, 45, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 72, 75, 76, 77, 79, 80, 81, 84, 85, 86, 87, 88, 89, 92, 93, 94, 97, 99, 100, 101, 102, 103, 105, 108, 111, 112, 114, 115, 116, 117, 123, 124, 125, 126, 127, 128, 132, 133, 137, 138, 139, 140, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 168, 171, 172, 173, 175, 176, 177, 180, 181, 182, 183, 184, 185, 188, 194], "averag": [6, 43, 48, 49, 63, 68, 99, 138, 144, 145, 159, 164], "axi": [46, 51, 57, 65, 69, 70, 72, 75, 78, 142, 147, 153, 161, 165, 166, 168, 171, 174], "b": [6, 14, 19, 43, 99, 108, 114, 138], "b2abd2": [49, 145], "backend": [46, 48, 49, 54, 56, 57, 59, 60, 61, 62, 63, 65, 66, 67, 69, 72, 79, 142, 144, 145, 150, 152, 153, 155, 156, 157, 158, 159, 161, 162, 163, 165, 168, 175], "bam": [91, 187], "bar": [50, 51, 71, 75, 146, 147, 167, 171], "bar_plot_height": [50, 146], "bar_width": [50, 146], "base": [10, 37, 66, 79, 90, 92, 103, 132, 162, 175, 186, 188], "basemap": [76, 172], "basic": [46, 47, 54, 56, 57, 59, 60, 61, 62, 65, 66, 72, 77, 78, 79, 142, 143, 150, 152, 153, 155, 156, 157, 158, 161, 162, 168, 173, 174, 175], "bcbd22": [60, 156], "becom": [51, 90, 147, 186], "bed": [10, 103], "begin": [67, 163], "behaviour": [68, 164], "being": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 68, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 164, 168, 175, 177, 180, 182, 183, 184, 185, 188], "belong": [6, 7, 8, 9, 14, 19, 41, 42, 43, 44, 67, 86, 89, 99, 100, 101, 102, 108, 114, 136, 137, 138, 139, 163, 182, 185], "below": [0, 1, 2, 7, 8, 9, 10, 20, 37, 42, 44, 49, 52, 54, 57, 66, 67, 78, 79, 92, 100, 101, 102, 103, 115, 132, 137, 139, 145, 148, 150, 153, 162, 163, 174, 175, 188], "best": 194, "beta": [4, 25, 35, 88, 94, 120, 130, 184], "better": [6, 14, 19, 43, 99, 108, 114, 138], "between": [6, 7, 20, 30, 31, 37, 42, 43, 48, 49, 54, 62, 63, 64, 66, 67, 72, 79, 81, 92, 99, 100, 115, 125, 126, 132, 137, 138, 141, 144, 145, 150, 158, 159, 160, 162, 163, 168, 175, 177, 188], "beyond": [37, 66, 79, 92, 132, 162, 175, 188], "biallel": [7, 8, 9, 10, 42, 44, 67, 100, 101, 102, 103, 137, 139, 163], "biallelic_snp_cal": [10, 103], "bim": [10, 103], "bin": [37, 66, 132, 162], "binari": [10, 103], "binom_test": [4, 25, 35, 88, 94, 120, 130, 184], "black": [48, 49, 63, 144, 145, 159], "block": [6, 14, 19, 43, 99, 108, 114, 138], "blue": [66, 79, 162, 175], "bokeh": [46, 47, 54, 55, 56, 57, 58, 59, 60, 61, 62, 65, 66, 72, 77, 78, 79, 142, 143, 150, 151, 152, 153, 154, 155, 156, 157, 158, 161, 162, 168, 173, 174, 175], "bold": [73, 74, 169, 170], "bool": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 42, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 84, 86, 87, 88, 89, 90, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 137, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 173, 174, 175, 177, 180, 182, 183, 184, 185, 186, 188, 191, 193], "boolean": [10, 38, 103, 133], "both": [7, 8, 9, 10, 42, 44, 48, 49, 63, 67, 82, 86, 89, 100, 101, 102, 103, 137, 139, 144, 145, 159, 163, 178, 182, 185], "bp": [6, 7, 8, 9, 14, 19, 42, 43, 44, 67, 86, 89, 99, 100, 101, 102, 108, 114, 137, 138, 139, 163, 182, 185], "browser": [36, 131], "cach": [44, 86, 139, 182], "calcul": [4, 14, 19, 20, 21, 22, 25, 28, 29, 30, 35, 37, 54, 55, 56, 58, 59, 60, 61, 62, 66, 79, 88, 92, 94, 108, 114, 115, 116, 117, 120, 123, 124, 125, 130, 132, 150, 151, 152, 154, 155, 156, 157, 158, 162, 175, 184, 188], "calibr": [21, 28, 55, 58, 116, 123, 151, 154], "call": [0, 1, 2, 3, 4, 7, 8, 9, 10, 12, 13, 18, 24, 25, 36, 42, 44, 49, 67, 72, 81, 87, 88, 89, 90, 93, 94, 96, 100, 101, 102, 103, 105, 106, 107, 112, 119, 120, 131, 137, 139, 145, 163, 168, 177, 183, 184, 185, 186, 193], "callabl": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 188], "can": [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 42, 43, 44, 45, 46, 47, 48, 49, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 72, 73, 74, 75, 76, 77, 79, 81, 82, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 96, 99, 100, 101, 102, 103, 105, 106, 107, 108, 111, 112, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 137, 138, 139, 140, 141, 142, 143, 144, 145, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 168, 169, 170, 171, 172, 173, 175, 177, 178, 180, 181, 182, 183, 184, 185, 186, 188, 191, 193, 194], "cannot": [48, 49, 63, 67, 144, 145, 159, 163], "canon": [42, 67, 137, 163], "canva": [46, 54, 56, 57, 59, 60, 61, 62, 65, 66, 72, 79, 142, 150, 152, 153, 155, 156, 157, 158, 161, 162, 168, 175], "case": [60, 61, 156, 157, 191, 193], "catalog": [91, 187], "category_ord": [48, 49, 50, 63, 64, 67, 69, 70, 73, 74, 144, 145, 146, 159, 160, 163, 165, 166, 169, 170], "caus": [51, 147], "cccccc": [49, 145], "cdn": [64, 160], "cds_deg_0": [6, 7, 8, 9, 14, 19, 42, 43, 44, 67, 86, 89, 99, 100, 101, 102, 108, 114, 137, 138, 139, 163, 182, 185], "cds_deg_2_simpl": [6, 7, 8, 9, 14, 19, 42, 43, 44, 67, 86, 89, 99, 100, 101, 102, 108, 114, 137, 138, 139, 163, 182, 185], "cds_deg_4": [6, 7, 8, 9, 14, 19, 42, 43, 44, 67, 86, 89, 99, 100, 101, 102, 108, 114, 137, 138, 139, 163, 182, 185], "center": [52, 67, 76, 148, 163, 172], "center_i": [67, 163], "center_x": [67, 163], "centr": [20, 22, 29, 30, 37, 92, 115, 117, 124, 125, 132, 188], "centroid": [48, 49, 63, 144, 145, 159], "chang": [4, 7, 8, 9, 10, 29, 30, 42, 44, 67, 94, 100, 101, 102, 103, 124, 125, 137, 139, 163], "channel": [51, 68, 147, 164], "chart": [75, 171], "child": [48, 49, 63, 67, 144, 145, 159, 163], "choos": [48, 49, 63, 67, 69, 70, 144, 145, 159, 163, 165, 166], "chosen": [29, 30, 124, 125], "chromosom": [37, 66, 79, 92, 132, 162, 175, 188], "chunk": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 188, 191, 193], "ci_method": [4, 25, 35, 88, 94, 120, 130, 184], "circl": [46, 65, 72, 142, 161, 168], "circle_kwarg": [46, 65, 72, 142, 161, 168], "cityblock": [7, 42, 48, 49, 67, 100, 137, 144, 145, 163], "class": [6, 7, 8, 9, 14, 19, 42, 43, 44, 67, 86, 89, 99, 100, 101, 102, 108, 114, 137, 138, 139, 163, 182, 185], "clear": [11, 104], "cli": 194, "client": [44, 139], "clip": [20, 54, 115, 150], "clip_min": [20, 54, 115, 150], "cloud": 194, "cluster": [48, 49, 63, 144, 145, 159], "cnv": [12, 13, 18, 24, 25, 46, 47, 49, 105, 106, 107, 112, 119, 120, 142, 143, 145], "cnv_colorscal": [49, 145], "cnv_max_coverage_vari": [49, 145], "cnv_region": [49, 145], "cnv_row_height": [49, 145], "code": [0, 1, 2, 6, 7, 8, 9, 14, 15, 19, 42, 43, 44, 67, 86, 89, 99, 100, 101, 102, 108, 109, 114, 137, 138, 139, 163, 182, 185], "cohort": [3, 4, 6, 7, 8, 9, 14, 19, 20, 21, 22, 24, 25, 28, 29, 30, 31, 33, 34, 35, 37, 42, 43, 44, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 66, 67, 68, 77, 79, 86, 87, 88, 89, 92, 93, 94, 99, 100, 101, 102, 108, 114, 115, 116, 117, 119, 120, 123, 124, 125, 126, 128, 129, 130, 132, 137, 138, 139, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 162, 163, 164, 173, 175, 182, 183, 184, 185, 188], "cohort1_queri": [6, 20, 30, 54, 62, 79, 92, 99, 115, 125, 150, 158, 175, 188], "cohort2_queri": [6, 20, 30, 54, 62, 79, 92, 99, 115, 125, 150, 158, 175, 188], "cohort_s": [6, 7, 8, 9, 14, 19, 20, 28, 29, 30, 31, 33, 42, 43, 44, 48, 49, 54, 58, 59, 60, 61, 62, 63, 67, 77, 86, 89, 99, 100, 101, 102, 108, 114, 115, 123, 124, 125, 126, 128, 137, 138, 139, 144, 145, 150, 154, 155, 156, 157, 158, 159, 163, 173, 182, 185], "cohort_set": [15, 109], "col_width": [51, 68, 147, 164], "colab": 194, "coloni": 113, "color": [48, 49, 50, 51, 59, 60, 62, 63, 64, 67, 68, 69, 70, 73, 74, 75, 141, 144, 145, 146, 147, 155, 156, 158, 159, 160, 163, 164, 165, 166, 169, 170, 171], "color_continuous_scal": [51, 68, 147, 164], "color_discrete_map": [48, 49, 50, 63, 64, 67, 69, 70, 144, 145, 146, 159, 160, 163, 165, 166], "color_discrete_sequ": [48, 49, 50, 63, 64, 67, 69, 70, 73, 74, 144, 145, 146, 159, 160, 163, 165, 166, 169, 170], "colorbar": [51, 147], "colormap": [49, 51, 68, 145, 147, 164], "colour": [48, 49, 50, 63, 64, 67, 69, 70, 73, 74, 77, 144, 145, 146, 159, 160, 163, 165, 166, 169, 170, 173], "column": [3, 4, 5, 17, 24, 25, 26, 32, 35, 44, 51, 53, 69, 70, 75, 76, 86, 87, 88, 91, 93, 94, 95, 111, 119, 120, 121, 127, 130, 139, 141, 147, 149, 165, 166, 171, 172, 182, 183, 184, 187, 190], "com": [48, 49, 51, 63, 64, 67, 69, 144, 145, 147, 159, 160, 163, 165], "command": 194, "commun": 194, "comparison": 141, "compat": [49, 51, 68, 145, 147, 164], "complet": [48, 49, 63, 144, 145, 159], "complex": [1, 21, 22, 55, 56, 116, 117, 151, 152, 194], "compon": [44, 64, 69, 70, 71, 139, 160, 165, 166, 167], "comput": [3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 43, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 73, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 99, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 138, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 169, 175, 177, 180, 182, 183, 184, 185, 188, 194], "compute_min_maf": [37, 66, 132, 162], "concaten": [191, 193], "confid": [4, 6, 14, 19, 25, 35, 43, 88, 94, 99, 108, 114, 120, 130, 138, 184], "confidence_level": [14, 19, 108, 114], "configur": [36, 131], "connect": [64, 160], "consid": [73, 169], "constant": [48, 49, 53, 63, 67, 69, 70, 144, 145, 149, 159, 163, 165, 166], "construct": [42, 64, 137, 160], "contain": [4, 5, 9, 10, 20, 21, 22, 25, 28, 29, 30, 35, 37, 53, 88, 89, 92, 94, 95, 96, 98, 102, 103, 113, 115, 116, 117, 120, 123, 124, 125, 130, 132, 149, 184, 185, 188], "contig": [4, 6, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 42, 43, 44, 46, 47, 48, 49, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 72, 77, 79, 81, 84, 86, 88, 89, 90, 92, 94, 99, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 137, 138, 139, 142, 143, 144, 145, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 168, 173, 175, 177, 180, 182, 184, 185, 186, 188, 191, 193], "contig_color": [59, 62, 155, 158], "control": [48, 49, 50, 63, 64, 67, 69, 70, 73, 74, 144, 145, 146, 159, 160, 163, 165, 166, 169, 170, 194], "conveni": 194, "coordin": [48, 49, 63, 67, 69, 70, 144, 145, 159, 163, 165, 166, 191, 193], "copi": [23, 24, 49, 118, 119, 145], "corner": [68, 164], "correspond": [7, 8, 9, 10, 42, 44, 48, 49, 53, 63, 64, 67, 69, 70, 76, 82, 86, 89, 100, 101, 102, 103, 137, 139, 144, 145, 149, 159, 160, 163, 165, 166, 172, 178, 182, 185], "cose": [64, 160], "count": [3, 4, 7, 8, 9, 10, 17, 24, 25, 35, 37, 42, 44, 66, 67, 76, 86, 87, 88, 93, 94, 100, 101, 102, 103, 111, 119, 120, 130, 132, 137, 139, 162, 163, 172, 182, 183, 184], "count_bi": [76, 172], "count_sort": [48, 49, 63, 67, 144, 145, 159, 163], "countri": [15, 17, 75, 109, 111, 171], "cours": 194, "cover": [68, 164], "coverag": [12, 13, 18, 23, 24, 25, 47, 49, 105, 107, 112, 118, 119, 120, 143, 145], "coverage_calls_analysi": [18, 112], "coverage_calls_analysis_id": [12, 105], "crash": [51, 147], "creat": [17, 36, 52, 53, 111, 131, 141, 148, 149], "credenti": 194, "cross": 113, "css": [49, 51, 68, 145, 147, 164], "curat": [0, 1, 2], "current": [0, 36, 80, 131, 176, 194], "custom": [3, 14, 19, 24, 34, 43, 46, 47, 54, 56, 57, 59, 60, 61, 62, 65, 66, 72, 77, 79, 87, 93, 108, 114, 119, 129, 138, 142, 143, 150, 152, 153, 155, 156, 157, 158, 161, 162, 168, 173, 175, 183], "cytoscap": [64, 160], "d": [52, 53, 148, 149, 191, 193], "d62728": [60, 156], "dash": [64, 160], "dask": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 188, 191, 193], "data": [3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 43, 44, 45, 46, 47, 48, 49, 51, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 99, 100, 101, 102, 103, 105, 106, 107, 108, 109, 111, 112, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 138, 139, 140, 141, 142, 143, 144, 145, 147, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 170, 171, 172, 173, 175, 176, 177, 178, 180, 181, 182, 183, 184, 185, 186, 187, 188, 191, 193], "datafram": [3, 5, 15, 17, 19, 24, 26, 34, 43, 44, 50, 51, 68, 69, 70, 81, 82, 83, 87, 93, 95, 109, 111, 113, 114, 119, 121, 129, 138, 139, 146, 147, 164, 165, 166, 177, 178, 179, 183, 190, 192], "dataset": [4, 9, 12, 13, 23, 25, 33, 35, 48, 49, 51, 52, 53, 63, 67, 84, 88, 89, 94, 96, 98, 102, 105, 106, 107, 118, 120, 128, 130, 144, 145, 147, 148, 149, 159, 163, 180, 184, 185, 193], "decai": [37, 66, 79, 92, 132, 162, 175, 188], "decid": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 188, 191, 193], "default": [3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 84, 86, 87, 88, 89, 90, 92, 93, 94, 95, 99, 100, 101, 102, 103, 105, 106, 107, 108, 111, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 177, 180, 182, 183, 184, 185, 186, 188, 194], "defin": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 188, 191, 193], "degener": [6, 7, 8, 9, 14, 19, 42, 43, 44, 67, 86, 89, 99, 100, 101, 102, 108, 114, 137, 138, 139, 163, 182, 185], "del": [24, 119], "delet": [24, 119], "dendrogram_height": [49, 145], "denomin": [4, 25, 88, 94, 120, 184], "depend": [10, 44, 86, 103, 139, 182], "descend": [48, 49, 63, 67, 144, 145, 159, 163], "descript": [48, 49, 63, 144, 145, 159, 190], "desir": [7, 8, 9, 10, 42, 44, 67, 100, 101, 102, 103, 137, 139, 163], "detect": [30, 62, 125, 158], "determin": [48, 49, 53, 63, 67, 69, 70, 144, 145, 149, 159, 163, 165, 166], "df": [51, 113, 147, 190, 192], "df_pca": [44, 139], "df_sampl": [0, 1, 2], "df_stat": [50, 146], "diagnost": [37, 66, 132, 162], "dict": [3, 4, 7, 8, 9, 13, 17, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 33, 34, 35, 37, 42, 43, 44, 47, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 66, 67, 73, 74, 75, 76, 77, 79, 82, 86, 87, 88, 89, 92, 93, 94, 96, 100, 101, 102, 106, 107, 111, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 128, 129, 130, 132, 137, 138, 139, 141, 143, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 162, 163, 169, 170, 171, 172, 173, 175, 178, 182, 183, 184, 185, 188], "dictionari": [3, 4, 7, 8, 9, 13, 17, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 33, 34, 35, 37, 42, 43, 44, 47, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 66, 67, 73, 74, 75, 76, 77, 79, 82, 86, 87, 88, 89, 92, 93, 94, 96, 100, 101, 102, 106, 107, 111, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 128, 129, 130, 132, 137, 138, 139, 141, 143, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 162, 163, 169, 170, 171, 172, 173, 175, 178, 182, 183, 184, 185, 188], "differ": [7, 8, 9, 10, 18, 21, 28, 42, 44, 45, 55, 58, 60, 61, 64, 67, 77, 85, 100, 101, 102, 103, 112, 116, 123, 137, 139, 140, 151, 154, 156, 157, 160, 163, 173, 181], "differenti": [20, 54, 115, 150], "dimens": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 188], "dimension": [4, 25, 35, 88, 94, 120, 130, 184], "diplotyp": [48, 49, 144, 145], "direct": [51, 68, 147, 164], "directli": 194, "discord": [0, 106], "discoveri": [12, 105], "discrimin": 98, "discuss": 194, "displai": [51, 52, 64, 67, 68, 147, 148, 160, 163, 164], "dist": [31, 126], "distanc": [7, 31, 37, 42, 48, 49, 63, 64, 66, 67, 79, 92, 100, 126, 132, 137, 144, 145, 159, 160, 162, 163, 175, 188], "distance_metr": [48, 49, 144, 145], "distance_sort": [48, 49, 63, 67, 144, 145, 159, 163], "divers": [14, 19, 50, 108, 114, 146], "diversity_stat": [50, 146], "divid": [3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 43, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 99, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 138, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 188], "divis": [4, 25, 35, 88, 94, 120, 130, 184], "do": [0, 1, 2, 37, 46, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 92, 132, 141, 142, 143, 144, 145, 146, 147, 149, 150, 151, 152, 153, 155, 156, 157, 158, 159, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 173, 174, 175, 188, 194], "doc": [10, 46, 47, 48, 49, 54, 56, 57, 59, 60, 61, 62, 63, 65, 66, 72, 77, 78, 79, 103, 142, 143, 144, 145, 150, 152, 153, 155, 156, 157, 158, 159, 161, 162, 168, 173, 174, 175], "doe": [37, 66, 73, 79, 92, 132, 162, 169, 175, 188], "down": [6, 7, 8, 9, 10, 14, 19, 20, 21, 22, 28, 29, 30, 31, 33, 37, 42, 43, 44, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 66, 67, 69, 70, 77, 79, 86, 89, 92, 99, 100, 101, 102, 103, 108, 114, 115, 116, 117, 123, 124, 125, 126, 128, 132, 137, 138, 139, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 162, 163, 165, 166, 173, 175, 182, 185, 188], "download": [91, 187], "downsampl": [10, 103], "drop": [3, 24, 25, 87, 88, 93, 119, 120, 183, 184], "drop_invari": [3, 24, 25, 87, 88, 93, 119, 120, 183, 184], "dynam": [42, 67, 137, 163], "e": [0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 43, 44, 47, 48, 49, 51, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 72, 73, 74, 75, 76, 77, 79, 81, 82, 84, 86, 87, 88, 89, 92, 93, 94, 95, 96, 100, 101, 102, 103, 105, 106, 107, 108, 111, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 138, 139, 141, 143, 144, 145, 147, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 168, 169, 170, 171, 172, 173, 175, 177, 178, 180, 182, 183, 184, 185, 188, 191, 193], "e377c2": [60, 156], "e66101": [49, 145], "each": [8, 19, 20, 21, 22, 28, 29, 30, 37, 48, 49, 63, 64, 66, 67, 76, 79, 81, 86, 92, 101, 114, 115, 116, 117, 123, 124, 125, 132, 144, 145, 159, 160, 162, 163, 172, 175, 177, 182, 188], "edg": [67, 163], "edge_legend": [67, 163], "effect": [49, 87, 145, 183], "effici": 194, "ehh": [37, 66, 79, 92, 132, 162, 175, 188], "either": [3, 5, 7, 8, 9, 10, 14, 19, 24, 32, 34, 42, 43, 44, 60, 61, 67, 82, 86, 87, 89, 93, 95, 100, 101, 102, 103, 108, 114, 119, 127, 129, 137, 138, 139, 156, 157, 163, 178, 182, 183, 185], "email": 194, "embargo": 194, "en": [46, 47, 54, 56, 57, 59, 60, 61, 62, 65, 66, 72, 77, 78, 79, 142, 143, 150, 152, 153, 155, 156, 157, 158, 161, 162, 168, 173, 174, 175], "enabl": [10, 103], "end": [6, 7, 8, 9, 10, 12, 13, 14, 19, 23, 24, 25, 26, 27, 31, 32, 33, 34, 35, 36, 37, 38, 42, 43, 44, 46, 47, 48, 49, 57, 63, 64, 65, 66, 67, 68, 72, 77, 79, 81, 84, 86, 89, 90, 92, 99, 100, 101, 102, 103, 105, 107, 108, 114, 118, 119, 120, 121, 122, 126, 127, 128, 129, 130, 131, 132, 133, 137, 138, 139, 142, 143, 144, 145, 153, 159, 160, 161, 162, 163, 164, 168, 173, 175, 177, 180, 182, 185, 186, 188, 191, 193], "engin": [3, 4, 7, 8, 9, 13, 17, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 33, 34, 35, 37, 42, 43, 44, 47, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 66, 67, 73, 74, 75, 76, 77, 79, 82, 86, 87, 88, 89, 92, 93, 94, 96, 100, 101, 102, 106, 107, 111, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 128, 129, 130, 132, 137, 138, 139, 141, 143, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 162, 163, 169, 170, 171, 172, 173, 175, 178, 182, 183, 184, 185, 188], "entir": [21, 22, 55, 56, 116, 117, 151, 152], "entri": [67, 163], "environ": [10, 44, 86, 103, 139, 182], "epidemiologi": 194, "epilogu": [52, 148], "equal": [51, 67, 147, 163], "error": [3, 4, 6, 7, 8, 9, 14, 19, 20, 21, 22, 24, 25, 28, 29, 30, 31, 33, 34, 35, 37, 42, 43, 44, 48, 49, 51, 54, 55, 56, 58, 59, 60, 61, 62, 63, 66, 67, 68, 77, 79, 86, 87, 88, 89, 92, 93, 94, 99, 100, 101, 102, 108, 114, 115, 116, 117, 119, 120, 123, 124, 125, 126, 128, 129, 130, 132, 137, 138, 139, 144, 145, 147, 150, 151, 152, 154, 155, 156, 157, 158, 159, 162, 163, 164, 173, 175, 182, 183, 184, 185, 188], "estim": [6, 14, 19, 43, 99, 108, 114, 138], "etc": [44, 69, 70, 139, 165, 166], "euclidean": [7, 42, 48, 49, 67, 100, 137, 144, 145, 163], "europ": [73, 169], "eval": [3, 4, 7, 8, 9, 13, 17, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 33, 34, 35, 37, 42, 43, 44, 47, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 66, 67, 73, 74, 75, 76, 77, 79, 82, 86, 87, 88, 89, 92, 93, 94, 96, 100, 101, 102, 106, 107, 111, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 128, 129, 130, 132, 137, 138, 139, 141, 143, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 162, 163, 169, 170, 171, 172, 173, 175, 178, 182, 183, 184, 185, 188], "evalu": [3, 4, 6, 7, 8, 9, 10, 13, 17, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 33, 34, 35, 37, 42, 43, 44, 47, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 66, 67, 73, 74, 75, 76, 77, 79, 82, 86, 87, 88, 89, 92, 93, 94, 96, 99, 100, 101, 102, 103, 106, 107, 111, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 128, 129, 130, 132, 137, 138, 139, 141, 143, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 162, 163, 169, 170, 171, 172, 173, 175, 178, 182, 183, 184, 185, 188], "even": [37, 66, 79, 92, 132, 162, 175, 188], "evenli": [7, 8, 9, 10, 42, 44, 67, 100, 101, 102, 103, 137, 139, 163], "event": [4, 25, 35, 88, 94, 120, 130, 184], "evr": [44, 71, 139, 167], "exce": [13, 23, 24, 25, 47, 49, 107, 118, 119, 120, 143, 145], "exclud": [3, 7, 8, 9, 10, 34, 42, 44, 67, 87, 93, 100, 101, 102, 103, 129, 137, 139, 163, 183], "exclude_sampl": [44, 139], "explain": [44, 71, 139, 167], "explicit": [48, 49, 50, 63, 64, 67, 69, 70, 144, 145, 146, 159, 160, 163, 165, 166], "explor": 194, "express": [51, 147], "extern": [64, 160], "extra": [5, 11, 50, 95, 104, 146], "f7f7f7": [49, 145], "falciparum": 194, "fals": [3, 10, 24, 37, 46, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 87, 93, 103, 119, 132, 141, 142, 143, 144, 145, 146, 147, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 173, 174, 175, 183, 193], "fam": [10, 103], "fastest": [42, 67, 137, 163], "fdb863": [49, 145], "featur": [6, 7, 8, 9, 10, 12, 13, 14, 19, 23, 24, 25, 26, 27, 31, 32, 33, 34, 35, 36, 38, 42, 43, 44, 46, 47, 48, 49, 57, 63, 64, 65, 67, 72, 77, 81, 84, 86, 89, 90, 99, 100, 101, 102, 103, 105, 107, 108, 114, 118, 119, 120, 121, 122, 126, 127, 128, 129, 130, 131, 133, 137, 138, 139, 142, 143, 144, 145, 153, 159, 160, 161, 163, 168, 173, 177, 180, 182, 185, 186, 190], "fewer": [3, 34, 51, 87, 93, 129, 147, 183], "ff7f0e": [60, 156], "field": [32, 127], "figur": [46, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 141, 142, 143, 144, 145, 146, 147, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 173, 174, 175], "file": [10, 91, 103, 187], "filter": [3, 4, 6, 7, 8, 9, 10, 12, 14, 19, 20, 21, 22, 37, 38, 42, 43, 44, 48, 49, 51, 54, 55, 56, 65, 66, 67, 72, 77, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 99, 100, 101, 102, 103, 105, 108, 114, 115, 116, 117, 132, 133, 137, 138, 139, 144, 145, 147, 150, 151, 152, 161, 162, 163, 168, 173, 175, 177, 180, 182, 183, 184, 185, 188, 193], "filter_min_maf": [37, 66, 79, 92, 132, 162, 175, 188], "find": [21, 22, 39, 41, 55, 56, 116, 117, 134, 136, 151, 152], "first": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 188], "fit": [73, 169], "fit_exclude_sampl": [44, 139], "fitbound": [73, 169], "fix": [4, 25, 46, 47, 54, 56, 57, 59, 60, 61, 62, 65, 66, 72, 77, 78, 79, 88, 94, 120, 142, 143, 150, 152, 153, 155, 156, 157, 158, 161, 162, 168, 173, 174, 175, 184], "float": [6, 7, 8, 9, 10, 13, 14, 19, 20, 23, 24, 25, 37, 42, 44, 46, 47, 48, 49, 52, 54, 63, 65, 66, 67, 68, 69, 70, 72, 73, 74, 76, 79, 81, 92, 99, 100, 101, 102, 103, 107, 108, 114, 115, 118, 119, 120, 132, 137, 139, 141, 142, 143, 144, 145, 148, 150, 159, 161, 162, 163, 164, 165, 166, 168, 169, 170, 172, 175, 177, 188], "fold": [6, 7, 8, 9, 14, 19, 42, 43, 44, 67, 86, 89, 99, 100, 101, 102, 108, 114, 137, 138, 139, 163, 182, 185], "follow": [0, 1, 2, 6, 7, 8, 9, 14, 19, 42, 43, 44, 67, 86, 89, 99, 100, 101, 102, 108, 114, 137, 138, 139, 163, 182, 185, 194], "font": [48, 49, 63, 67, 144, 145, 159, 163], "format": [6, 7, 8, 9, 10, 12, 13, 14, 19, 23, 24, 25, 26, 27, 31, 32, 33, 34, 35, 36, 38, 42, 43, 44, 46, 47, 48, 49, 51, 57, 63, 64, 65, 67, 68, 72, 77, 81, 84, 86, 89, 90, 99, 100, 101, 102, 103, 105, 107, 108, 114, 118, 119, 120, 121, 122, 126, 127, 128, 129, 130, 131, 133, 137, 138, 139, 142, 143, 144, 145, 147, 153, 159, 160, 161, 163, 164, 168, 173, 177, 180, 182, 185, 186], "found": [7, 8, 9, 10, 42, 44, 67, 82, 86, 89, 100, 101, 102, 103, 137, 139, 163, 178, 182, 185], "fourth": [86, 182], "fraction": [7, 8, 9, 10, 42, 44, 67, 69, 70, 100, 101, 102, 103, 137, 139, 141, 163, 165, 166], "frame": [3, 5, 34, 87, 93, 95, 129, 183], "free": 194, "frequenc": [3, 4, 24, 25, 34, 35, 37, 49, 51, 52, 53, 66, 79, 87, 88, 92, 93, 94, 119, 120, 129, 130, 132, 145, 147, 148, 149, 162, 175, 183, 184, 188], "from": [0, 1, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 43, 44, 48, 49, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 76, 79, 81, 84, 86, 87, 88, 89, 90, 92, 93, 94, 99, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 138, 139, 144, 145, 146, 147, 148, 149, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 165, 166, 167, 168, 172, 175, 177, 180, 182, 183, 184, 185, 186, 188, 194], "from_arrai": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 188, 191, 193], "fst": [6, 20, 43, 54, 68, 99, 115, 138, 150, 164], "fst_df": [68, 164], "full": [48, 49, 63, 144, 145, 159], "function": [0, 1, 2, 10, 37, 44, 46, 65, 66, 72, 79, 92, 103, 132, 139, 142, 161, 162, 168, 175, 188, 194], "funestu": [0, 21, 22, 55, 56, 116, 117, 151, 152, 194], "g": [0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 43, 44, 47, 48, 49, 51, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 72, 73, 74, 75, 76, 77, 79, 81, 82, 84, 86, 87, 88, 89, 92, 93, 94, 95, 96, 100, 101, 102, 103, 105, 106, 107, 108, 111, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 138, 139, 141, 143, 144, 145, 147, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 168, 169, 170, 171, 172, 173, 175, 177, 178, 180, 182, 183, 184, 185, 188, 191, 193], "g123": [21, 22, 55, 56, 116, 117, 151, 152], "gambia": [1, 21, 22, 55, 56, 116, 117, 151, 152, 194], "gap": [37, 66, 79, 92, 132, 162, 175, 188], "gap_scal": [37, 66, 79, 92, 132, 162, 175, 188], "gc": 194, "gcloud": 194, "gene": [3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 19, 23, 24, 25, 26, 27, 31, 32, 33, 34, 35, 36, 38, 42, 43, 44, 46, 47, 48, 49, 54, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 72, 77, 78, 79, 81, 84, 86, 87, 88, 89, 90, 93, 94, 99, 100, 101, 102, 103, 105, 107, 108, 114, 118, 119, 120, 121, 122, 126, 127, 128, 129, 130, 131, 133, 137, 138, 139, 142, 143, 144, 145, 150, 152, 153, 155, 156, 157, 158, 159, 160, 161, 162, 163, 168, 173, 174, 175, 177, 180, 182, 183, 184, 185, 186, 191, 193], "gene_cnv_frequ": [51, 147], "gene_cnv_frequencies_advanc": [52, 53, 148, 149], "gene_label": [46, 47, 54, 56, 57, 59, 60, 61, 62, 65, 66, 72, 77, 79, 142, 143, 150, 152, 153, 155, 156, 157, 158, 161, 162, 168, 173, 175], "gene_labelset": [46, 47, 54, 56, 57, 59, 60, 61, 62, 65, 66, 72, 77, 79, 142, 143, 150, 152, 153, 155, 156, 157, 158, 161, 162, 168, 173, 175], "gener": [21, 28, 51, 54, 55, 56, 57, 59, 60, 62, 66, 78, 79, 116, 123, 147, 150, 151, 152, 153, 155, 156, 158, 162, 174, 175, 194], "genes_height": [46, 47, 54, 56, 59, 60, 61, 62, 65, 66, 72, 77, 79, 142, 143, 150, 152, 155, 156, 157, 158, 161, 162, 168, 173, 175], "genet": [14, 19, 20, 54, 64, 79, 92, 108, 114, 115, 150, 160, 175, 188, 194], "genom": [6, 7, 8, 9, 10, 12, 13, 14, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 42, 43, 44, 46, 47, 48, 49, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 72, 77, 79, 81, 84, 86, 89, 90, 92, 99, 100, 101, 102, 103, 105, 106, 107, 108, 110, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 137, 138, 139, 142, 143, 144, 145, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 168, 173, 175, 177, 180, 182, 185, 186, 188, 190, 191, 193, 194], "genotyp": [4, 7, 8, 9, 10, 12, 25, 42, 48, 49, 67, 88, 89, 90, 94, 96, 100, 101, 102, 103, 105, 106, 120, 137, 141, 144, 145, 163, 184, 185, 186, 193], "geoboundari": [15, 109], "geograph": [73, 169], "geojson": [73, 169], "get": [40, 135], "gff": [26, 121], "ggplot2": [50, 75, 146, 171], "give": [3, 14, 19, 24, 27, 34, 43, 60, 61, 87, 93, 108, 114, 119, 122, 129, 138, 156, 157, 183], "given": [21, 22, 27, 55, 56, 76, 77, 90, 91, 116, 117, 122, 151, 152, 172, 173, 186, 187], "global_dict": [3, 4, 7, 8, 9, 13, 17, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 33, 34, 35, 37, 42, 43, 44, 47, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 66, 67, 73, 74, 75, 76, 77, 79, 82, 86, 87, 88, 89, 92, 93, 94, 96, 100, 101, 102, 106, 107, 111, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 128, 129, 130, 132, 137, 138, 139, 141, 143, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 162, 163, 169, 170, 171, 172, 173, 175, 178, 182, 183, 184, 185, 188], "gn": [8, 101], "googl": 194, "graph": [48, 49, 53, 63, 67, 69, 70, 144, 145, 149, 159, 163, 165, 166], "gray_r": [68, 164], "greater": [6, 7, 8, 9, 14, 19, 20, 21, 22, 28, 29, 30, 31, 33, 37, 42, 43, 44, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 66, 67, 77, 79, 86, 89, 92, 99, 100, 101, 102, 108, 114, 115, 116, 117, 123, 124, 125, 126, 128, 132, 137, 138, 139, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 162, 163, 173, 175, 182, 185, 188], "grei": [49, 145], "gridon": [50, 75, 146, 171], "group": [4, 5, 25, 35, 52, 53, 75, 88, 94, 95, 120, 130, 148, 149, 171, 184], "gwss": [21, 28, 37, 55, 56, 58, 59, 60, 61, 66, 79, 92, 116, 123, 132, 151, 152, 154, 155, 156, 157, 162, 175, 188], "h12": [28, 29, 58, 59, 60, 61, 123, 124, 154, 155, 156, 157], "h1x": [30, 62, 125, 158], "ha": [4, 25, 35, 44, 86, 88, 94, 120, 130, 139, 182, 184], "haplotyp": [21, 22, 28, 29, 30, 31, 32, 34, 35, 37, 45, 55, 56, 58, 59, 60, 61, 62, 63, 64, 66, 79, 92, 116, 117, 123, 124, 125, 126, 127, 129, 130, 132, 140, 151, 152, 154, 155, 156, 157, 158, 159, 160, 162, 175, 188], "have": [44, 53, 139, 149, 194], "header": [51, 147], "heatmap": [47, 51, 68, 141, 143, 147, 164], "height": [46, 47, 48, 49, 50, 51, 53, 54, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 141, 142, 143, 144, 145, 146, 147, 149, 150, 152, 153, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175], "het": 141, "heterozygos": [49, 65, 72, 145, 161, 168], "heterozygosity_colorscal": [49, 145], "heterozygosity_height": [49, 72, 145, 168], "heterozygot": [72, 81, 168, 177], "hierarch": [48, 63, 144, 159], "hierarchi": [48, 49, 63, 144, 145, 159], "hmm": [12, 13, 23, 24, 46, 47, 105, 107, 118, 119, 142, 143], "hom": 141, "home": [0, 1, 2], "homozygos": [37, 66, 72, 79, 81, 92, 132, 162, 168, 175, 177, 188], "host": 194, "hover": [73, 74, 169, 170], "hover_nam": [73, 74, 169, 170], "how": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 68, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 164, 168, 175, 177, 180, 182, 183, 184, 185, 188, 194], "html": [46, 47, 54, 56, 57, 59, 60, 61, 62, 65, 66, 72, 77, 78, 79, 142, 143, 150, 152, 153, 155, 156, 157, 158, 161, 162, 168, 173, 174, 175], "http": [46, 47, 48, 49, 51, 54, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 72, 77, 78, 79, 142, 143, 144, 145, 147, 150, 152, 153, 155, 156, 157, 158, 159, 160, 161, 162, 163, 165, 168, 173, 174, 175], "hudson": [6, 43, 99, 138], "i": [3, 4, 6, 7, 8, 9, 10, 14, 19, 20, 21, 22, 24, 25, 28, 29, 30, 31, 33, 34, 35, 37, 42, 43, 44, 48, 49, 51, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 73, 77, 79, 86, 87, 88, 89, 92, 93, 94, 99, 100, 101, 102, 103, 108, 114, 115, 116, 117, 119, 120, 123, 124, 125, 126, 128, 129, 130, 132, 137, 138, 139, 144, 145, 147, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 162, 163, 164, 169, 173, 175, 182, 183, 184, 185, 188, 194], "id": [15, 109, 190], "idea": 194, "identifi": [3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 18, 19, 21, 22, 23, 24, 25, 26, 27, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 72, 77, 78, 79, 81, 83, 84, 85, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 105, 107, 108, 112, 114, 116, 117, 118, 119, 120, 121, 122, 126, 127, 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 150, 151, 152, 153, 155, 156, 157, 158, 159, 160, 161, 162, 163, 168, 173, 174, 175, 177, 179, 180, 181, 182, 183, 184, 185, 186, 187], "igv": [90, 186], "igv_notebook": [36, 90, 131, 186], "ih": [37, 66, 132, 162], "imag": [49, 51, 68, 145, 147, 164], "img": [51, 68, 147, 164], "import": [0, 1, 2], "imshow": [51, 68, 147, 164], "includ": [3, 4, 5, 6, 7, 8, 9, 10, 13, 15, 17, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 33, 34, 35, 37, 39, 42, 43, 44, 47, 48, 49, 54, 55, 56, 58, 59, 60, 61, 63, 64, 66, 67, 73, 74, 75, 76, 77, 79, 82, 86, 87, 88, 89, 92, 93, 94, 95, 96, 99, 100, 101, 102, 103, 106, 107, 109, 111, 113, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 128, 129, 130, 132, 134, 137, 138, 139, 141, 143, 144, 145, 150, 151, 152, 154, 155, 156, 157, 159, 160, 162, 163, 169, 170, 171, 172, 173, 175, 178, 182, 183, 184, 185, 188, 194], "include_count": [3, 24, 87, 93, 119, 183], "include_edg": [37, 66, 79, 92, 132, 162, 175, 188], "independ": [48, 49, 53, 63, 67, 69, 70, 144, 145, 149, 159, 163, 165, 166], "index": [7, 8, 9, 10, 17, 40, 42, 44, 46, 51, 65, 67, 72, 81, 100, 101, 102, 103, 111, 135, 137, 139, 142, 147, 161, 163, 168, 177, 194], "indic": [7, 8, 9, 10, 42, 44, 67, 82, 86, 89, 100, 101, 102, 103, 137, 139, 163, 178, 182, 185], "individu": [14, 108], "infect": 194, "infer": [72, 81, 168, 177], "inform": [0, 1, 2, 10, 64, 96, 97, 98, 103, 141, 160], "init": [36, 90, 131, 186], "initi": [52, 74, 76, 148, 170, 172, 194], "inject": [36, 131], "inlin": [64, 160], "inline_arrai": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 188, 191, 193], "input": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 51, 52, 53, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 147, 148, 149, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 188], "instanti": [44, 86, 139, 182], "int": [3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 92, 93, 94, 99, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 135, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 177, 178, 180, 182, 183, 184, 185, 186, 188], "integ": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 188], "integr": [37, 66, 79, 92, 132, 162, 175, 188], "interact": [48, 52, 63, 76, 144, 148, 159, 172], "interest": [51, 147], "intergen": [6, 7, 8, 9, 14, 19, 42, 43, 44, 67, 86, 89, 99, 100, 101, 102, 108, 114, 137, 138, 139, 163, 182, 185], "interpret": [7, 8, 9, 10, 42, 44, 51, 67, 68, 100, 101, 102, 103, 137, 139, 147, 163, 164], "interv": [4, 6, 14, 19, 25, 35, 43, 88, 94, 99, 108, 114, 120, 130, 138, 184], "intron": [6, 7, 8, 9, 14, 19, 42, 43, 44, 67, 86, 89, 99, 100, 101, 102, 108, 114, 137, 138, 139, 163, 182, 185], "intron_long": [6, 7, 8, 9, 14, 19, 42, 43, 44, 67, 86, 89, 99, 100, 101, 102, 108, 114, 137, 138, 139, 163, 182, 185], "intron_short": [6, 7, 8, 9, 14, 19, 42, 43, 44, 67, 86, 89, 99, 100, 101, 102, 108, 114, 137, 138, 139, 163, 182, 185], "intron_splice_3prim": [6, 7, 8, 9, 14, 19, 42, 43, 44, 67, 86, 89, 99, 100, 101, 102, 108, 114, 137, 138, 139, 163, 182, 185], "intron_splice_5prim": [6, 7, 8, 9, 14, 19, 42, 43, 44, 67, 86, 89, 99, 100, 101, 102, 108, 114, 137, 138, 139, 163, 182, 185], "investig": [20, 54, 115, 150], "io": [50, 75, 146, 171], "ipyleaflet": [76, 172], "ipython": [51, 147], "iso": [15, 109], "issu": 194, "item": [48, 49, 53, 63, 67, 69, 70, 144, 145, 149, 159, 163, 165, 166], "jackknif": [6, 14, 19, 43, 99, 108, 114, 138], "jitter": [69, 70, 165, 166], "jitter_frac": [69, 70, 165, 166], "join": [42, 64, 67, 137, 160, 163], "jupyt": [64, 160], "jupyterlab": [64, 160], "just": [44, 51, 139, 147], "kb663610": [191, 193], "kbp": [6, 7, 8, 9, 14, 19, 42, 43, 44, 67, 86, 89, 99, 100, 101, 102, 108, 114, 137, 138, 139, 163, 182, 185], "kei": [26, 50, 75, 121, 146, 171, 190], "known": [49, 51, 68, 145, 147, 164], "kwarg": [51, 53, 68, 69, 70, 71, 73, 74, 75, 147, 149, 164, 165, 166, 167, 169, 170, 171], "label": [3, 14, 19, 24, 34, 43, 46, 47, 51, 54, 56, 57, 59, 60, 61, 62, 65, 66, 72, 77, 79, 87, 93, 108, 114, 119, 129, 138, 142, 143, 147, 150, 152, 153, 155, 156, 157, 158, 161, 162, 168, 173, 175, 183], "labelset": [46, 47, 54, 56, 57, 59, 60, 61, 62, 65, 66, 72, 77, 79, 142, 143, 150, 152, 153, 155, 156, 157, 158, 161, 162, 168, 173, 175], "larg": [51, 147], "larger": [6, 14, 19, 37, 43, 51, 66, 72, 79, 81, 92, 99, 108, 114, 132, 138, 147, 162, 168, 175, 177, 188], "latest": [46, 47, 54, 56, 57, 59, 60, 61, 62, 65, 66, 72, 77, 78, 79, 142, 143, 150, 152, 153, 155, 156, 157, 158, 161, 162, 168, 173, 174, 175], "latitud": [15, 109], "launch": [64, 90, 160, 186], "layout": [46, 47, 54, 56, 57, 59, 60, 61, 62, 64, 65, 66, 67, 72, 77, 78, 79, 142, 143, 150, 152, 153, 155, 156, 157, 158, 160, 161, 162, 163, 168, 173, 174, 175], "layout_param": [64, 160], "leaf": [48, 49, 63, 67, 144, 145, 159, 163], "leaf_i": [48, 49, 63, 144, 145, 159], "leaf_legend": [67, 163], "learn": 194, "left": [57, 78, 153, 174], "legend": [48, 49, 50, 53, 63, 64, 67, 69, 70, 73, 74, 144, 145, 146, 149, 159, 160, 163, 165, 166, 169, 170], "legend_s": [48, 49, 53, 63, 67, 69, 70, 144, 145, 149, 159, 163, 165, 166], "length": [4, 25, 35, 88, 94, 120, 130, 184], "less": [3, 4, 6, 7, 8, 9, 14, 19, 20, 21, 22, 24, 25, 28, 29, 30, 31, 33, 34, 35, 37, 42, 43, 44, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 66, 67, 77, 79, 86, 87, 88, 89, 92, 93, 94, 99, 100, 101, 102, 108, 114, 115, 116, 117, 119, 120, 123, 124, 125, 126, 128, 129, 130, 132, 137, 138, 139, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 162, 163, 173, 175, 182, 183, 184, 185, 188], "let": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 188, 191, 193], "level": [4, 14, 19, 25, 35, 52, 74, 76, 77, 88, 90, 94, 108, 114, 120, 130, 148, 170, 172, 173, 184, 186], "librari": 194, "like": [5, 6, 7, 8, 9, 10, 12, 13, 14, 19, 23, 24, 25, 26, 27, 31, 32, 33, 34, 35, 36, 38, 42, 43, 44, 46, 47, 48, 49, 51, 57, 63, 64, 65, 67, 68, 72, 77, 81, 84, 86, 89, 90, 95, 99, 100, 101, 102, 103, 105, 107, 108, 114, 118, 119, 120, 121, 122, 126, 127, 128, 129, 130, 131, 133, 137, 138, 139, 142, 143, 144, 145, 147, 153, 159, 160, 161, 163, 164, 168, 173, 177, 180, 182, 185, 186, 194], "limit": [46, 65, 72, 142, 161, 168], "line": [46, 48, 49, 53, 63, 67, 141, 142, 144, 145, 149, 159, 163], "line_color": [48, 49, 63, 144, 145, 159], "line_kwarg": [46, 142], "line_width": [48, 49, 63, 67, 144, 145, 159, 163], "link": [57, 78, 153, 174, 194], "linkag": [48, 49, 63, 144, 145, 159], "linkage_method": [48, 49, 63, 144, 145, 159], "list": [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 17, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 42, 43, 44, 46, 47, 48, 49, 50, 51, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 73, 74, 75, 76, 77, 79, 82, 86, 87, 88, 89, 92, 93, 94, 96, 99, 100, 101, 102, 103, 105, 106, 107, 108, 111, 114, 115, 116, 117, 118, 119, 120, 121, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 169, 170, 171, 172, 173, 175, 178, 182, 183, 184, 185, 188, 190, 191, 193], "liter": [4, 7, 25, 35, 42, 46, 47, 48, 49, 50, 51, 53, 54, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 75, 77, 78, 79, 88, 94, 100, 120, 130, 137, 142, 143, 144, 145, 146, 147, 149, 150, 152, 153, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 171, 173, 174, 175, 184], "load": [8, 84, 91, 101, 113, 180, 187], "local": [64, 160], "local_dict": [3, 4, 7, 8, 9, 13, 17, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 33, 34, 35, 37, 42, 43, 44, 47, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 66, 67, 73, 74, 75, 76, 77, 79, 82, 86, 87, 88, 89, 92, 93, 94, 96, 100, 101, 102, 106, 107, 111, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 128, 129, 130, 132, 137, 138, 139, 141, 143, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 162, 163, 169, 170, 171, 172, 173, 175, 178, 182, 183, 184, 185, 188], "locat": [10, 52, 57, 73, 74, 76, 78, 103, 148, 153, 169, 170, 172, 174, 191, 193, 194], "login": 194, "longer": [6, 7, 8, 9, 14, 19, 42, 43, 44, 67, 86, 89, 99, 100, 101, 102, 108, 114, 137, 138, 139, 163, 182, 185], "longitud": [15, 109], "lower": [68, 164], "mai": [10, 44, 51, 54, 55, 56, 57, 59, 60, 62, 66, 72, 78, 79, 81, 86, 103, 139, 147, 150, 151, 152, 153, 155, 156, 158, 162, 168, 174, 175, 177, 182, 194], "main": [46, 47, 54, 56, 59, 60, 61, 62, 65, 66, 79, 142, 143, 150, 152, 155, 156, 157, 158, 161, 162, 175], "make": [18, 45, 85, 112, 140, 181], "malaria": 194, "malariagen": [0, 1, 2], "malariagen_data": [0, 1, 2, 194], "manual": [64, 160], "map": [3, 6, 7, 8, 9, 10, 12, 13, 14, 15, 19, 21, 23, 24, 25, 26, 27, 28, 31, 32, 33, 34, 35, 36, 38, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 54, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 76, 77, 79, 81, 84, 86, 87, 89, 90, 92, 93, 99, 100, 101, 102, 103, 105, 107, 108, 109, 114, 116, 118, 119, 120, 121, 122, 123, 126, 127, 128, 129, 130, 131, 133, 137, 138, 139, 142, 143, 144, 145, 146, 147, 148, 150, 152, 153, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 170, 172, 173, 175, 177, 180, 182, 183, 185, 186, 188], "map_po": [79, 92, 175, 188], "mapbox": [74, 170], "mapnik": [76, 172], "marker": [46, 48, 49, 50, 52, 53, 63, 64, 65, 67, 69, 70, 72, 73, 74, 76, 96, 97, 98, 141, 142, 144, 145, 146, 148, 149, 159, 160, 161, 163, 165, 166, 168, 169, 170, 172], "marker_s": [48, 49, 63, 67, 69, 70, 73, 74, 144, 145, 159, 163, 165, 166, 169, 170], "mask": [3, 4, 6, 7, 8, 9, 10, 14, 19, 20, 21, 22, 38, 42, 43, 44, 48, 49, 54, 55, 56, 65, 67, 72, 77, 81, 84, 85, 86, 87, 88, 89, 93, 94, 99, 100, 101, 102, 103, 108, 114, 115, 116, 117, 133, 137, 138, 139, 144, 145, 150, 151, 152, 161, 163, 168, 173, 177, 180, 181, 182, 183, 184, 185], "match": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 188], "max_cohort_s": [6, 7, 8, 9, 14, 20, 21, 22, 28, 29, 30, 33, 37, 42, 43, 44, 54, 55, 56, 58, 59, 60, 61, 62, 66, 67, 79, 86, 89, 92, 99, 100, 101, 102, 108, 115, 116, 117, 123, 124, 125, 128, 132, 137, 138, 139, 150, 151, 152, 154, 155, 156, 157, 158, 162, 163, 175, 182, 185, 188], "max_coverage_vari": [13, 23, 24, 25, 47, 107, 118, 119, 120, 143], "max_dist": [64, 160], "max_gap": [37, 66, 79, 92, 132, 162, 175, 188], "max_len": [51, 147], "max_missing_an": [7, 8, 9, 10, 42, 44, 67, 100, 101, 102, 103, 137, 139, 163], "max_snp": [77, 173], "maximum": [7, 8, 9, 10, 42, 44, 64, 67, 77, 100, 101, 102, 103, 137, 139, 160, 163, 173], "mean": [14, 19, 108, 114], "median": [29, 30, 48, 49, 63, 64, 124, 125, 144, 145, 159, 160], "memori": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 188], "merg": [5, 95], "metadata": [3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 17, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 33, 34, 35, 37, 40, 42, 43, 44, 47, 48, 49, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 66, 67, 69, 70, 73, 74, 75, 76, 77, 79, 82, 86, 87, 88, 89, 92, 93, 94, 95, 96, 99, 100, 101, 102, 103, 104, 106, 107, 111, 113, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 128, 129, 130, 132, 135, 137, 138, 139, 141, 143, 144, 145, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 162, 163, 165, 166, 169, 170, 171, 172, 173, 175, 178, 182, 183, 184, 185, 188, 192], "method": [0, 1, 2, 4, 18, 25, 35, 45, 48, 49, 63, 85, 88, 94, 112, 120, 130, 140, 144, 145, 159, 181, 184], "metric": [7, 42, 48, 49, 67, 100, 137, 144, 145, 163], "mib": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 188, 191, 193], "min_cohort_s": [3, 4, 6, 7, 8, 9, 14, 20, 21, 22, 24, 25, 28, 29, 30, 33, 34, 35, 37, 42, 43, 44, 54, 55, 56, 58, 59, 60, 61, 62, 66, 67, 79, 86, 87, 88, 89, 92, 93, 94, 99, 100, 101, 102, 108, 115, 116, 117, 119, 120, 123, 124, 125, 128, 129, 130, 132, 137, 138, 139, 150, 151, 152, 154, 155, 156, 157, 158, 162, 163, 175, 182, 183, 184, 185, 188], "min_ehh": [37, 66, 79, 92, 132, 162, 175, 188], "min_minor_ac": [7, 8, 9, 10, 42, 44, 67, 100, 101, 102, 103, 137, 139, 163], "min_sampl": [76, 172], "minimu": [2, 194], "minimum": [3, 4, 6, 7, 8, 9, 10, 14, 20, 21, 22, 24, 25, 28, 29, 30, 33, 34, 35, 37, 42, 43, 44, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 66, 67, 76, 79, 86, 87, 88, 89, 92, 93, 94, 99, 100, 101, 102, 103, 108, 115, 116, 117, 119, 120, 123, 124, 125, 128, 129, 130, 132, 137, 138, 139, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 162, 163, 172, 175, 182, 183, 184, 185, 188], "minor": [7, 8, 9, 10, 37, 42, 44, 66, 67, 79, 92, 100, 101, 102, 103, 132, 137, 139, 162, 163, 175, 188], "miss": [3, 4, 7, 8, 9, 10, 24, 25, 42, 44, 67, 87, 88, 93, 94, 100, 101, 102, 103, 119, 120, 137, 139, 141, 163, 183, 184], "modal": [23, 24, 118, 119], "mode": [46, 47, 54, 56, 57, 59, 60, 61, 62, 64, 65, 66, 72, 77, 78, 79, 142, 143, 150, 152, 153, 155, 156, 157, 158, 160, 161, 162, 168, 173, 174, 175], "model": [46, 47, 54, 55, 56, 57, 58, 59, 60, 61, 62, 65, 66, 72, 77, 78, 79, 142, 143, 150, 151, 152, 153, 154, 155, 156, 157, 158, 161, 162, 168, 173, 174, 175], "month": [4, 25, 35, 88, 94, 120, 130, 184], "more": [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 43, 44, 48, 49, 51, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 79, 81, 82, 84, 86, 87, 88, 89, 92, 93, 94, 99, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 138, 139, 144, 145, 147, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 175, 177, 178, 180, 182, 183, 184, 185, 188, 194], "mosquito": [0, 1, 2, 194], "move": [72, 81, 168, 177], "multipl": [19, 37, 44, 46, 47, 50, 60, 61, 65, 66, 79, 92, 114, 132, 139, 142, 143, 146, 156, 157, 161, 162, 175, 188, 191, 193], "multipli": [4, 25, 88, 94, 120, 184], "must": [5, 50, 51, 75, 95, 146, 147, 171], "n": [6, 14, 19, 43, 48, 49, 63, 67, 97, 99, 108, 114, 138, 144, 145, 159, 163], "n_compon": [44, 139], "n_jack": [6, 14, 19, 43, 99, 108, 114, 138], "n_snp": [7, 8, 9, 10, 31, 42, 44, 67, 100, 101, 102, 103, 126, 137, 139, 163], "n_variant": [86, 182], "name": [3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 42, 43, 44, 46, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 77, 79, 81, 84, 86, 87, 88, 89, 90, 92, 93, 94, 95, 99, 100, 101, 102, 103, 105, 106, 107, 108, 109, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 173, 175, 177, 180, 182, 183, 184, 185, 186, 188, 190, 191, 193], "natgeoworldmap": [76, 172], "nativ": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 188, 191, 193], "natur": 194, "ndarrai": [7, 8, 20, 21, 22, 28, 29, 30, 31, 37, 38, 42, 44, 71, 79, 86, 92, 100, 101, 115, 116, 117, 123, 124, 125, 126, 132, 133, 137, 139, 167, 175, 182, 188], "ndauto": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 188], "ndauto0": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 188], "ndauto01": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 188], "ndauto1": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 188], "necessarili": [6, 14, 19, 43, 99, 108, 114, 138], "need": [60, 61, 156, 157, 194], "neighbour": [42, 67, 137, 163], "net": 194, "network": [64, 160, 194], "nob": [3, 24, 87, 93, 119, 183], "nobs_mod": [4, 25, 88, 94, 120, 184], "node": [48, 49, 63, 64, 67, 144, 145, 159, 160, 163], "node_size_factor": [64, 160], "non": [3, 4, 6, 7, 8, 9, 14, 19, 24, 25, 42, 43, 44, 67, 77, 86, 87, 88, 89, 93, 94, 99, 100, 101, 102, 108, 114, 119, 120, 137, 138, 139, 163, 173, 182, 183, 184, 185], "non_synonymous_cod": [49, 145], "none": [3, 4, 6, 7, 8, 9, 10, 13, 14, 17, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 40, 42, 43, 44, 46, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 92, 93, 94, 96, 99, 100, 101, 102, 103, 106, 107, 108, 111, 114, 115, 116, 117, 118, 119, 120, 121, 123, 124, 125, 126, 128, 129, 130, 131, 132, 135, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 177, 178, 179, 180, 182, 183, 184, 185, 188], "normal": [4, 25, 35, 88, 94, 120, 130, 184], "north": [73, 169], "note": [0, 48, 49, 63, 67, 144, 145, 159, 163, 194], "notebook": [36, 51, 131, 147], "now": [44, 139], "nucleotid": [27, 122], "number": [3, 4, 6, 7, 8, 9, 10, 14, 17, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 33, 34, 35, 37, 42, 43, 44, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 72, 75, 76, 77, 79, 81, 86, 87, 88, 89, 92, 93, 94, 99, 100, 101, 102, 103, 108, 111, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 128, 129, 130, 132, 137, 138, 139, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 168, 171, 172, 173, 175, 177, 182, 183, 184, 185, 188], "numer": [51, 68, 147, 164], "numpi": [6, 86, 99, 182], "object": [0, 1, 2], "observ": [3, 24, 25, 44, 64, 72, 81, 86, 87, 88, 93, 119, 120, 139, 160, 168, 177, 182, 183, 184], "observatori": 2, "obtain": [10, 103], "one": [3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 43, 44, 48, 49, 53, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 71, 72, 79, 81, 82, 83, 84, 86, 87, 88, 89, 92, 93, 94, 95, 99, 100, 101, 102, 103, 105, 106, 107, 108, 109, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 138, 139, 144, 145, 149, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 167, 168, 175, 177, 178, 179, 180, 182, 183, 184, 185, 188], "onli": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 51, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 141, 144, 145, 147, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 165, 166, 167, 168, 169, 170, 171, 173, 174, 175, 177, 180, 182, 183, 184, 185, 188], "onlin": 194, "onto": [46, 54, 56, 57, 59, 60, 61, 62, 65, 66, 72, 79, 142, 150, 152, 153, 155, 156, 157, 158, 161, 162, 168, 175], "opac": [69, 165], "open": 194, "opentopomap": [76, 172], "option": [3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 99, 100, 101, 102, 103, 105, 106, 107, 108, 111, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 135, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 177, 178, 179, 180, 182, 183, 184, 185, 186, 188, 190, 191, 193, 194], "order": [7, 8, 9, 10, 42, 44, 48, 49, 50, 63, 64, 67, 69, 70, 73, 74, 75, 82, 86, 89, 100, 101, 102, 103, 137, 139, 141, 144, 145, 146, 159, 160, 163, 165, 166, 169, 170, 171, 178, 182, 185], "org": [46, 47, 54, 56, 57, 59, 60, 61, 62, 65, 66, 72, 77, 78, 79, 142, 143, 150, 152, 153, 155, 156, 157, 158, 161, 162, 168, 173, 174, 175], "other": [57, 68, 76, 78, 153, 164, 172, 174, 194], "otherwis": [48, 49, 51, 52, 53, 63, 64, 67, 144, 145, 147, 148, 149, 159, 160, 163], "ought": [10, 103], "output": [3, 10, 34, 46, 50, 51, 54, 56, 57, 59, 60, 61, 62, 65, 66, 72, 79, 87, 93, 103, 129, 142, 146, 147, 150, 152, 153, 155, 156, 157, 158, 161, 162, 168, 175, 183], "output_backend": [46, 54, 56, 57, 59, 60, 61, 62, 65, 66, 72, 79, 142, 150, 152, 153, 155, 156, 157, 158, 161, 162, 168, 175], "output_dir": [10, 103], "outsid": [72, 81, 168, 177], "over": [37, 65, 66, 72, 79, 81, 92, 132, 161, 162, 168, 175, 177, 188], "overlaid": [60, 156], "overlap": [29, 30, 124, 125], "overrid": [37, 64, 66, 132, 160, 162], "overwrit": [10, 103], "overwritten": [10, 103], "owner": 194, "packag": 194, "page": [0, 1, 2], "pair": [14, 37, 66, 79, 90, 92, 108, 132, 162, 175, 186, 188], "pairwis": [7, 31, 43, 67, 68, 100, 126, 138, 163, 164], "palett": [66, 79, 141, 162, 175], "panda": [3, 4, 6, 7, 8, 9, 10, 13, 14, 17, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 33, 34, 35, 37, 42, 43, 44, 47, 48, 49, 51, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 66, 67, 73, 74, 75, 76, 77, 79, 82, 86, 87, 88, 89, 92, 93, 94, 96, 99, 100, 101, 102, 103, 106, 107, 108, 111, 113, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 128, 129, 130, 132, 137, 138, 139, 141, 143, 144, 145, 147, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 162, 163, 169, 170, 171, 172, 173, 175, 178, 182, 183, 184, 185, 188, 190, 192], "panel": [53, 149], "paramet": [18, 45, 85, 112, 140, 181], "parasit": 194, "parent": [113, 190], "parser": [3, 4, 7, 8, 9, 13, 17, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 33, 34, 35, 37, 42, 43, 44, 47, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 66, 67, 73, 74, 75, 76, 77, 79, 82, 86, 87, 88, 89, 92, 93, 94, 96, 100, 101, 102, 106, 107, 111, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 128, 129, 130, 132, 137, 138, 139, 141, 143, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 162, 163, 169, 170, 171, 172, 173, 175, 178, 182, 183, 184, 185, 188], "partner_sample_id": [5, 95], "pass": [3, 4, 7, 8, 9, 10, 12, 13, 14, 17, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 43, 44, 46, 47, 48, 49, 51, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 81, 82, 84, 86, 87, 88, 89, 92, 93, 94, 96, 100, 101, 102, 103, 105, 106, 107, 108, 111, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 138, 139, 141, 142, 143, 144, 145, 147, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 177, 178, 180, 182, 183, 184, 185, 188, 191, 193], "path": [10, 103], "pc1": [44, 69, 70, 139, 165, 166], "pc2": [44, 69, 70, 139, 165, 166], "pc3": [44, 69, 70, 139, 165, 166], "pca": [69, 70, 71, 165, 166, 167], "per": [3, 5, 8, 15, 23, 24, 26, 34, 37, 44, 47, 50, 51, 53, 65, 66, 71, 72, 79, 81, 82, 83, 87, 91, 92, 93, 95, 101, 109, 118, 119, 121, 129, 132, 139, 141, 143, 146, 147, 149, 161, 162, 167, 168, 175, 177, 178, 179, 183, 187, 188], "percentil": [21, 28, 37, 66, 79, 92, 116, 123, 132, 162, 175, 188], "perform": [49, 145], "period": [4, 25, 35, 52, 88, 94, 120, 130, 148, 184], "period_bi": [4, 25, 35, 88, 94, 120, 130, 184], "permiss": 194, "pf7": 194, "phase": [21, 22, 28, 29, 30, 31, 32, 33, 37, 45, 55, 56, 58, 59, 60, 61, 62, 63, 64, 66, 79, 92, 116, 117, 123, 124, 125, 126, 127, 128, 132, 140, 151, 152, 154, 155, 156, 157, 158, 159, 160, 162, 175, 188], "phased_sampl": [31, 126], "phasing_analysis_id": [28, 29, 30, 31, 32, 33, 37, 58, 59, 60, 61, 62, 63, 64, 66, 79, 92, 123, 124, 125, 126, 127, 128, 132, 154, 155, 156, 157, 158, 159, 160, 162, 175, 188], "phet_nonroh": [72, 81, 168, 177], "phet_roh": [72, 81, 168, 177], "pip": 194, "pivot": [17, 111], "pixel": [46, 47, 48, 49, 50, 51, 53, 54, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 142, 143, 144, 145, 146, 147, 149, 150, 152, 153, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175], "plasmodium": 194, "pleas": [0, 1, 2, 194], "plink": [10, 103], "plot": [37, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 132, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175], "plot_kwarg": [50, 146], "plotli": [48, 49, 50, 51, 53, 63, 64, 67, 69, 70, 71, 73, 74, 75, 141, 144, 145, 146, 147, 149, 159, 160, 163, 165, 166, 167, 169, 170, 171], "plotly_dark": [50, 75, 146, 171], "plotly_whit": [50, 75, 146, 171], "po": [32, 127], "point": [15, 20, 22, 29, 30, 37, 69, 70, 92, 109, 115, 117, 124, 125, 132, 165, 166, 188], "popul": 194, "port": [64, 160], "posit": [4, 20, 22, 25, 29, 30, 32, 35, 37, 64, 77, 79, 88, 92, 94, 98, 115, 117, 120, 124, 125, 127, 130, 132, 160, 173, 175, 184, 188], "positron": [76, 172], "possibl": [96, 97, 98, 141], "predefin": [3, 14, 19, 24, 34, 43, 60, 61, 87, 93, 108, 114, 119, 129, 138, 156, 157, 183], "prefix": [4, 25, 35, 88, 94, 120, 130, 184], "present": [50, 51, 75, 146, 147, 171], "previou": [10, 103], "previous": [10, 11, 44, 103, 104, 139], "princip": [44, 69, 70, 71, 139, 165, 166, 167], "prior": [37, 66, 79, 92, 132, 162, 175, 188], "probabl": [72, 81, 168, 177], "produc": [48, 51, 63, 144, 147, 159], "progeni": 113, "programm": 194, "project": [0, 1], "properti": [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 14, 16, 18, 19, 20, 21, 22, 28, 29, 30, 31, 32, 33, 37, 38, 42, 43, 44, 45, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 72, 77, 79, 80, 81, 84, 85, 86, 87, 88, 89, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103, 105, 106, 108, 110, 112, 114, 115, 116, 117, 123, 124, 125, 126, 127, 128, 132, 133, 137, 138, 139, 140, 141, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 168, 173, 175, 176, 177, 180, 181, 182, 183, 184, 185, 188, 189], "proport": [4, 25, 35, 88, 94, 120, 130, 184], "proportion_confint": [4, 25, 35, 88, 94, 120, 130, 184], "provid": [0, 1, 2, 7, 8, 9, 10, 19, 21, 22, 26, 37, 42, 44, 46, 48, 49, 50, 51, 55, 56, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 73, 74, 76, 81, 82, 86, 89, 91, 100, 101, 102, 103, 114, 116, 117, 121, 132, 137, 139, 142, 144, 145, 146, 147, 151, 152, 156, 157, 159, 160, 161, 162, 163, 164, 165, 166, 169, 170, 172, 177, 178, 182, 185, 187, 190, 191, 193, 194], "public": 194, "pv4": 194, "px": [46, 47, 48, 49, 50, 51, 53, 54, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 141, 142, 143, 144, 145, 146, 147, 149, 150, 152, 153, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175], "pypi": 194, "python": [48, 49, 51, 63, 67, 69, 144, 145, 147, 159, 163, 165], "q": 194, "quarter": [4, 25, 35, 88, 94, 120, 130, 184], "queri": [3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 17, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 33, 34, 35, 37, 42, 43, 44, 47, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 66, 67, 73, 74, 75, 76, 77, 79, 82, 86, 87, 88, 89, 92, 93, 94, 95, 96, 99, 100, 101, 102, 103, 106, 107, 108, 111, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 128, 129, 130, 132, 137, 138, 139, 141, 143, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 162, 163, 169, 170, 171, 172, 173, 175, 178, 182, 183, 184, 185, 188], "question": 194, "rais": [3, 4, 6, 7, 8, 9, 14, 19, 20, 21, 22, 24, 25, 28, 29, 30, 31, 33, 34, 35, 37, 42, 43, 44, 48, 49, 51, 54, 55, 56, 58, 59, 60, 61, 62, 63, 66, 67, 77, 79, 86, 87, 88, 89, 92, 93, 94, 99, 100, 101, 102, 108, 114, 115, 116, 117, 119, 120, 123, 124, 125, 126, 128, 129, 130, 132, 137, 138, 139, 144, 145, 147, 150, 151, 152, 154, 155, 156, 157, 158, 159, 162, 163, 173, 175, 182, 183, 184, 185, 188], "random": [6, 7, 8, 9, 10, 14, 19, 20, 21, 22, 28, 29, 30, 31, 33, 37, 42, 43, 44, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 66, 67, 69, 70, 79, 86, 89, 92, 99, 100, 101, 102, 103, 108, 114, 115, 116, 117, 123, 124, 125, 126, 128, 132, 137, 138, 139, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 162, 163, 165, 166, 175, 182, 185, 188], "random_se": [6, 7, 8, 9, 10, 14, 19, 20, 21, 22, 28, 29, 30, 31, 33, 37, 42, 43, 44, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 66, 67, 69, 70, 79, 86, 89, 92, 99, 100, 101, 102, 103, 108, 114, 115, 116, 117, 123, 124, 125, 126, 128, 132, 137, 138, 139, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 162, 163, 165, 166, 175, 182, 185, 188], "randomli": [6, 7, 8, 9, 10, 14, 19, 20, 21, 22, 28, 29, 30, 31, 33, 37, 42, 43, 44, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 66, 67, 69, 70, 77, 79, 86, 89, 92, 99, 100, 101, 102, 103, 108, 114, 115, 116, 117, 123, 124, 125, 126, 128, 132, 137, 138, 139, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 162, 163, 165, 166, 173, 175, 182, 185, 188], "rang": [57, 68, 69, 70, 78, 153, 164, 165, 166, 174], "rapid": [42, 67, 137, 163], "ratio": [44, 51, 71, 139, 147, 167], "re": [44, 86, 139, 182], "read": [0, 3, 4, 7, 8, 9, 10, 12, 13, 14, 15, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 90, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 109, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 186, 188], "recommend": [51, 147], "rectangl": [77, 173], "red": [51, 147], "ref": [32, 127], "refer": [4, 6, 7, 8, 9, 10, 12, 13, 14, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 42, 43, 44, 46, 47, 48, 49, 51, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 72, 77, 79, 81, 84, 86, 88, 89, 90, 92, 94, 99, 100, 101, 102, 103, 105, 106, 107, 108, 110, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 137, 138, 139, 142, 143, 144, 145, 147, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 168, 173, 175, 177, 180, 182, 184, 185, 186, 188, 191], "region": [6, 7, 8, 9, 10, 12, 13, 14, 19, 23, 24, 25, 26, 27, 30, 31, 32, 33, 34, 35, 36, 38, 42, 43, 44, 46, 47, 48, 49, 57, 62, 63, 64, 65, 67, 72, 77, 81, 84, 86, 89, 90, 99, 100, 101, 102, 103, 105, 107, 108, 114, 118, 119, 120, 121, 122, 125, 126, 127, 128, 129, 130, 131, 133, 137, 138, 139, 142, 143, 144, 145, 153, 158, 159, 160, 161, 163, 168, 173, 177, 180, 182, 185, 186, 191, 193, 194], "releas": [3, 4, 6, 7, 8, 9, 10, 13, 14, 17, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 33, 34, 35, 37, 39, 42, 43, 44, 47, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 66, 67, 73, 74, 75, 76, 77, 79, 82, 83, 86, 87, 88, 89, 92, 93, 94, 96, 99, 100, 101, 102, 103, 106, 107, 108, 111, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 128, 129, 130, 132, 134, 137, 138, 139, 141, 143, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 162, 163, 169, 170, 171, 172, 173, 175, 178, 179, 182, 183, 184, 185, 188], "remain": [48, 49, 53, 63, 67, 69, 70, 144, 145, 149, 159, 163, 165, 166], "remov": [13, 23, 24, 25, 47, 49, 107, 118, 119, 120, 143, 145], "render": [46, 48, 49, 50, 51, 53, 54, 56, 57, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 79, 141, 142, 144, 145, 146, 147, 149, 150, 152, 153, 155, 156, 157, 158, 159, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 175], "render_mod": [48, 49, 63, 67, 69, 144, 145, 159, 163, 165], "repeat": [7, 8, 9, 10, 42, 44, 67, 100, 101, 102, 103, 137, 139, 163], "report": [37, 66, 76, 79, 92, 132, 162, 172, 175, 188], "repositori": 194, "repres": [15, 64, 109, 160], "reproduc": [6, 7, 8, 9, 10, 14, 19, 20, 21, 22, 28, 29, 30, 31, 33, 37, 42, 43, 44, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 66, 67, 69, 70, 79, 86, 89, 92, 99, 100, 101, 102, 103, 108, 114, 115, 116, 117, 123, 124, 125, 126, 128, 132, 137, 138, 139, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 162, 163, 165, 166, 175, 182, 185, 188], "request": 194, "requir": [7, 8, 9, 10, 42, 44, 67, 76, 100, 101, 102, 103, 137, 139, 163, 172], "rescal": [37, 66, 79, 92, 132, 162, 175, 188], "research": 194, "resiz": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 188], "resolv": [3, 4, 7, 8, 9, 13, 17, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 33, 34, 35, 37, 42, 43, 44, 47, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 66, 67, 73, 74, 75, 76, 77, 79, 82, 86, 87, 88, 89, 92, 93, 94, 96, 100, 101, 102, 106, 107, 111, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 128, 129, 130, 132, 137, 138, 139, 141, 143, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 162, 163, 169, 170, 171, 172, 173, 175, 178, 182, 183, 184, 185, 188], "respect": [10, 103], "restrict": [53, 149], "result": [4, 10, 25, 35, 44, 53, 86, 88, 94, 103, 120, 130, 139, 149, 182, 184, 194], "results_cach": [44, 86, 139, 182], "return": [49, 64, 68, 145, 160, 164], "rgb": [49, 51, 68, 73, 74, 145, 147, 164, 169, 170], "rgba": [49, 51, 68, 145, 147, 164], "right": [57, 68, 78, 153, 164, 174], "roh": [72, 81, 168, 177], "roh_height": [72, 168], "row": [3, 5, 15, 19, 24, 26, 34, 47, 51, 53, 81, 82, 83, 87, 91, 93, 95, 109, 114, 119, 121, 129, 141, 143, 147, 149, 177, 178, 179, 183, 187], "row_height": [47, 51, 68, 141, 143, 147, 164], "run": [7, 8, 9, 10, 20, 21, 22, 28, 29, 30, 37, 42, 44, 54, 62, 64, 66, 67, 72, 79, 81, 86, 92, 100, 101, 102, 103, 115, 116, 117, 123, 124, 125, 132, 137, 139, 150, 158, 160, 162, 163, 168, 175, 177, 182, 188, 194], "same": [10, 60, 61, 68, 103, 156, 157, 164, 194], "sampl": [3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 17, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 33, 34, 35, 37, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 72, 73, 74, 75, 76, 77, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 99, 100, 101, 102, 103, 105, 106, 107, 108, 111, 113, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 128, 129, 130, 132, 134, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 165, 166, 168, 169, 170, 171, 172, 173, 175, 177, 178, 179, 182, 183, 184, 185, 186, 187, 188, 192, 194], "sample_id": [5, 95], "sample_indic": [7, 8, 9, 10, 42, 44, 67, 82, 86, 89, 100, 101, 102, 103, 137, 139, 163, 178, 182, 185], "sample_metadata": [0, 1, 2], "sample_queri": [3, 4, 7, 8, 9, 10, 13, 17, 19, 21, 22, 23, 24, 25, 28, 29, 31, 33, 34, 35, 37, 42, 43, 44, 47, 48, 49, 55, 56, 58, 59, 60, 61, 63, 64, 66, 67, 73, 74, 75, 76, 77, 82, 86, 87, 88, 89, 93, 94, 96, 100, 101, 102, 103, 106, 107, 111, 114, 116, 117, 118, 119, 120, 123, 124, 126, 128, 129, 130, 132, 137, 138, 139, 141, 143, 144, 145, 151, 152, 154, 155, 156, 157, 159, 160, 162, 163, 169, 170, 171, 172, 173, 178, 182, 183, 184, 185], "sample_query_opt": [3, 4, 6, 7, 8, 9, 13, 17, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 33, 34, 35, 37, 42, 43, 44, 47, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 66, 67, 73, 74, 75, 76, 77, 79, 82, 86, 87, 88, 89, 92, 93, 94, 96, 99, 100, 101, 102, 106, 107, 111, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 128, 129, 130, 132, 137, 138, 139, 141, 143, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 162, 163, 169, 170, 171, 172, 173, 175, 178, 182, 183, 184, 185, 188], "sample_set": [3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 17, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 33, 34, 35, 37, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 72, 73, 74, 75, 76, 77, 79, 81, 82, 86, 87, 88, 89, 91, 92, 93, 94, 96, 99, 100, 101, 102, 103, 105, 106, 107, 108, 111, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 128, 129, 130, 132, 134, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 168, 169, 170, 171, 172, 173, 175, 177, 178, 182, 183, 184, 185, 187, 188], "satellit": [76, 172], "scalar": [49, 51, 68, 145, 147, 164], "scale": [48, 49, 51, 53, 63, 64, 67, 68, 69, 70, 144, 145, 147, 149, 159, 160, 163, 164, 165, 166], "scale_both": [46, 47, 54, 56, 57, 59, 60, 61, 62, 65, 66, 72, 77, 78, 79, 142, 143, 150, 152, 153, 155, 156, 157, 158, 161, 162, 168, 173, 174, 175], "scale_height": [46, 47, 54, 56, 57, 59, 60, 61, 62, 65, 66, 72, 77, 78, 79, 142, 143, 150, 152, 153, 155, 156, 157, 158, 161, 162, 168, 173, 174, 175], "scale_width": [46, 47, 54, 56, 57, 59, 60, 61, 62, 65, 66, 72, 77, 78, 79, 142, 143, 150, 152, 153, 155, 156, 157, 158, 161, 162, 168, 173, 174, 175], "scan": [20, 22, 29, 30, 54, 62, 115, 117, 124, 125, 150, 158], "scatter": [46, 50, 65, 67, 69, 70, 72, 73, 74, 142, 146, 161, 163, 165, 166, 168, 169, 170], "scatter_3d": [70, 166], "scatter_mapbox": [73, 74, 169, 170], "scatter_plot_height": [50, 146], "scatter_plot_width": [50, 146], "scipi": [48, 49, 63, 144, 145, 159], "scope": [73, 169], "score": [37, 66, 68, 79, 92, 132, 162, 164, 175, 188], "script": [64, 160], "se": [6, 99], "seaborn": [50, 75, 146, 171], "second": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 141, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 188], "section": [48, 49, 63, 144, 145, 159], "see": [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 14, 19, 20, 21, 22, 28, 29, 30, 31, 32, 33, 37, 38, 42, 43, 44, 46, 47, 48, 49, 51, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 72, 77, 78, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103, 105, 106, 108, 114, 115, 116, 117, 123, 124, 125, 126, 127, 128, 132, 133, 137, 138, 139, 141, 142, 143, 144, 145, 147, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 165, 168, 173, 174, 175, 177, 180, 182, 183, 184, 185, 188, 194], "seed": [6, 7, 8, 9, 10, 14, 19, 20, 21, 22, 28, 29, 30, 31, 33, 37, 42, 43, 44, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 66, 67, 69, 70, 79, 86, 89, 92, 99, 100, 101, 102, 103, 108, 114, 115, 116, 117, 123, 124, 125, 126, 128, 132, 137, 138, 139, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 162, 163, 165, 166, 175, 182, 185, 188], "segreg": [21, 22, 55, 56, 77, 116, 117, 151, 152, 173], "select": [3, 4, 6, 7, 8, 9, 10, 13, 14, 17, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 33, 34, 35, 37, 42, 43, 44, 47, 48, 49, 52, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 66, 67, 73, 74, 75, 76, 77, 79, 82, 86, 87, 88, 89, 92, 93, 94, 96, 99, 100, 101, 102, 103, 106, 107, 108, 111, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 128, 129, 130, 132, 137, 138, 139, 141, 143, 144, 145, 148, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 162, 163, 169, 170, 171, 172, 173, 175, 178, 182, 183, 184, 185, 188], "separ": 194, "sequenc": [3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 42, 43, 44, 47, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 66, 67, 73, 74, 75, 76, 77, 79, 82, 83, 86, 87, 88, 89, 90, 92, 93, 94, 96, 99, 100, 101, 102, 103, 105, 106, 107, 108, 111, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 137, 138, 139, 141, 143, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 162, 163, 169, 170, 171, 172, 173, 175, 178, 179, 182, 183, 184, 185, 186, 188, 191, 194], "seri": [14, 40, 53, 108, 135, 149], "serv": [64, 160], "serve_scripts_loc": [64, 160], "server_mod": [64, 160], "server_port": [64, 160], "servic": 194, "set": [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 17, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 33, 34, 35, 37, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 72, 73, 74, 75, 76, 77, 79, 81, 82, 83, 86, 87, 88, 89, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103, 105, 106, 107, 108, 109, 111, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 128, 129, 130, 132, 134, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 168, 169, 170, 171, 172, 173, 175, 177, 178, 179, 182, 183, 184, 185, 187, 188, 194], "shape": [8, 15, 86, 101, 109, 182], "share": [30, 62, 125, 158], "shorter": [6, 7, 8, 9, 14, 19, 42, 43, 44, 67, 86, 89, 99, 100, 101, 102, 108, 114, 137, 138, 139, 163, 182, 185], "should": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 51, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 68, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 147, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 164, 168, 175, 177, 180, 182, 183, 184, 185, 188], "show": [17, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 111, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175], "shown": [77, 173], "simpl": [6, 7, 8, 9, 14, 19, 42, 43, 44, 67, 86, 89, 99, 100, 101, 102, 108, 114, 137, 138, 139, 163, 182, 185], "simple_whit": [50, 75, 146, 171], "singl": [3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 17, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 43, 44, 46, 47, 48, 49, 51, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 72, 73, 74, 75, 76, 77, 79, 81, 82, 84, 86, 87, 88, 89, 92, 93, 94, 96, 99, 100, 101, 102, 103, 105, 106, 107, 108, 111, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 138, 139, 141, 142, 143, 144, 145, 147, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 168, 169, 170, 171, 172, 173, 175, 177, 178, 180, 182, 183, 184, 185, 188], "site": [3, 4, 6, 7, 8, 9, 10, 14, 19, 20, 21, 22, 32, 38, 42, 43, 44, 48, 49, 54, 55, 56, 65, 67, 72, 77, 81, 84, 85, 86, 87, 88, 89, 93, 94, 96, 99, 100, 101, 102, 103, 108, 114, 115, 116, 117, 127, 133, 137, 138, 139, 144, 145, 150, 151, 152, 161, 163, 168, 173, 177, 180, 181, 182, 183, 184, 185, 193, 194], "site_class": [6, 7, 8, 9, 14, 19, 42, 43, 44, 67, 86, 89, 99, 100, 101, 102, 108, 114, 137, 138, 139, 163, 182, 185], "site_mask": [3, 4, 6, 7, 8, 9, 10, 14, 19, 20, 21, 22, 38, 42, 43, 44, 48, 49, 54, 55, 56, 65, 67, 72, 77, 81, 84, 85, 86, 87, 88, 89, 93, 94, 99, 100, 101, 102, 103, 108, 114, 115, 116, 117, 133, 137, 138, 139, 144, 145, 150, 151, 152, 161, 163, 168, 173, 177, 180, 181, 182, 183, 184, 185, 193], "site_mask_id": [3, 4, 6, 7, 8, 9, 10, 14, 19, 20, 21, 22, 38, 42, 43, 44, 48, 49, 54, 55, 56, 65, 67, 72, 77, 81, 84, 86, 87, 88, 89, 93, 94, 99, 100, 101, 102, 103, 108, 114, 115, 116, 117, 133, 137, 138, 139, 144, 145, 150, 151, 152, 161, 163, 168, 173, 177, 180, 182, 183, 184, 185], "size": [3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 43, 44, 46, 47, 48, 49, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 99, 100, 101, 102, 103, 105, 106, 107, 108, 109, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 138, 139, 142, 143, 144, 145, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 165, 166, 168, 169, 170, 171, 173, 174, 175, 177, 180, 182, 183, 184, 185, 188, 191, 193], "sizing_mod": [46, 47, 54, 56, 57, 59, 60, 61, 62, 65, 66, 72, 77, 78, 79, 142, 143, 150, 152, 153, 155, 156, 157, 158, 161, 162, 168, 173, 174, 175], "slightli": [44, 139], "snp": [7, 8, 9, 10, 28, 29, 30, 31, 32, 37, 42, 44, 49, 58, 59, 60, 61, 62, 64, 66, 67, 77, 79, 85, 86, 87, 88, 89, 90, 92, 96, 100, 101, 102, 103, 123, 124, 125, 126, 127, 132, 137, 139, 145, 154, 155, 156, 157, 158, 160, 162, 163, 173, 175, 181, 182, 183, 184, 185, 186, 188, 193], "snp_allele_frequ": [51, 147], "snp_allele_frequencies_advanc": [52, 53, 148, 149], "snp_colorscal": [49, 145], "snp_filter_min_maf": [49, 145], "snp_queri": [49, 145], "snp_row_height": [49, 145], "snp_transcript": [49, 145], "so": 194, "softwar": 194, "sofwar": 194, "some": [10, 37, 44, 66, 75, 86, 103, 132, 139, 162, 171, 182, 194], "sort": [75, 141, 171], "sourc": 194, "south": [73, 169], "space": [4, 17, 25, 35, 52, 88, 94, 111, 120, 130, 148, 184], "span": [37, 66, 79, 92, 132, 162, 175, 188], "spatial": [4, 25, 35, 88, 94, 120, 130, 184], "speci": 141, "specif": [10, 15, 40, 103, 109, 135], "specifi": [3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 43, 44, 46, 48, 49, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 99, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 138, 139, 142, 144, 145, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 188], "splice": [6, 7, 8, 9, 14, 19, 42, 43, 44, 67, 86, 89, 99, 100, 101, 102, 108, 114, 137, 138, 139, 163, 182, 185], "sqeuclidean": [7, 42, 48, 49, 67, 100, 137, 144, 145, 163], "standard": [6, 37, 43, 66, 68, 99, 132, 138, 162, 164], "standardization_bin": [37, 66, 132, 162], "standardization_diagnost": [37, 66, 132, 162], "standardization_n_bin": [37, 66, 132, 162], "start": [6, 7, 8, 9, 10, 12, 13, 14, 19, 23, 24, 25, 26, 27, 31, 32, 33, 34, 35, 36, 38, 42, 43, 44, 46, 47, 48, 49, 57, 63, 64, 65, 67, 72, 77, 81, 84, 86, 89, 90, 99, 100, 101, 102, 103, 105, 107, 108, 114, 118, 119, 120, 121, 122, 126, 127, 128, 129, 130, 131, 133, 137, 138, 139, 142, 143, 144, 145, 153, 159, 160, 161, 163, 168, 173, 177, 180, 182, 185, 186, 191, 193], "start_lost": [49, 145], "stat": [4, 25, 35, 88, 94, 120, 130, 184], "state": [72, 81, 168, 177], "statist": [14, 19, 20, 21, 22, 28, 29, 30, 37, 50, 54, 55, 56, 58, 59, 60, 61, 62, 92, 108, 114, 115, 116, 117, 123, 124, 125, 132, 146, 150, 151, 152, 154, 155, 156, 157, 158, 188], "statsmodel": [4, 25, 35, 88, 94, 120, 130, 184], "stop_gain": [49, 145], "stop_lost": [49, 145], "storag": 194, "str": [3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 105, 106, 107, 108, 109, 110, 111, 112, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 190, 191, 193], "stretch_both": [46, 47, 54, 56, 57, 59, 60, 61, 62, 65, 66, 72, 77, 78, 79, 142, 143, 150, 152, 153, 155, 156, 157, 158, 161, 162, 168, 173, 174, 175], "stretch_height": [46, 47, 54, 56, 57, 59, 60, 61, 62, 65, 66, 72, 77, 78, 79, 142, 143, 150, 152, 153, 155, 156, 157, 158, 161, 162, 168, 173, 174, 175], "stretch_width": [46, 47, 54, 56, 57, 59, 60, 61, 62, 65, 66, 72, 77, 78, 79, 142, 143, 150, 152, 153, 155, 156, 157, 158, 161, 162, 168, 173, 174, 175], "string": [3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 42, 43, 44, 46, 47, 48, 49, 51, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 72, 73, 74, 75, 76, 77, 79, 81, 82, 84, 86, 87, 88, 89, 90, 92, 93, 94, 96, 99, 100, 101, 102, 103, 105, 106, 107, 108, 111, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 137, 138, 139, 141, 142, 143, 144, 145, 147, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 168, 169, 170, 171, 172, 173, 175, 177, 178, 180, 182, 183, 184, 185, 186, 188], "studi": [41, 136], "style": [51, 147], "subgroup": [0, 194], "subject": 194, "subset": [10, 103], "substitut": [3, 93], "summari": [14, 19, 50, 108, 114, 146], "summaris": [37, 66, 79, 92, 132, 162, 175, 188], "suppli": [48, 49, 51, 52, 53, 63, 67, 144, 145, 147, 148, 149, 159, 163], "support": [0, 194], "surveil": [0, 1, 194], "svg": [46, 48, 49, 54, 56, 57, 59, 60, 61, 62, 63, 65, 66, 67, 69, 72, 79, 142, 144, 145, 150, 152, 153, 155, 156, 157, 158, 159, 161, 162, 163, 165, 168, 175], "sweep": [30, 62, 125, 158], "symbol": [48, 49, 53, 63, 67, 69, 70, 144, 145, 149, 159, 163, 165, 166], "tab": [64, 160], "tabl": [10, 17, 103, 111], "take": [10, 44, 86, 103, 139, 182], "target": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 188, 191, 193], "taxa": [53, 149], "taxon": [4, 15, 17, 25, 35, 52, 53, 76, 88, 94, 109, 111, 120, 130, 141, 148, 149, 172, 184], "templat": [50, 75, 146, 171], "tempor": [4, 25, 35, 88, 94, 120, 130, 184], "term": [0, 1, 2, 194], "text": [51, 52, 68, 147, 148, 164], "text_auto": [51, 68, 147, 164], "texttempl": [51, 68, 147, 164], "than": [3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 43, 44, 45, 48, 49, 51, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 72, 77, 79, 81, 84, 85, 86, 87, 88, 89, 92, 93, 94, 99, 100, 101, 102, 103, 105, 106, 107, 108, 112, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 138, 139, 140, 144, 145, 147, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 168, 173, 175, 177, 180, 181, 182, 183, 184, 185, 188, 194], "therefor": [44, 139], "thi": [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 43, 44, 47, 48, 49, 51, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 77, 79, 81, 82, 84, 86, 87, 88, 89, 92, 93, 94, 99, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 138, 139, 143, 144, 145, 147, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 168, 173, 175, 177, 178, 180, 182, 183, 184, 185, 188, 194], "thin": [7, 8, 9, 10, 42, 44, 67, 100, 101, 102, 103, 137, 139, 163], "thin_offset": [7, 8, 9, 10, 42, 44, 67, 100, 101, 102, 103, 137, 139, 163], "third": [86, 182], "thread": [37, 66, 79, 92, 132, 162, 175, 188], "threshold": [37, 49, 66, 132, 145, 162], "through": [3, 4, 7, 8, 9, 10, 12, 13, 14, 17, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 43, 44, 46, 47, 48, 49, 51, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 81, 82, 84, 86, 87, 88, 89, 92, 93, 94, 96, 100, 101, 102, 103, 105, 106, 107, 108, 111, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 138, 139, 141, 142, 143, 144, 145, 147, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 177, 178, 180, 182, 183, 184, 185, 188, 191, 193], "tilelay": [76, 172], "tileprovid": [76, 172], "time": [4, 10, 17, 25, 35, 44, 52, 53, 64, 86, 88, 94, 103, 111, 120, 130, 139, 148, 149, 160, 182, 184], "titl": [48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62, 63, 66, 67, 78, 79, 144, 145, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 162, 163, 174, 175], "title_font_s": [48, 49, 63, 67, 144, 145, 159, 163], "togeth": [46, 142], "toolbar": [57, 78, 153, 174], "toolbar_loc": [57, 78, 153, 174], "tooltip": [73, 74, 169, 170], "total": 141, "trace": [48, 49, 53, 60, 63, 67, 69, 70, 73, 144, 145, 149, 156, 159, 163, 165, 166, 169], "track": [36, 46, 47, 49, 54, 56, 57, 59, 60, 61, 62, 65, 66, 72, 77, 78, 79, 131, 142, 143, 145, 150, 152, 153, 155, 156, 157, 158, 161, 162, 168, 173, 174, 175], "track_height": [46, 47, 54, 56, 59, 60, 61, 62, 65, 66, 77, 79, 142, 143, 150, 152, 155, 156, 157, 158, 161, 162, 173, 175], "transcript": [3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 19, 23, 24, 25, 26, 27, 31, 32, 33, 34, 35, 36, 38, 42, 43, 44, 46, 47, 48, 49, 57, 63, 64, 65, 67, 72, 77, 78, 81, 84, 86, 87, 88, 89, 90, 93, 94, 99, 100, 101, 102, 103, 105, 107, 108, 114, 118, 119, 120, 121, 122, 126, 127, 128, 129, 130, 131, 133, 137, 138, 139, 142, 143, 144, 145, 153, 159, 160, 161, 163, 168, 173, 174, 177, 180, 182, 183, 184, 185, 186], "transit": [72, 81, 168, 177], "transmiss": 194, "transmit": 194, "tree": [42, 67, 137, 163], "true": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 42, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 84, 86, 87, 88, 89, 90, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 137, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 173, 174, 175, 177, 180, 182, 183, 184, 185, 186, 188, 191, 193], "truncat": [37, 66, 79, 92, 132, 162, 175, 188], "tupl": [3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 45, 46, 48, 49, 50, 52, 53, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 76, 77, 79, 80, 81, 84, 85, 86, 87, 88, 89, 92, 93, 94, 97, 99, 100, 101, 102, 103, 105, 106, 107, 108, 110, 112, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 140, 141, 142, 144, 145, 146, 148, 149, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 172, 173, 175, 176, 177, 180, 181, 182, 183, 184, 185, 188, 191, 193], "two": [6, 7, 20, 30, 42, 48, 49, 54, 62, 64, 67, 68, 99, 100, 115, 125, 137, 144, 145, 150, 158, 160, 163, 164], "type": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 69, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 165, 168, 175, 177, 180, 182, 183, 184, 185, 188], "u": 194, "underli": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 188], "uniontyp": [67, 163], "uniqu": [5, 51, 64, 95, 147, 160], "unit": [15, 76, 109, 172], "unless": [10, 103], "unpack": [26, 121, 190], "unroot": [67, 163], "untransl": [6, 7, 8, 9, 14, 19, 42, 43, 44, 67, 86, 89, 99, 100, 101, 102, 108, 114, 137, 138, 139, 163, 182, 185], "up": [0, 1, 2, 64, 160, 194], "upper": [68, 164], "url": [91, 187], "us": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 84, 85, 86, 87, 88, 89, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 105, 106, 107, 108, 111, 112, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 177, 180, 181, 182, 183, 184, 185, 188, 191, 193, 194], "usa": [73, 169], "usag": [7, 8, 9, 10, 42, 44, 67, 82, 86, 89, 100, 101, 102, 103, 137, 139, 163, 178, 182, 185], "use_thread": [37, 66, 79, 92, 132, 162, 175, 188], "user_guid": [46, 47, 54, 56, 57, 59, 60, 61, 62, 65, 66, 72, 77, 78, 79, 142, 143, 150, 152, 153, 155, 156, 157, 158, 161, 162, 168, 173, 174, 175], "utr_3prim": [6, 7, 8, 9, 14, 19, 42, 43, 44, 67, 86, 89, 99, 100, 101, 102, 108, 114, 137, 138, 139, 163, 182, 185], "utr_5prim": [6, 7, 8, 9, 14, 19, 42, 43, 44, 67, 86, 89, 99, 100, 101, 102, 108, 114, 137, 138, 139, 163, 182, 185], "v": [48, 49, 63, 67, 69, 144, 145, 159, 163, 165], "valid": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 188], "valu": [3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 76, 77, 79, 81, 84, 85, 86, 87, 88, 89, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 105, 106, 107, 108, 109, 112, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 170, 172, 173, 175, 177, 180, 181, 182, 183, 184, 185, 188, 191, 193], "vari": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 188], "variabl": [4, 25, 35, 48, 49, 50, 63, 64, 67, 69, 70, 73, 74, 75, 88, 94, 120, 130, 144, 145, 146, 159, 160, 163, 165, 166, 169, 170, 171, 184], "varianc": [13, 23, 24, 25, 44, 47, 49, 71, 107, 118, 119, 120, 139, 143, 145, 167], "variant": [3, 4, 8, 10, 24, 25, 35, 37, 49, 51, 52, 53, 66, 79, 87, 88, 92, 93, 94, 98, 101, 103, 119, 120, 130, 132, 141, 145, 147, 148, 149, 162, 175, 183, 184, 188], "variant_queri": [4, 25, 88, 94, 120, 184], "variat": 194, "vcf": [91, 187], "vector": [2, 194], "version": [44, 83, 139, 179], "via": 194, "view": [73, 90, 169, 186], "visibility_window": [90, 186], "visibl": [73, 90, 169, 186], "visualis": [64, 160], "vivax": 194, "wa": [39, 44, 64, 86, 134, 139, 160, 182], "wai": 194, "ward": [48, 49, 63, 144, 145, 159], "webgl": [46, 48, 49, 54, 56, 57, 59, 60, 61, 62, 63, 65, 66, 67, 69, 72, 79, 142, 144, 145, 150, 152, 153, 155, 156, 157, 158, 159, 161, 162, 163, 165, 168, 175], "weight": [48, 49, 63, 144, 145, 159], "were": [44, 139], "wg": 194, "when": [4, 5, 7, 8, 9, 10, 25, 42, 44, 67, 86, 88, 94, 95, 100, 101, 102, 103, 120, 137, 139, 163, 182, 184, 194], "where": [8, 19, 67, 81, 86, 101, 114, 163, 177, 182], "whether": [10, 103], "which": [3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 72, 73, 74, 77, 79, 81, 82, 84, 86, 87, 88, 89, 90, 92, 93, 94, 95, 99, 100, 101, 102, 103, 105, 106, 107, 108, 113, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 134, 136, 137, 138, 139, 142, 143, 144, 145, 146, 148, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 165, 166, 168, 169, 170, 173, 175, 177, 178, 180, 182, 183, 184, 185, 186, 188, 191, 193, 194], "whole": 194, "wide": [12, 20, 22, 29, 30, 54, 62, 105, 115, 117, 124, 125, 150, 158], "widget": [52, 76, 148, 172], "width": [46, 47, 48, 49, 50, 51, 53, 54, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 142, 143, 144, 145, 146, 147, 149, 150, 152, 153, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175], "wilson": [4, 25, 35, 88, 94, 120, 130, 184], "window": [20, 21, 22, 28, 29, 30, 37, 54, 55, 56, 58, 59, 60, 61, 62, 65, 66, 72, 79, 81, 92, 115, 116, 117, 123, 124, 125, 132, 150, 151, 152, 154, 155, 156, 157, 158, 161, 162, 168, 175, 177, 188], "window_s": [20, 21, 22, 28, 29, 30, 37, 54, 55, 56, 58, 59, 60, 61, 62, 65, 66, 72, 79, 81, 92, 115, 116, 117, 123, 124, 125, 132, 150, 151, 152, 154, 155, 156, 157, 158, 161, 162, 168, 175, 177, 188], "within": [6, 7, 8, 9, 10, 14, 19, 20, 21, 22, 28, 29, 30, 40, 42, 43, 44, 46, 54, 55, 56, 58, 59, 60, 61, 62, 64, 65, 67, 72, 81, 82, 86, 89, 99, 100, 101, 102, 103, 108, 114, 115, 116, 117, 123, 124, 125, 135, 137, 138, 139, 142, 150, 151, 152, 154, 155, 156, 157, 158, 160, 161, 163, 168, 177, 178, 182, 185, 194], "without": 194, "world": [73, 169], "worldimageri": [76, 172], "worldstreetmap": [76, 172], "worldtopomap": [76, 172], "would": [5, 95, 194], "write": [10, 103], "written": [10, 103], "x": [20, 22, 29, 30, 37, 51, 57, 67, 69, 70, 75, 78, 92, 115, 117, 124, 125, 132, 147, 153, 163, 165, 166, 171, 174, 188], "x_label": [51, 147], "x_rang": [57, 78, 153, 174], "xarrai": [12, 13, 105, 106, 107, 193], "xgap": 141, "xgridoff": [50, 75, 146, 171], "xp": [79, 92, 175, 188], "xpehh": [79, 92, 175, 188], "y": [46, 48, 49, 51, 63, 65, 67, 69, 70, 72, 142, 144, 145, 147, 159, 161, 163, 165, 166, 168], "y_label": [51, 147], "y_max": [46, 65, 72, 142, 161, 168], "year": [4, 17, 25, 35, 75, 88, 94, 111, 120, 130, 171, 184], "ygap": 141, "ygridoff": [50, 75, 146, 171], "you": [5, 60, 61, 95, 156, 157, 194], "your": [10, 44, 86, 103, 139, 182, 194], "z": [68, 70, 164, 166], "zarr": [3, 4, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 44, 48, 49, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 72, 79, 81, 84, 86, 87, 88, 89, 91, 92, 93, 94, 100, 101, 102, 103, 105, 106, 107, 108, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 137, 139, 144, 145, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 168, 175, 177, 180, 182, 183, 184, 185, 187, 188, 191, 193], "zmax": [68, 164], "zmin": [68, 164], "zoom": [52, 74, 76, 90, 148, 170, 172, 186]}, "titles": ["Af1", "Ag3", "Amin1", "malariagen_data.af1.Af1.aa_allele_frequencies", "malariagen_data.af1.Af1.aa_allele_frequencies_advanced", "malariagen_data.af1.Af1.add_extra_metadata", "malariagen_data.af1.Af1.average_fst", "malariagen_data.af1.Af1.biallelic_diplotype_pairwise_distances", "malariagen_data.af1.Af1.biallelic_diplotypes", "malariagen_data.af1.Af1.biallelic_snp_calls", "malariagen_data.af1.Af1.biallelic_snps_to_plink", "malariagen_data.af1.Af1.clear_extra_metadata", "malariagen_data.af1.Af1.cnv_coverage_calls", "malariagen_data.af1.Af1.cnv_hmm", "malariagen_data.af1.Af1.cohort_diversity_stats", "malariagen_data.af1.Af1.cohorts", "malariagen_data.af1.Af1.contigs", "malariagen_data.af1.Af1.count_samples", "malariagen_data.af1.Af1.coverage_calls_analysis_ids", "malariagen_data.af1.Af1.diversity_stats", "malariagen_data.af1.Af1.fst_gwss", "malariagen_data.af1.Af1.g123_calibration", "malariagen_data.af1.Af1.g123_gwss", "malariagen_data.af1.Af1.gene_cnv", "malariagen_data.af1.Af1.gene_cnv_frequencies", "malariagen_data.af1.Af1.gene_cnv_frequencies_advanced", "malariagen_data.af1.Af1.genome_features", "malariagen_data.af1.Af1.genome_sequence", "malariagen_data.af1.Af1.h12_calibration", "malariagen_data.af1.Af1.h12_gwss", "malariagen_data.af1.Af1.h1x_gwss", "malariagen_data.af1.Af1.haplotype_pairwise_distances", "malariagen_data.af1.Af1.haplotype_sites", "malariagen_data.af1.Af1.haplotypes", "malariagen_data.af1.Af1.haplotypes_frequencies", "malariagen_data.af1.Af1.haplotypes_frequencies_advanced", "malariagen_data.af1.Af1.igv", "malariagen_data.af1.Af1.ihs_gwss", "malariagen_data.af1.Af1.is_accessible", "malariagen_data.af1.Af1.lookup_release", "malariagen_data.af1.Af1.lookup_sample", "malariagen_data.af1.Af1.lookup_study", "malariagen_data.af1.Af1.njt", "malariagen_data.af1.Af1.pairwise_average_fst", "malariagen_data.af1.Af1.pca", "malariagen_data.af1.Af1.phasing_analysis_ids", "malariagen_data.af1.Af1.plot_cnv_hmm_coverage", "malariagen_data.af1.Af1.plot_cnv_hmm_heatmap", "malariagen_data.af1.Af1.plot_diplotype_clustering", "malariagen_data.af1.Af1.plot_diplotype_clustering_advanced", "malariagen_data.af1.Af1.plot_diversity_stats", "malariagen_data.af1.Af1.plot_frequencies_heatmap", "malariagen_data.af1.Af1.plot_frequencies_interactive_map", "malariagen_data.af1.Af1.plot_frequencies_time_series", "malariagen_data.af1.Af1.plot_fst_gwss", "malariagen_data.af1.Af1.plot_g123_calibration", "malariagen_data.af1.Af1.plot_g123_gwss", "malariagen_data.af1.Af1.plot_genes", "malariagen_data.af1.Af1.plot_h12_calibration", "malariagen_data.af1.Af1.plot_h12_gwss", "malariagen_data.af1.Af1.plot_h12_gwss_multi_overlay", "malariagen_data.af1.Af1.plot_h12_gwss_multi_panel", "malariagen_data.af1.Af1.plot_h1x_gwss", "malariagen_data.af1.Af1.plot_haplotype_clustering", "malariagen_data.af1.Af1.plot_haplotype_network", "malariagen_data.af1.Af1.plot_heterozygosity", "malariagen_data.af1.Af1.plot_ihs_gwss", "malariagen_data.af1.Af1.plot_njt", "malariagen_data.af1.Af1.plot_pairwise_average_fst", "malariagen_data.af1.Af1.plot_pca_coords", "malariagen_data.af1.Af1.plot_pca_coords_3d", "malariagen_data.af1.Af1.plot_pca_variance", "malariagen_data.af1.Af1.plot_roh", "malariagen_data.af1.Af1.plot_sample_location_geo", "malariagen_data.af1.Af1.plot_sample_location_mapbox", "malariagen_data.af1.Af1.plot_samples_bar", "malariagen_data.af1.Af1.plot_samples_interactive_map", "malariagen_data.af1.Af1.plot_snps", "malariagen_data.af1.Af1.plot_transcript", "malariagen_data.af1.Af1.plot_xpehh_gwss", "malariagen_data.af1.Af1.releases", "malariagen_data.af1.Af1.roh_hmm", "malariagen_data.af1.Af1.sample_metadata", "malariagen_data.af1.Af1.sample_sets", "malariagen_data.af1.Af1.site_annotations", "malariagen_data.af1.Af1.site_mask_ids", "malariagen_data.af1.Af1.snp_allele_counts", "malariagen_data.af1.Af1.snp_allele_frequencies", "malariagen_data.af1.Af1.snp_allele_frequencies_advanced", "malariagen_data.af1.Af1.snp_calls", "malariagen_data.af1.Af1.view_alignments", "malariagen_data.af1.Af1.wgs_data_catalog", "malariagen_data.af1.Af1.xpehh_gwss", "malariagen_data.ag3.Ag3.aa_allele_frequencies", "malariagen_data.ag3.Ag3.aa_allele_frequencies_advanced", "malariagen_data.ag3.Ag3.add_extra_metadata", "malariagen_data.ag3.Ag3.aim_calls", "malariagen_data.ag3.Ag3.aim_ids", "malariagen_data.ag3.Ag3.aim_variants", "malariagen_data.ag3.Ag3.average_fst", "malariagen_data.ag3.Ag3.biallelic_diplotype_pairwise_distances", "malariagen_data.ag3.Ag3.biallelic_diplotypes", "malariagen_data.ag3.Ag3.biallelic_snp_calls", "malariagen_data.ag3.Ag3.biallelic_snps_to_plink", "malariagen_data.ag3.Ag3.clear_extra_metadata", "malariagen_data.ag3.Ag3.cnv_coverage_calls", "malariagen_data.ag3.Ag3.cnv_discordant_read_calls", "malariagen_data.ag3.Ag3.cnv_hmm", "malariagen_data.ag3.Ag3.cohort_diversity_stats", "malariagen_data.ag3.Ag3.cohorts", "malariagen_data.ag3.Ag3.contigs", "malariagen_data.ag3.Ag3.count_samples", "malariagen_data.ag3.Ag3.coverage_calls_analysis_ids", "malariagen_data.ag3.Ag3.cross_metadata", "malariagen_data.ag3.Ag3.diversity_stats", "malariagen_data.ag3.Ag3.fst_gwss", "malariagen_data.ag3.Ag3.g123_calibration", "malariagen_data.ag3.Ag3.g123_gwss", "malariagen_data.ag3.Ag3.gene_cnv", "malariagen_data.ag3.Ag3.gene_cnv_frequencies", "malariagen_data.ag3.Ag3.gene_cnv_frequencies_advanced", "malariagen_data.ag3.Ag3.genome_features", "malariagen_data.ag3.Ag3.genome_sequence", "malariagen_data.ag3.Ag3.h12_calibration", "malariagen_data.ag3.Ag3.h12_gwss", "malariagen_data.ag3.Ag3.h1x_gwss", "malariagen_data.ag3.Ag3.haplotype_pairwise_distances", "malariagen_data.ag3.Ag3.haplotype_sites", "malariagen_data.ag3.Ag3.haplotypes", "malariagen_data.ag3.Ag3.haplotypes_frequencies", "malariagen_data.ag3.Ag3.haplotypes_frequencies_advanced", "malariagen_data.ag3.Ag3.igv", "malariagen_data.ag3.Ag3.ihs_gwss", "malariagen_data.ag3.Ag3.is_accessible", "malariagen_data.ag3.Ag3.lookup_release", "malariagen_data.ag3.Ag3.lookup_sample", "malariagen_data.ag3.Ag3.lookup_study", "malariagen_data.ag3.Ag3.njt", "malariagen_data.ag3.Ag3.pairwise_average_fst", "malariagen_data.ag3.Ag3.pca", "malariagen_data.ag3.Ag3.phasing_analysis_ids", "malariagen_data.ag3.Ag3.plot_aim_heatmap", "malariagen_data.ag3.Ag3.plot_cnv_hmm_coverage", "malariagen_data.ag3.Ag3.plot_cnv_hmm_heatmap", "malariagen_data.ag3.Ag3.plot_diplotype_clustering", "malariagen_data.ag3.Ag3.plot_diplotype_clustering_advanced", "malariagen_data.ag3.Ag3.plot_diversity_stats", "malariagen_data.ag3.Ag3.plot_frequencies_heatmap", "malariagen_data.ag3.Ag3.plot_frequencies_interactive_map", "malariagen_data.ag3.Ag3.plot_frequencies_time_series", "malariagen_data.ag3.Ag3.plot_fst_gwss", "malariagen_data.ag3.Ag3.plot_g123_calibration", "malariagen_data.ag3.Ag3.plot_g123_gwss", "malariagen_data.ag3.Ag3.plot_genes", "malariagen_data.ag3.Ag3.plot_h12_calibration", "malariagen_data.ag3.Ag3.plot_h12_gwss", "malariagen_data.ag3.Ag3.plot_h12_gwss_multi_overlay", "malariagen_data.ag3.Ag3.plot_h12_gwss_multi_panel", "malariagen_data.ag3.Ag3.plot_h1x_gwss", "malariagen_data.ag3.Ag3.plot_haplotype_clustering", "malariagen_data.ag3.Ag3.plot_haplotype_network", "malariagen_data.ag3.Ag3.plot_heterozygosity", "malariagen_data.ag3.Ag3.plot_ihs_gwss", "malariagen_data.ag3.Ag3.plot_njt", "malariagen_data.ag3.Ag3.plot_pairwise_average_fst", "malariagen_data.ag3.Ag3.plot_pca_coords", "malariagen_data.ag3.Ag3.plot_pca_coords_3d", "malariagen_data.ag3.Ag3.plot_pca_variance", "malariagen_data.ag3.Ag3.plot_roh", "malariagen_data.ag3.Ag3.plot_sample_location_geo", "malariagen_data.ag3.Ag3.plot_sample_location_mapbox", "malariagen_data.ag3.Ag3.plot_samples_bar", "malariagen_data.ag3.Ag3.plot_samples_interactive_map", "malariagen_data.ag3.Ag3.plot_snps", "malariagen_data.ag3.Ag3.plot_transcript", "malariagen_data.ag3.Ag3.plot_xpehh_gwss", "malariagen_data.ag3.Ag3.releases", "malariagen_data.ag3.Ag3.roh_hmm", "malariagen_data.ag3.Ag3.sample_metadata", "malariagen_data.ag3.Ag3.sample_sets", "malariagen_data.ag3.Ag3.site_annotations", "malariagen_data.ag3.Ag3.site_mask_ids", "malariagen_data.ag3.Ag3.snp_allele_counts", "malariagen_data.ag3.Ag3.snp_allele_frequencies", "malariagen_data.ag3.Ag3.snp_allele_frequencies_advanced", "malariagen_data.ag3.Ag3.snp_calls", "malariagen_data.ag3.Ag3.view_alignments", "malariagen_data.ag3.Ag3.wgs_data_catalog", "malariagen_data.ag3.Ag3.xpehh_gwss", "malariagen_data.amin1.Amin1.contigs", "malariagen_data.amin1.Amin1.genome_features", "malariagen_data.amin1.Amin1.genome_sequence", "malariagen_data.amin1.Amin1.sample_metadata", "malariagen_data.amin1.Amin1.snp_calls", "MalariaGEN Python API documentation"], "titleterms": {"aa_allele_frequ": [3, 93], "aa_allele_frequencies_advanc": [4, 94], "about": 194, "access": [0, 1, 2], "add_extra_metadata": [5, 95], "af1": [0, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92], "ag3": [1, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188], "aim": 1, "aim_cal": 96, "aim_id": 97, "aim_vari": 98, "amin1": [2, 189, 190, 191, 192, 193], "analysi": [0, 1], "api": 194, "average_fst": [6, 99], "basic": [0, 1], "biallelic_diplotyp": [8, 101], "biallelic_diplotype_pairwise_dist": [7, 100], "biallelic_snp_cal": [9, 102], "biallelic_snps_to_plink": [10, 103], "clear_extra_metadata": [11, 104], "cluster": [0, 1], "cnv": [0, 1], "cnv_coverage_cal": [12, 105], "cnv_discordant_read_cal": 106, "cnv_hmm": [13, 107], "cohort": [15, 109], "cohort_diversity_stat": [14, 108], "compon": [0, 1], "contig": [16, 110, 189], "count_sampl": [17, 111], "coverage_calls_analysis_id": [18, 112], "cross_metadata": 113, "data": [0, 1, 2, 194], "diplotyp": [0, 1], "distanc": [0, 1], "divers": [0, 1], "diversity_stat": [19, 114], "document": 194, "frequenc": [0, 1], "fst": [0, 1], "fst_gwss": [20, 115], "g123_calibr": [21, 116], "g123_gwss": [22, 117], "gene_cnv": [23, 118], "gene_cnv_frequ": [24, 119], "gene_cnv_frequencies_advanc": [25, 120], "genet": [0, 1], "genom": [0, 1, 2], "genome_featur": [26, 121, 190], "genome_sequ": [27, 122, 191], "h12_calibr": [28, 123], "h12_gwss": [29, 124], "h1x_gwss": [30, 125], "haplotyp": [0, 1, 33, 128], "haplotype_pairwise_dist": [31, 126], "haplotype_sit": [32, 127], "haplotypes_frequ": [34, 129], "haplotypes_frequencies_advanc": [35, 130], "heterozygos": [0, 1], "igv": [0, 1, 36, 131], "ihs_gwss": [37, 132], "instal": 194, "integr": [0, 1], "is_access": [38, 133], "join": [0, 1], "lookup_releas": [39, 134], "lookup_sampl": [40, 135], "lookup_studi": [41, 136], "malariagen": 194, "malariagen_data": [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193], "metadata": [0, 1, 2], "neighbour": [0, 1], "network": [0, 1], "njt": [0, 1, 42, 137], "note": [3, 5, 10, 34, 44, 51, 86, 87, 93, 95, 103, 129, 139, 147, 182, 183], "pairwise_average_fst": [43, 138], "paramet": [3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 101, 102, 103, 105, 106, 107, 108, 109, 111, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 177, 178, 179, 180, 182, 183, 184, 185, 186, 187, 188, 190, 191, 193], "pca": [0, 1, 44, 139], "phasing_analysis_id": [45, 140], "plot_aim_heatmap": 141, "plot_cnv_hmm_coverag": [46, 142], "plot_cnv_hmm_heatmap": [47, 143], "plot_diplotype_clust": [48, 144], "plot_diplotype_clustering_advanc": [49, 145], "plot_diversity_stat": [50, 146], "plot_frequencies_heatmap": [51, 147], "plot_frequencies_interactive_map": [52, 148], "plot_frequencies_time_seri": [53, 149], "plot_fst_gwss": [54, 150], "plot_g123_calibr": [55, 151], "plot_g123_gwss": [56, 152], "plot_gen": [57, 153], "plot_h12_calibr": [58, 154], "plot_h12_gwss": [59, 155], "plot_h12_gwss_multi_overlai": [60, 156], "plot_h12_gwss_multi_panel": [61, 157], "plot_h1x_gwss": [62, 158], "plot_haplotype_clust": [63, 159], "plot_haplotype_network": [64, 160], "plot_heterozygos": [65, 161], "plot_ihs_gwss": [66, 162], "plot_njt": [67, 163], "plot_pairwise_average_fst": [68, 164], "plot_pca_coord": [69, 165], "plot_pca_coords_3d": [70, 166], "plot_pca_vari": [71, 167], "plot_roh": [72, 168], "plot_sample_location_geo": [73, 169], "plot_sample_location_mapbox": [74, 170], "plot_samples_bar": [75, 171], "plot_samples_interactive_map": [76, 172], "plot_snp": [77, 173], "plot_transcript": [78, 174], "plot_xpehh_gwss": [79, 175], "princip": [0, 1], "python": 194, "refer": [0, 1, 2], "releas": [80, 176], "return": [3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 96, 98, 99, 100, 101, 102, 103, 105, 106, 107, 108, 109, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 141, 142, 143, 144, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 161, 162, 163, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 177, 178, 179, 180, 182, 183, 184, 185, 187, 188, 190, 191, 192, 193], "roh_hmm": [81, 177], "sampl": [0, 1, 2], "sample_metadata": [82, 178, 192], "sample_set": [83, 179], "scan": [0, 1], "select": [0, 1], "site_annot": [84, 180], "site_mask_id": [85, 181], "snp": [0, 1, 2], "snp_allele_count": [86, 182], "snp_allele_frequ": [87, 183], "snp_allele_frequencies_advanc": [88, 184], "snp_call": [89, 185, 193], "train": 194, "tree": [0, 1], "view_align": [90, 186], "viewer": [0, 1], "wgs_data_catalog": [91, 187], "wide": [0, 1], "xpehh_gwss": [92, 188]}}) \ No newline at end of file