forked from google/inspiration_tree
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
179 lines (147 loc) · 7.46 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
"""
Copyright 2023 Google LLC
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
https://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import os
import torch
from diffusers import StableDiffusionPipeline
import numpy as np
import matplotlib.pyplot as plt
from transformers import CLIPImageProcessor, CLIPModel
import glob
def load_tokens(pipe, data, device):
"""
Adds the new learned tokens into the predefined dictionary of pipe.
"""
added_tokens = []
for t_ in data.keys():
added_tokens.append(t_)
num_added_tokens = pipe.tokenizer.add_tokens(added_tokens)
pipe.text_encoder.resize_token_embeddings(len(pipe.tokenizer))
for token_ in data.keys():
ref_token = pipe.tokenizer.tokenize(token_)
ref_indx = pipe.tokenizer.convert_tokens_to_ids(ref_token)[0]
embd_cur = data[token_].to(device).to(dtype=torch.float16)
pipe.text_encoder.text_model.embeddings.token_embedding.weight[ref_indx] = embd_cur
def save_rev_samples(output_path, path_to_embed, model_id, device):
if not os.path.exists(f"{output_path}/final_samples"):
os.mkdir(f"{output_path}/final_samples")
prompts_title = ["Vl", "Vr", "Vl Vr"]
prompt_to_vec = {}
assert os.path.exists(path_to_embed)
data = torch.load(path_to_embed)
combined = []
prompts = []
for w_ in data.keys():
prompt_to_vec[w_] = data[w_]
combined.append(w_)
prompts.append(w_)
prompts.append(" ".join(combined))
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, safety_checker=None, requires_safety_checker=False).to(device)
load_tokens(pipe, prompt_to_vec, device)
print("Prompts loaded to pipe ...")
print(prompt_to_vec.keys())
gen_seeds = [4321, 95, 11, 87654]
num_images_per_seed = 10
plt.figure(figsize=(20,20))
for i in range(len(prompts)):
images_per_seed = []
for gen_seed in gen_seeds:
with torch.no_grad():
torch.manual_seed(gen_seed)
images = pipe(prompt=[prompts[i]] * num_images_per_seed, num_inference_steps=25, guidance_scale=7.5).images
images_per_seed.extend(images)
# plot results
plot_stacked = []
for j in range(int(len(images_per_seed) / 4)):
images_staked_h = np.hstack([np.asarray(img) for img in images_per_seed[j * 4:j * 4 + 4]])
plot_stacked.append(images_staked_h)
im_stack = np.vstack(plot_stacked)
plt.subplot(1,len(prompts), i + 1)
plt.imshow(im_stack)
plt.axis("off")
plt.title(prompts_title[i], size=24)
plt.savefig(f"{output_path}/final_samples.jpg")
def generate_training_data(code_path, node, output_path, device, model_id, model_id_clip):
node_code = torch.load(code_path)[node]
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, safety_checker=None, requires_safety_checker=False).to(device)
load_tokens(pipe, {"<*>": node_code}, device)
print("Prompts loaded to pipe ...")
gen_seeds = [4321, 95, 11, 87654]
num_images_per_seed = 10
clip_model = CLIPModel.from_pretrained(model_id_clip)
preprocess = CLIPImageProcessor.from_pretrained(model_id_clip)
plt.figure(figsize=(20,20))
images_per_seed = []
for gen_seed in gen_seeds:
with torch.no_grad():
torch.manual_seed(gen_seed)
images = pipe(prompt=["<*>"] * num_images_per_seed, num_inference_steps=25, guidance_scale=7.5).images
images_per_seed.extend(images)
# saves the clip embeddings for all images
with torch.no_grad():
images_preprocess = [preprocess(image, return_tensors="pt")["pixel_values"] for image in images_per_seed]
stacked_images = torch.cat(images_preprocess)
embedding_a = clip_model.get_image_features(stacked_images)
emb_norm = torch.norm(embedding_a, dim=1)
clip_embed_all = embedding_a / emb_norm.unsqueeze(1)
sim_mat = (clip_embed_all @ clip_embed_all.T)
mean_over_rows = sim_mat.mean(dim=0)
sorted_inds = np.array(mean_over_rows).argsort()[-10:][::-1]
best_images = []
for j in sorted_inds:
best_images.append(images_per_seed[j])
images_per_seed[j].save(f"{output_path}/{j}.jpg")
# plot results
plot_stacked = []
for j in range(int(len(images_per_seed) / 4)):
images_staked_h = np.hstack([np.asarray(img) for img in images_per_seed[j * 4:j * 4 + 4]])
plot_stacked.append(images_staked_h)
im_stack = np.vstack(plot_stacked)
plt.subplot(1, 2, 1)
plt.imshow(im_stack)
plt.axis("off")
plt.title(node, size=24)
plot_stacked = []
for j in range(int(len(best_images) / 5)):
images_staked_h = np.hstack([np.asarray(img) for img in best_images[j * 5:j * 5 + 5]])
plot_stacked.append(images_staked_h)
im_stack = np.vstack(plot_stacked)
plt.subplot(1, 2, 2)
plt.imshow(im_stack)
plt.axis("off")
plt.title("Chosen", size=24)
if not os.path.exists(f"{output_path}/generated_images_summary"):
os.mkdir(f"{output_path}/generated_images_summary")
plt.savefig(f"{output_path}/generated_images_summary/final_samples.jpg")
del clip_model
del pipe
torch.cuda.empty_cache()
def save_children_nodes(parent_node, children_node_path, concept_output_path, device, MODEL_ID, MODEL_ID_CLIP):
node_number = int(parent_node[1:])
left_child_number = node_number * 2 + 1
right_child_number = left_child_number + 1
data = torch.load(children_node_path)
left_child_code = {f"v{left_child_number}" :data["<*>"]}
right_child_code = {f"v{right_child_number}": data["<&>"]}
if not os.path.exists(f"{concept_output_path}/v{left_child_number}"):
os.mkdir(f"{concept_output_path}/v{left_child_number}")
if not os.path.exists(f"{concept_output_path}/v{right_child_number}"):
os.mkdir(f"{concept_output_path}/v{right_child_number}")
torch.save(left_child_code, f"{concept_output_path}/v{left_child_number}/embeds.bin")
torch.save(right_child_code, f"{concept_output_path}/v{right_child_number}/embeds.bin")
print(f"Results saved to:\n[{concept_output_path}/v{left_child_number}/embeds.bin]\n[{concept_output_path}/v{right_child_number}/embeds.bin]")
files_l = glob.glob(f"{concept_output_path}/v{left_child_number}/*.png") + glob.glob(f"{concept_output_path}/v{left_child_number}/*.jpg") + glob.glob(f"{concept_output_path}/v{left_child_number}/*.jpeg")
files_r = glob.glob(f"{concept_output_path}/v{right_child_number}/*.png") + glob.glob(f"{concept_output_path}/v{right_child_number}/*.jpg") + glob.glob(f"{concept_output_path}/v{right_child_number}/*.jpeg")
if not len(files_l):
generate_training_data(f"{concept_output_path}/v{left_child_number}/embeds.bin", f"v{left_child_number}", f"{concept_output_path}/v{left_child_number}", device, MODEL_ID, MODEL_ID_CLIP)
if not len(files_r):
generate_training_data(f"{concept_output_path}/v{right_child_number}/embeds.bin", f"v{right_child_number}", f"{concept_output_path}/v{right_child_number}", device, MODEL_ID, MODEL_ID_CLIP)