-
Notifications
You must be signed in to change notification settings - Fork 0
/
CS_09.R
297 lines (227 loc) · 11.9 KB
/
CS_09.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
# Case-Study Title: Customers RFM Clustering (Market Segmentation based on Behavioral Approach)
# Data Analysis methodology: CRISP-DM
# Dataset: Iranian online e-commerce platform's customers transactions data in first 4 months of year 1398 (from 1398/01/01 to 1398/04/31)
# Case Goal: Detect and Segment similar customers of e-commerce platform business (Customer Segmentation using RFM model)
### Required Libraries ----
install.packages('factoextra')
install.packages('ggplot2')
install.packages('cluster')
library('factoextra')
library('ggplot2')
library('cluster')
### Read Data from File ----
data <- read.csv('CS_09.csv', header = T)
dim(data) # 40537 records, 5 variables
### Step 1: Business Understanding ----
# know business process and issues
# know the context of the problem
# know the order of numbers in the business
### Step 2: Data Understanding ----
### Step 2.1: Data Inspection (Data Understanding from Free Perspective) ----
## Dataset variables definition
colnames(data)
#order_id -> ID of customer's order (Transaction unique ID)
#created_ts -> Date of ordering in EN (date of Transaction)
#shamsy_date -> Date of ordering in FA
#customer_id -> ID of customer
#total_purchase -> sum of purchase for ordering transaction (Transaction total payment Price in Rials)
### Step 2.2: Data Exploring (Data Understanding from Statistical Perspective) ----
## Overview of Dataframe
class(data)
head(data)
tail(data)
str(data)
summary(data)
sum(is.na(data$total_purchase)) # has NA?
## Analyze daily demand (analyze number of transactions per day):
data$date <- as.Date(data$created_ts, '%m/%d/%Y') # convert Character to Date
class(data$date)
daily_demand <- table(data$date) # count records (transactions|demand) in each Category (day|date)
head(daily_demand)
mean(daily_demand) # average daily transactions of this Business: 327 transactions in a day
plot(daily_demand, type = 'l') # line chart: daily-demand changes through time
#there is a seasonal pattern in daily-demand of this business
#we have demand fall in weekends and holidays in this Business (because of Nature of demand)
#we have a pick in last week because of marketing campaign
### Step 3: Data PreProcessing ----
## Create RFM dataset
#we want to use RFM model for our Cluestering, so we need to prepare Recency-Frequency-Monetary for every customer at this analysis-time-range
# Frequency: number of purchases per customer at analysis-time-range
customer_f <- as.data.frame(aggregate(data$order_id, list(data$customer_id), length)) # count number of transactions per customer_id in 4 months
colnames(customer_f) <- c('customer_id', 'freq')
head(customer_f)
length(customer_f$customer_id) # 14964
hist(customer_f$freq, breks = 50)
summary(customer_f$freq)
# Recency: how long it passed from a customer's last purchase time?
tail(data)
r_date <- as.Date("07/23/2019", format = "%m/%d/%Y") # reference date
customer_r <- as.data.frame(aggregate(data$date, list(data$customer_id), max)) # last date per each customer_id
colnames(customer_r) <- c('customer_id', 'last_date')
head(customer_r) # last transaction date per customer_id
customer_r$recency <- as.numeric(r_date - customer_r$last_date) # difference between two date in days
head(customer_r) # passed days from each customer's last purchase?
hist(customer_r$recency, breaks = 50)
summary(customer_r$recency)
# Monetary: total purchase per customer
customer_m <- as.data.frame(aggregate(data$total_purchase, list(data$customer_id), sum)) # total purchase per customer_id in 4 months in Rials
colnames(customer_m) <- c('customer_id', 'monetary')
head(customer_m)
hist(customer_m$monetary, breaks = 50)
summary(customer_m$monetary)
# RFM dataset for Customers
df <- merge(customer_f, customer_r, 'customer_id') # merge two dataframe based-on 'customer_id' column
head(df)
rfm_customer <- merge(df, customer_m, 'customer_id')
head(rfm_customer)
rfm_customer <- rfm_customer[, -3] # remove 'last_date'
head(rfm_customer) # R-F-M per each customer
rownames(rfm_customer) <- rfm_customer$customer_id # assign customer ids to row names
rfm_customer <- rfm_customer[,-1] # remove 'customer_id'
head(rfm_customer)
plot(rfm_customer$freq, rfm_customer$recency) # there is not any pattern
plot(rfm_customer$freq, rfm_customer$monetary) # there is a Strong positive linear-relationship between two features
cor(rfm_customer$freq, rfm_customer$monetary) # high correlation
rfm_customer_2 <- rfm_customer[,c('freq', 'recency')] # remove 'monetary' column from our Clustering features
head(rfm_customer_2)
hist(rfm_customer$freq, breaks = 50) # so skewed data
hist(log10(rfm_customer$freq), breaks = 50) # still skewed log(data)
hist(rfm_customer$recency, breaks = 50)
hist(log10(rfm_customer$recency), breaks = 50)
#Scale features
rfm_customer_2 <- scale(rfm_customer_2) # bring data around 0
head(rfm_customer_2)
summary(rfm_customer_2)
class(rfm_customer_2)
hist(rfm_customer_2[,1], breaks = 50) #skewed data
hist(rfm_customer_2[,2], breaks = 50) #skewed data
### Step 4: Modeling ----
# Model 1: K-Means
#First try
set.seed(123)
seg_km1 <- kmeans(rfm_customer_2, centers = 5) # 5 clusters
seg_km1
#Results
seg_km1$cluster # each observation (customer) is in which cluster?
table(seg_km1$cluster) # each cluster's population
km_res1 <- as.data.frame(seg_km1$cluster)
km_res1$customer_id <- rownames(km_res1) # add 'customer_id' column again
colnames(km_res1) <- c('cluster', 'customer_id')
head(km_res1)
#add every customer's cluster label in run_1_k-means:
rfm_customer$km1 <- km_res1[,'cluster']
head(rfm_customer) # 'km1': cluster label of observation at k-means 1th-run
aggregate(rfm_customer[,c(1:3)], list(rfm_customer$km1), mean) # mean of R, F, M for each cluster
#give sense about customers in each Cluster
#cluster 1: min buy-freq in 4-month and max buy-recency and min buy-monetary -> churned customers
#cluster 2: max buy-freq in 4-month and low buy-recency and max buy-monetary -> valuable (loyal) customers
#cluster 3: low buy-freq in 4-month and low buy-recency -> probably the customers which are new-added with campaign -> goal for work-on them to bring them to loyal customers
#cluster 4: high buy-freq in 4-month and low buy-recency -> our good customers
#cluster 5: low buy-freq in 4-month and medium buy-recency -> comeback them via a marketing game
table(rfm_customer$km1)
#visualize clusters
ggplot(data = rfm_customer, aes(x = freq, y = recency, color = factor(km1))) +
geom_point() +
ggtitle('kmeans - iter_1')
#Second try (because skewed data and k-means weakness)
set.seed(11234)
seg_km2 <- kmeans(rfm_customer_2, centers = 5)
#Results
table(seg_km2$cluster) # different cluster sizes with km1 -> different clustering results
table(seg_km1$cluster) # Note: do not care to cluster labels; because they can vary in each run
km_res2 <- as.data.frame(seg_km2$cluster)
km_res2$customer_id <- rownames(km_res2)
colnames(km_res2) <- c('cluster', 'customer_id')
rfm_customer$km2 <- km_res2[,'cluster']
head(rfm_customer)
aggregate(rfm_customer[,c(1:3)], list(rfm_customer$km2), mean) # do not care to labels
#completely different Clusters!
table(rfm_customer$km2)
#visualize clusters
ggplot(data = rfm_customer, aes(x = freq, y = recency, color = factor(km2))) +
geom_point() +
ggtitle('kmeans - iter_2') # too much difference between Clusters in km1 and km2 -> results are not robust!
# Model 2: CLARA
#First try
set.seed(1234)
seg_cl1 <- cluster::clara(rfm_customer_2, k = 5, samples = 10000, pamLike = T)
#Results
table(seg_cl1$cluster) # 5 Clusters
cl_res1 <- as.data.frame(seg_cl1$cluster) # cluster labels
cl_res1$customer_id <- rownames(cl_res1)
colnames(cl_res1) <- c('cluster', 'customer_id')
rfm_customer$cl1 <- cl_res1[,'cluster']
head(rfm_customer)
aggregate(rfm_customer[,c(1:3)], list(rfm_customer$cl1), mean)
table(rfm_customer$cl1)
#visualize clusters
ggplot(data = rfm_customer, aes(x = freq, y = recency, color = factor(cl1))) +
geom_point() +
ggtitle('clara - iter_1') +
scale_color_manual(values = c("#00AFBB", "#E7B800", "#FC4E07", "#C3D7A4", "#52854C")) # run_1 CLARA result -> similar to run_1 k-means result
#Second try
set.seed(12345678)
seg_cl2 <- cluster::clara(rfm_customer_2, k = 5, samples = 5000, pamLike = T)
#Results
table(seg_cl2$cluster) # without care to labels: exactly same results with run_1 CLARA (exactly same population in each cluster)
table(seg_cl1$cluster)
cl_res2 <- as.data.frame(seg_cl2$cluster) # cluster labels
cl_res2$customer_id <- rownames(cl_res2)
colnames(cl_res2) <- c('cluster', 'customer_id')
rfm_customer$cl2 <- cl_res2[,'cluster']
head(rfm_customer)
aggregate(rfm_customer[,c(1:3)], list(rfm_customer$cl2), mean) # exact same output result
table(rfm_customer$cl2)
#visualize clusters
ggplot(data = rfm_customer, aes(x = freq, y = recency, color = factor(cl2))) +
geom_point() +
ggtitle('clara - iter_2') +
scale_color_manual(values = c("#00AFBB", "#E7B800", "#FC4E07", "#C3D7A4", "#52854C")) # there is no difference (changes) between results cl1 and cl2
#result: for this dataset, CLARA is more robust algorithm for Clustering compare to K-Means
# Model 3: Hierarchical K-Means
set.seed(1234)
seg_hk1 <- factoextra::hkmeans(rfm_customer_2, k = 5)
#Results
table(seg_hk1$cluster) # again, different Clustering results -> all results are mathematically True (this is Clustering challenge)
hk_res1 <- as.data.frame(seg_hk1$cluster)
hk_res1$customer_id <- rownames(hk_res1)
colnames(hk_res1) <- c('cluster', 'customer_id')
rfm_customer$hk1 <- hk_res1[,'cluster']
head(rfm_customer)
aggregate(rfm_customer[,c(1:3)], list(rfm_customer$hk1), mean)
table(rfm_customer$hk1)
#visualize clusters
ggplot(data = rfm_customer, aes(x = freq, y = recency, color = factor(hk1)))+
geom_point() +
ggtitle("hkmeans - iter_1") +
scale_color_manual(values = c("#00AFBB", "#C3D7A4", "#E7B800", "#FC4E07", "#52854C"))
### Step 5: Model Evaluation ----
# Optimal number of clusters (CLARA):
#Elbow method: introduces an index for us to measure our Clustering quality and decide about number of Clusters
rfm_customer_2_sample <- rfm_customer_2[sample(1:nrow(rfm_customer_2), 5000), ]
plot_elbow_cl <- factoextra::fviz_nbclust(rfm_customer_2_sample, cluster::clara, method = 'wss') # 10 times run clustering (once per different number of Clusters) then compare results based-on TWSS and choose the best k
plot_elbow_cl # by increasing number of Clusters, `Total Within Sum of Squares` decreases
#which K is better? 5 is better
plot_elbow_cl <- plot_elbow_cl +
geom_vline(xintercept = 5, linetype = 2) +
labs(subtitle = 'Elbow method_CLARA') # Elbow breaks at 5
plot_elbow_cl
plot_elbow_cl$data # TWSS values per different number of Clusters
#Silhouette method:
plot_silhouette_cl <- factoextra::fviz_nbclust(rfm_customer_2_sample, cluster::clara, method = 'silhouette') +
labs(subtitle = 'Silhouette method_CLARA')
plot_silhouette_cl # 2-cluster is better from statistical aspect based-on Silhouette method
plot_silhouette_cl$data
# Optimal number of clusters (Hierarchical K-Means):
#Elbow method:
plot_elbow_hk <- factoextra::fviz_nbclust(rfm_customer_2_sample, hkmeans, method = 'wss') +
labs(subtitle = 'Elbow method_hkmeans')
plot_elbow_hk
plot_elbow_hk$data
#Silhouette method:
plot_silhouette_hk <- factoextra::fviz_nbclust(rfm_customer_2_sample, hkmeans, method = 'silhouette') +
labs(subtitle = 'Silhouette method_hkmeans')
plot_silhouette_hk
plot_silhouette_hk$data
#now, we can compare models based on their silhouette (max) and twss (min) index -> based-on statistical indexes, hklust results is better than others
# but there is still a question: are these Clusters good from Business aspect? which Clustering results are better? -> we can not answer this question in ML area, we can answer this question in applied area